File: | gdbstub.c |
Location: | line 2102, column 9 |
Description: | Value stored to 'env' is never read |
1 | /* |
2 | * gdb server stub |
3 | * |
4 | * Copyright (c) 2003-2005 Fabrice Bellard |
5 | * |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2 of the License, or (at your option) any later version. |
10 | * |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | #include "config.h" |
20 | #include "qemu-common.h" |
21 | #ifdef CONFIG_USER_ONLY |
22 | #include <stdlib.h> |
23 | #include <stdio.h> |
24 | #include <stdarg.h> |
25 | #include <string.h> |
26 | #include <errno(*__errno_location ()).h> |
27 | #include <unistd.h> |
28 | #include <fcntl.h> |
29 | |
30 | #include "qemu.h" |
31 | #else |
32 | #include "monitor.h" |
33 | #include "qemu-char.h" |
34 | #include "sysemu.h" |
35 | #include "gdbstub.h" |
36 | #endif |
37 | |
38 | #define MAX_PACKET_LENGTH4096 4096 |
39 | |
40 | #include "cpu.h" |
41 | #include "qemu_socket.h" |
42 | #include "kvm.h" |
43 | |
44 | #ifndef TARGET_CPU_MEMORY_RW_DEBUG |
45 | static inline int target_memory_rw_debug(CPUArchStatestruct CPUMIPSState *env, target_ulong addr, |
46 | uint8_t *buf, int len, int is_write) |
47 | { |
48 | return cpu_memory_rw_debug(env, addr, buf, len, is_write); |
49 | } |
50 | #else |
51 | /* target_memory_rw_debug() defined in cpu.h */ |
52 | #endif |
53 | |
54 | enum { |
55 | GDB_SIGNAL_0 = 0, |
56 | GDB_SIGNAL_INT = 2, |
57 | GDB_SIGNAL_QUIT = 3, |
58 | GDB_SIGNAL_TRAP = 5, |
59 | GDB_SIGNAL_ABRT = 6, |
60 | GDB_SIGNAL_ALRM = 14, |
61 | GDB_SIGNAL_IO = 23, |
62 | GDB_SIGNAL_XCPU = 24, |
63 | GDB_SIGNAL_UNKNOWN = 143 |
64 | }; |
65 | |
66 | #ifdef CONFIG_USER_ONLY |
67 | |
68 | /* Map target signal numbers to GDB protocol signal numbers and vice |
69 | * versa. For user emulation's currently supported systems, we can |
70 | * assume most signals are defined. |
71 | */ |
72 | |
73 | static int gdb_signal_table[] = { |
74 | 0, |
75 | TARGET_SIGHUP, |
76 | TARGET_SIGINT, |
77 | TARGET_SIGQUIT, |
78 | TARGET_SIGILL, |
79 | TARGET_SIGTRAP, |
80 | TARGET_SIGABRT, |
81 | -1, /* SIGEMT */ |
82 | TARGET_SIGFPE, |
83 | TARGET_SIGKILL, |
84 | TARGET_SIGBUS, |
85 | TARGET_SIGSEGV, |
86 | TARGET_SIGSYS, |
87 | TARGET_SIGPIPE, |
88 | TARGET_SIGALRM, |
89 | TARGET_SIGTERM, |
90 | TARGET_SIGURG, |
91 | TARGET_SIGSTOP, |
92 | TARGET_SIGTSTP, |
93 | TARGET_SIGCONT, |
94 | TARGET_SIGCHLD, |
95 | TARGET_SIGTTIN, |
96 | TARGET_SIGTTOU, |
97 | TARGET_SIGIO, |
98 | TARGET_SIGXCPU, |
99 | TARGET_SIGXFSZ, |
100 | TARGET_SIGVTALRM, |
101 | TARGET_SIGPROF, |
102 | TARGET_SIGWINCH, |
103 | -1, /* SIGLOST */ |
104 | TARGET_SIGUSR1, |
105 | TARGET_SIGUSR2, |
106 | #ifdef TARGET_SIGPWR |
107 | TARGET_SIGPWR, |
108 | #else |
109 | -1, |
110 | #endif |
111 | -1, /* SIGPOLL */ |
112 | -1, |
113 | -1, |
114 | -1, |
115 | -1, |
116 | -1, |
117 | -1, |
118 | -1, |
119 | -1, |
120 | -1, |
121 | -1, |
122 | -1, |
123 | #ifdef __SIGRTMIN32 |
124 | __SIGRTMIN32 + 1, |
125 | __SIGRTMIN32 + 2, |
126 | __SIGRTMIN32 + 3, |
127 | __SIGRTMIN32 + 4, |
128 | __SIGRTMIN32 + 5, |
129 | __SIGRTMIN32 + 6, |
130 | __SIGRTMIN32 + 7, |
131 | __SIGRTMIN32 + 8, |
132 | __SIGRTMIN32 + 9, |
133 | __SIGRTMIN32 + 10, |
134 | __SIGRTMIN32 + 11, |
135 | __SIGRTMIN32 + 12, |
136 | __SIGRTMIN32 + 13, |
137 | __SIGRTMIN32 + 14, |
138 | __SIGRTMIN32 + 15, |
139 | __SIGRTMIN32 + 16, |
140 | __SIGRTMIN32 + 17, |
141 | __SIGRTMIN32 + 18, |
142 | __SIGRTMIN32 + 19, |
143 | __SIGRTMIN32 + 20, |
144 | __SIGRTMIN32 + 21, |
145 | __SIGRTMIN32 + 22, |
146 | __SIGRTMIN32 + 23, |
147 | __SIGRTMIN32 + 24, |
148 | __SIGRTMIN32 + 25, |
149 | __SIGRTMIN32 + 26, |
150 | __SIGRTMIN32 + 27, |
151 | __SIGRTMIN32 + 28, |
152 | __SIGRTMIN32 + 29, |
153 | __SIGRTMIN32 + 30, |
154 | __SIGRTMIN32 + 31, |
155 | -1, /* SIGCANCEL */ |
156 | __SIGRTMIN32, |
157 | __SIGRTMIN32 + 32, |
158 | __SIGRTMIN32 + 33, |
159 | __SIGRTMIN32 + 34, |
160 | __SIGRTMIN32 + 35, |
161 | __SIGRTMIN32 + 36, |
162 | __SIGRTMIN32 + 37, |
163 | __SIGRTMIN32 + 38, |
164 | __SIGRTMIN32 + 39, |
165 | __SIGRTMIN32 + 40, |
166 | __SIGRTMIN32 + 41, |
167 | __SIGRTMIN32 + 42, |
168 | __SIGRTMIN32 + 43, |
169 | __SIGRTMIN32 + 44, |
170 | __SIGRTMIN32 + 45, |
171 | __SIGRTMIN32 + 46, |
172 | __SIGRTMIN32 + 47, |
173 | __SIGRTMIN32 + 48, |
174 | __SIGRTMIN32 + 49, |
175 | __SIGRTMIN32 + 50, |
176 | __SIGRTMIN32 + 51, |
177 | __SIGRTMIN32 + 52, |
178 | __SIGRTMIN32 + 53, |
179 | __SIGRTMIN32 + 54, |
180 | __SIGRTMIN32 + 55, |
181 | __SIGRTMIN32 + 56, |
182 | __SIGRTMIN32 + 57, |
183 | __SIGRTMIN32 + 58, |
184 | __SIGRTMIN32 + 59, |
185 | __SIGRTMIN32 + 60, |
186 | __SIGRTMIN32 + 61, |
187 | __SIGRTMIN32 + 62, |
188 | __SIGRTMIN32 + 63, |
189 | __SIGRTMIN32 + 64, |
190 | __SIGRTMIN32 + 65, |
191 | __SIGRTMIN32 + 66, |
192 | __SIGRTMIN32 + 67, |
193 | __SIGRTMIN32 + 68, |
194 | __SIGRTMIN32 + 69, |
195 | __SIGRTMIN32 + 70, |
196 | __SIGRTMIN32 + 71, |
197 | __SIGRTMIN32 + 72, |
198 | __SIGRTMIN32 + 73, |
199 | __SIGRTMIN32 + 74, |
200 | __SIGRTMIN32 + 75, |
201 | __SIGRTMIN32 + 76, |
202 | __SIGRTMIN32 + 77, |
203 | __SIGRTMIN32 + 78, |
204 | __SIGRTMIN32 + 79, |
205 | __SIGRTMIN32 + 80, |
206 | __SIGRTMIN32 + 81, |
207 | __SIGRTMIN32 + 82, |
208 | __SIGRTMIN32 + 83, |
209 | __SIGRTMIN32 + 84, |
210 | __SIGRTMIN32 + 85, |
211 | __SIGRTMIN32 + 86, |
212 | __SIGRTMIN32 + 87, |
213 | __SIGRTMIN32 + 88, |
214 | __SIGRTMIN32 + 89, |
215 | __SIGRTMIN32 + 90, |
216 | __SIGRTMIN32 + 91, |
217 | __SIGRTMIN32 + 92, |
218 | __SIGRTMIN32 + 93, |
219 | __SIGRTMIN32 + 94, |
220 | __SIGRTMIN32 + 95, |
221 | -1, /* SIGINFO */ |
222 | -1, /* UNKNOWN */ |
223 | -1, /* DEFAULT */ |
224 | -1, |
225 | -1, |
226 | -1, |
227 | -1, |
228 | -1, |
229 | -1 |
230 | #endif |
231 | }; |
232 | #else |
233 | /* In system mode we only need SIGINT and SIGTRAP; other signals |
234 | are not yet supported. */ |
235 | |
236 | enum { |
237 | TARGET_SIGINT = 2, |
238 | TARGET_SIGTRAP = 5 |
239 | }; |
240 | |
241 | static int gdb_signal_table[] = { |
242 | -1, |
243 | -1, |
244 | TARGET_SIGINT, |
245 | -1, |
246 | -1, |
247 | TARGET_SIGTRAP |
248 | }; |
249 | #endif |
250 | |
251 | #ifdef CONFIG_USER_ONLY |
252 | static int target_signal_to_gdb (int sig) |
253 | { |
254 | int i; |
255 | for (i = 0; i < ARRAY_SIZE (gdb_signal_table)(sizeof(gdb_signal_table) / sizeof((gdb_signal_table)[0])); i++) |
256 | if (gdb_signal_table[i] == sig) |
257 | return i; |
258 | return GDB_SIGNAL_UNKNOWN; |
259 | } |
260 | #endif |
261 | |
262 | static int gdb_signal_to_target (int sig) |
263 | { |
264 | if (sig < ARRAY_SIZE (gdb_signal_table)(sizeof(gdb_signal_table) / sizeof((gdb_signal_table)[0]))) |
265 | return gdb_signal_table[sig]; |
266 | else |
267 | return -1; |
268 | } |
269 | |
270 | //#define DEBUG_GDB |
271 | |
272 | typedef struct GDBRegisterState { |
273 | int base_reg; |
274 | int num_regs; |
275 | gdb_reg_cb get_reg; |
276 | gdb_reg_cb set_reg; |
277 | const char *xml; |
278 | struct GDBRegisterState *next; |
279 | } GDBRegisterState; |
280 | |
281 | enum RSState { |
282 | RS_INACTIVE, |
283 | RS_IDLE, |
284 | RS_GETLINE, |
285 | RS_CHKSUM1, |
286 | RS_CHKSUM2, |
287 | }; |
288 | typedef struct GDBState { |
289 | CPUArchStatestruct CPUMIPSState *c_cpu; /* current CPU for step/continue ops */ |
290 | CPUArchStatestruct CPUMIPSState *g_cpu; /* current CPU for other ops */ |
291 | CPUArchStatestruct CPUMIPSState *query_cpu; /* for q{f|s}ThreadInfo */ |
292 | enum RSState state; /* parsing state */ |
293 | char line_buf[MAX_PACKET_LENGTH4096]; |
294 | int line_buf_index; |
295 | int line_csum; |
296 | uint8_t last_packet[MAX_PACKET_LENGTH4096 + 4]; |
297 | int last_packet_len; |
298 | int signal; |
299 | #ifdef CONFIG_USER_ONLY |
300 | int fd; |
301 | int running_state; |
302 | #else |
303 | CharDriverState *chr; |
304 | CharDriverState *mon_chr; |
305 | #endif |
306 | char syscall_buf[256]; |
307 | gdb_syscall_complete_cb current_syscall_cb; |
308 | } GDBState; |
309 | |
310 | /* By default use no IRQs and no timers while single stepping so as to |
311 | * make single stepping like an ICE HW step. |
312 | */ |
313 | static int sstep_flags = SSTEP_ENABLE0x1|SSTEP_NOIRQ0x2|SSTEP_NOTIMER0x4; |
314 | |
315 | static GDBState *gdbserver_state; |
316 | |
317 | /* This is an ugly hack to cope with both new and old gdb. |
318 | If gdb sends qXfer:features:read then assume we're talking to a newish |
319 | gdb that understands target descriptions. */ |
320 | static int gdb_has_xml; |
321 | |
322 | #ifdef CONFIG_USER_ONLY |
323 | /* XXX: This is not thread safe. Do we care? */ |
324 | static int gdbserver_fd = -1; |
325 | |
326 | static int get_char(GDBState *s) |
327 | { |
328 | uint8_t ch; |
329 | int ret; |
330 | |
331 | for(;;) { |
332 | ret = qemu_recv(s->fd, &ch, 1, 0)recv(s->fd, &ch, 1, 0); |
333 | if (ret < 0) { |
334 | if (errno(*__errno_location ()) == ECONNRESET104) |
335 | s->fd = -1; |
336 | if (errno(*__errno_location ()) != EINTR4 && errno(*__errno_location ()) != EAGAIN11) |
337 | return -1; |
338 | } else if (ret == 0) { |
339 | close(s->fd); |
340 | s->fd = -1; |
341 | return -1; |
342 | } else { |
343 | break; |
344 | } |
345 | } |
346 | return ch; |
347 | } |
348 | #endif |
349 | |
350 | static enum { |
351 | GDB_SYS_UNKNOWN, |
352 | GDB_SYS_ENABLED, |
353 | GDB_SYS_DISABLED, |
354 | } gdb_syscall_mode; |
355 | |
356 | /* If gdb is connected when the first semihosting syscall occurs then use |
357 | remote gdb syscalls. Otherwise use native file IO. */ |
358 | int use_gdb_syscalls(void) |
359 | { |
360 | if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { |
361 | gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED |
362 | : GDB_SYS_DISABLED); |
363 | } |
364 | return gdb_syscall_mode == GDB_SYS_ENABLED; |
365 | } |
366 | |
367 | /* Resume execution. */ |
368 | static inline void gdb_continue(GDBState *s) |
369 | { |
370 | #ifdef CONFIG_USER_ONLY |
371 | s->running_state = 1; |
372 | #else |
373 | vm_start(); |
374 | #endif |
375 | } |
376 | |
377 | static void put_buffer(GDBState *s, const uint8_t *buf, int len) |
378 | { |
379 | #ifdef CONFIG_USER_ONLY |
380 | int ret; |
381 | |
382 | while (len > 0) { |
383 | ret = send(s->fd, buf, len, 0); |
384 | if (ret < 0) { |
385 | if (errno(*__errno_location ()) != EINTR4 && errno(*__errno_location ()) != EAGAIN11) |
386 | return; |
387 | } else { |
388 | buf += ret; |
389 | len -= ret; |
390 | } |
391 | } |
392 | #else |
393 | qemu_chr_fe_write(s->chr, buf, len); |
394 | #endif |
395 | } |
396 | |
397 | static inline int fromhex(int v) |
398 | { |
399 | if (v >= '0' && v <= '9') |
400 | return v - '0'; |
401 | else if (v >= 'A' && v <= 'F') |
402 | return v - 'A' + 10; |
403 | else if (v >= 'a' && v <= 'f') |
404 | return v - 'a' + 10; |
405 | else |
406 | return 0; |
407 | } |
408 | |
409 | static inline int tohex(int v) |
410 | { |
411 | if (v < 10) |
412 | return v + '0'; |
413 | else |
414 | return v - 10 + 'a'; |
415 | } |
416 | |
417 | static void memtohex(char *buf, const uint8_t *mem, int len) |
418 | { |
419 | int i, c; |
420 | char *q; |
421 | q = buf; |
422 | for(i = 0; i < len; i++) { |
423 | c = mem[i]; |
424 | *q++ = tohex(c >> 4); |
425 | *q++ = tohex(c & 0xf); |
426 | } |
427 | *q = '\0'; |
428 | } |
429 | |
430 | static void hextomem(uint8_t *mem, const char *buf, int len) |
431 | { |
432 | int i; |
433 | |
434 | for(i = 0; i < len; i++) { |
435 | mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); |
436 | buf += 2; |
437 | } |
438 | } |
439 | |
440 | /* return -1 if error, 0 if OK */ |
441 | static int put_packet_binary(GDBState *s, const char *buf, int len) |
442 | { |
443 | int csum, i; |
444 | uint8_t *p; |
445 | |
446 | for(;;) { |
447 | p = s->last_packet; |
448 | *(p++) = '$'; |
449 | memcpy(p, buf, len); |
450 | p += len; |
451 | csum = 0; |
452 | for(i = 0; i < len; i++) { |
453 | csum += buf[i]; |
454 | } |
455 | *(p++) = '#'; |
456 | *(p++) = tohex((csum >> 4) & 0xf); |
457 | *(p++) = tohex((csum) & 0xf); |
458 | |
459 | s->last_packet_len = p - s->last_packet; |
460 | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
461 | |
462 | #ifdef CONFIG_USER_ONLY |
463 | i = get_char(s); |
464 | if (i < 0) |
465 | return -1; |
466 | if (i == '+') |
467 | break; |
468 | #else |
469 | break; |
470 | #endif |
471 | } |
472 | return 0; |
473 | } |
474 | |
475 | /* return -1 if error, 0 if OK */ |
476 | static int put_packet(GDBState *s, const char *buf) |
477 | { |
478 | #ifdef DEBUG_GDB |
479 | printf("reply='%s'\n", buf); |
480 | #endif |
481 | |
482 | return put_packet_binary(s, buf, strlen(buf)); |
483 | } |
484 | |
485 | /* The GDB remote protocol transfers values in target byte order. This means |
486 | we can use the raw memory access routines to access the value buffer. |
487 | Conveniently, these also handle the case where the buffer is mis-aligned. |
488 | */ |
489 | #define GET_REG8(val)do { stb_p(mem_buf, val); return 1; } while(0) do { \ |
490 | stb_p(mem_buf, val); \ |
491 | return 1; \ |
492 | } while(0) |
493 | #define GET_REG16(val)do { stw_le_p(mem_buf, val); return 2; } while(0) do { \ |
494 | stw_p(mem_buf, val)stw_le_p(mem_buf, val); \ |
495 | return 2; \ |
496 | } while(0) |
497 | #define GET_REG32(val)do { stl_le_p(mem_buf, val); return 4; } while(0) do { \ |
498 | stl_p(mem_buf, val)stl_le_p(mem_buf, val); \ |
499 | return 4; \ |
500 | } while(0) |
501 | #define GET_REG64(val)do { stq_le_p(mem_buf, val); return 8; } while(0) do { \ |
502 | stq_p(mem_buf, val)stq_le_p(mem_buf, val); \ |
503 | return 8; \ |
504 | } while(0) |
505 | |
506 | #if TARGET_LONG_BITS32 == 64 |
507 | #define GET_REGL(val)do { stl_le_p(mem_buf, val); return 4; } while(0) GET_REG64(val)do { stq_le_p(mem_buf, val); return 8; } while(0) |
508 | #define ldtul_p(addr)ldl_le_p(addr) ldq_p(addr)ldq_le_p(addr) |
509 | #else |
510 | #define GET_REGL(val)do { stl_le_p(mem_buf, val); return 4; } while(0) GET_REG32(val)do { stl_le_p(mem_buf, val); return 4; } while(0) |
511 | #define ldtul_p(addr)ldl_le_p(addr) ldl_p(addr)ldl_le_p(addr) |
512 | #endif |
513 | |
514 | #if defined(TARGET_I386) |
515 | |
516 | #ifdef TARGET_X86_64 |
517 | static const int gpr_map[16] = { |
518 | R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, |
519 | 8, 9, 10, 11, 12, 13, 14, 15 |
520 | }; |
521 | #else |
522 | #define gpr_map gpr_map32 |
523 | #endif |
524 | static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
525 | |
526 | #define NUM_CORE_REGS73 (CPU_NB_REGS * 2 + 25) |
527 | |
528 | #define IDX_IP_REG CPU_NB_REGS |
529 | #define IDX_FLAGS_REG (IDX_IP_REG + 1) |
530 | #define IDX_SEG_REGS (IDX_FLAGS_REG + 1) |
531 | #define IDX_FP_REGS (IDX_SEG_REGS + 6) |
532 | #define IDX_XMM_REGS (IDX_FP_REGS + 16) |
533 | #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) |
534 | |
535 | static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n) |
536 | { |
537 | if (n < CPU_NB_REGS) { |
538 | if (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK) { |
539 | GET_REG64(env->regs[gpr_map[n]])do { stq_le_p(mem_buf, env->regs[gpr_map[n]]); return 8; } while(0); |
540 | } else if (n < CPU_NB_REGS32) { |
541 | GET_REG32(env->regs[gpr_map32[n]])do { stl_le_p(mem_buf, env->regs[gpr_map32[n]]); return 4; } while(0); |
542 | } |
543 | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
544 | #ifdef USE_X86LDOUBLE |
545 | /* FIXME: byteswap float values - after fixing fpregs layout. */ |
546 | memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10); |
547 | #else |
548 | memset(mem_buf, 0, 10); |
549 | #endif |
550 | return 10; |
551 | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
552 | n -= IDX_XMM_REGS; |
553 | if (n < CPU_NB_REGS32 || |
554 | (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK)) { |
555 | stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0))stq_le_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); |
556 | stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1))stq_le_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); |
557 | return 16; |
558 | } |
559 | } else { |
560 | switch (n) { |
561 | case IDX_IP_REG: |
562 | if (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK) { |
563 | GET_REG64(env->eip)do { stq_le_p(mem_buf, env->eip); return 8; } while(0); |
564 | } else { |
565 | GET_REG32(env->eip)do { stl_le_p(mem_buf, env->eip); return 4; } while(0); |
566 | } |
567 | case IDX_FLAGS_REG: GET_REG32(env->eflags)do { stl_le_p(mem_buf, env->eflags); return 4; } while(0); |
568 | |
569 | case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector)do { stl_le_p(mem_buf, env->segs[R_CS].selector); return 4 ; } while(0); |
570 | case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector)do { stl_le_p(mem_buf, env->segs[R_SS].selector); return 4 ; } while(0); |
571 | case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector)do { stl_le_p(mem_buf, env->segs[R_DS].selector); return 4 ; } while(0); |
572 | case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector)do { stl_le_p(mem_buf, env->segs[R_ES].selector); return 4 ; } while(0); |
573 | case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector)do { stl_le_p(mem_buf, env->segs[R_FS].selector); return 4 ; } while(0); |
574 | case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector)do { stl_le_p(mem_buf, env->segs[R_GS].selector); return 4 ; } while(0); |
575 | |
576 | case IDX_FP_REGS + 8: GET_REG32(env->fpuc)do { stl_le_p(mem_buf, env->fpuc); return 4; } while(0); |
577 | case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |do { stl_le_p(mem_buf, (env->fpus & ~0x3800) | (env-> fpstt & 0x7) << 11); return 4; } while(0) |
578 | (env->fpstt & 0x7) << 11)do { stl_le_p(mem_buf, (env->fpus & ~0x3800) | (env-> fpstt & 0x7) << 11); return 4; } while(0); |
579 | case IDX_FP_REGS + 10: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* ftag */ |
580 | case IDX_FP_REGS + 11: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* fiseg */ |
581 | case IDX_FP_REGS + 12: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* fioff */ |
582 | case IDX_FP_REGS + 13: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* foseg */ |
583 | case IDX_FP_REGS + 14: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* fooff */ |
584 | case IDX_FP_REGS + 15: GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* fop */ |
585 | |
586 | case IDX_MXCSR_REG: GET_REG32(env->mxcsr)do { stl_le_p(mem_buf, env->mxcsr); return 4; } while(0); |
587 | } |
588 | } |
589 | return 0; |
590 | } |
591 | |
592 | static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf) |
593 | { |
594 | uint16_t selector = ldl_p(mem_buf)ldl_le_p(mem_buf); |
595 | |
596 | if (selector != env->segs[sreg].selector) { |
597 | #if defined(CONFIG_USER_ONLY) |
598 | cpu_x86_load_seg(env, sreg, selector); |
599 | #else |
600 | unsigned int limit, flags; |
601 | target_ulong base; |
602 | |
603 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
604 | base = selector << 4; |
605 | limit = 0xffff; |
606 | flags = 0; |
607 | } else { |
608 | if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags)) |
609 | return 4; |
610 | } |
611 | cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); |
612 | #endif |
613 | } |
614 | return 4; |
615 | } |
616 | |
617 | static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n) |
618 | { |
619 | uint32_t tmp; |
620 | |
621 | if (n < CPU_NB_REGS) { |
622 | if (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK) { |
623 | env->regs[gpr_map[n]] = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
624 | return sizeof(target_ulong); |
625 | } else if (n < CPU_NB_REGS32) { |
626 | n = gpr_map32[n]; |
627 | env->regs[n] &= ~0xffffffffUL; |
628 | env->regs[n] |= (uint32_t)ldl_p(mem_buf)ldl_le_p(mem_buf); |
629 | return 4; |
630 | } |
631 | } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
632 | #ifdef USE_X86LDOUBLE |
633 | /* FIXME: byteswap float values - after fixing fpregs layout. */ |
634 | memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); |
635 | #endif |
636 | return 10; |
637 | } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
638 | n -= IDX_XMM_REGS; |
639 | if (n < CPU_NB_REGS32 || |
640 | (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK)) { |
641 | env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf)ldq_le_p(mem_buf); |
642 | env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8)ldq_le_p(mem_buf + 8); |
643 | return 16; |
644 | } |
645 | } else { |
646 | switch (n) { |
647 | case IDX_IP_REG: |
648 | if (TARGET_LONG_BITS32 == 64 && env->hflags & HF_CS64_MASK) { |
649 | env->eip = ldq_p(mem_buf)ldq_le_p(mem_buf); |
650 | return 8; |
651 | } else { |
652 | env->eip &= ~0xffffffffUL; |
653 | env->eip |= (uint32_t)ldl_p(mem_buf)ldl_le_p(mem_buf); |
654 | return 4; |
655 | } |
656 | case IDX_FLAGS_REG: |
657 | env->eflags = ldl_p(mem_buf)ldl_le_p(mem_buf); |
658 | return 4; |
659 | |
660 | case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf); |
661 | case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf); |
662 | case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf); |
663 | case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf); |
664 | case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf); |
665 | case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf); |
666 | |
667 | case IDX_FP_REGS + 8: |
668 | env->fpuc = ldl_p(mem_buf)ldl_le_p(mem_buf); |
669 | return 4; |
670 | case IDX_FP_REGS + 9: |
671 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
672 | env->fpstt = (tmp >> 11) & 7; |
673 | env->fpus = tmp & ~0x3800; |
674 | return 4; |
675 | case IDX_FP_REGS + 10: /* ftag */ return 4; |
676 | case IDX_FP_REGS + 11: /* fiseg */ return 4; |
677 | case IDX_FP_REGS + 12: /* fioff */ return 4; |
678 | case IDX_FP_REGS + 13: /* foseg */ return 4; |
679 | case IDX_FP_REGS + 14: /* fooff */ return 4; |
680 | case IDX_FP_REGS + 15: /* fop */ return 4; |
681 | |
682 | case IDX_MXCSR_REG: |
683 | env->mxcsr = ldl_p(mem_buf)ldl_le_p(mem_buf); |
684 | return 4; |
685 | } |
686 | } |
687 | /* Unrecognised register. */ |
688 | return 0; |
689 | } |
690 | |
691 | #elif defined (TARGET_PPC) |
692 | |
693 | /* Old gdb always expects FP registers. Newer (xml-aware) gdb only |
694 | expects whatever the target description contains. Due to a |
695 | historical mishap the FP registers appear in between core integer |
696 | regs and PC, MSR, CR, and so forth. We hack round this by giving the |
697 | FP regs zero size when talking to a newer gdb. */ |
698 | #define NUM_CORE_REGS73 71 |
699 | #if defined (TARGET_PPC64) |
700 | #define GDB_CORE_XML "power64-core.xml" |
701 | #else |
702 | #define GDB_CORE_XML "power-core.xml" |
703 | #endif |
704 | |
705 | static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n) |
706 | { |
707 | if (n < 32) { |
708 | /* gprs */ |
709 | GET_REGL(env->gpr[n])do { stl_le_p(mem_buf, env->gpr[n]); return 4; } while(0); |
710 | } else if (n < 64) { |
711 | /* fprs */ |
712 | if (gdb_has_xml) |
713 | return 0; |
714 | stfq_p(mem_buf, env->fpr[n-32])stfq_le_p(mem_buf, env->fpr[n-32]); |
715 | return 8; |
716 | } else { |
717 | switch (n) { |
718 | case 64: GET_REGL(env->nip)do { stl_le_p(mem_buf, env->nip); return 4; } while(0); |
719 | case 65: GET_REGL(env->msr)do { stl_le_p(mem_buf, env->msr); return 4; } while(0); |
720 | case 66: |
721 | { |
722 | uint32_t cr = 0; |
723 | int i; |
724 | for (i = 0; i < 8; i++) |
725 | cr |= env->crf[i] << (32 - ((i + 1) * 4)); |
726 | GET_REG32(cr)do { stl_le_p(mem_buf, cr); return 4; } while(0); |
727 | } |
728 | case 67: GET_REGL(env->lr)do { stl_le_p(mem_buf, env->lr); return 4; } while(0); |
729 | case 68: GET_REGL(env->ctr)do { stl_le_p(mem_buf, env->ctr); return 4; } while(0); |
730 | case 69: GET_REGL(env->xer)do { stl_le_p(mem_buf, env->xer); return 4; } while(0); |
731 | case 70: |
732 | { |
733 | if (gdb_has_xml) |
734 | return 0; |
735 | GET_REG32(env->fpscr)do { stl_le_p(mem_buf, env->fpscr); return 4; } while(0); |
736 | } |
737 | } |
738 | } |
739 | return 0; |
740 | } |
741 | |
742 | static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n) |
743 | { |
744 | if (n < 32) { |
745 | /* gprs */ |
746 | env->gpr[n] = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
747 | return sizeof(target_ulong); |
748 | } else if (n < 64) { |
749 | /* fprs */ |
750 | if (gdb_has_xml) |
751 | return 0; |
752 | env->fpr[n-32] = ldfq_p(mem_buf)ldfq_le_p(mem_buf); |
753 | return 8; |
754 | } else { |
755 | switch (n) { |
756 | case 64: |
757 | env->nip = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
758 | return sizeof(target_ulong); |
759 | case 65: |
760 | ppc_store_msr(env, ldtul_p(mem_buf)ldl_le_p(mem_buf)); |
761 | return sizeof(target_ulong); |
762 | case 66: |
763 | { |
764 | uint32_t cr = ldl_p(mem_buf)ldl_le_p(mem_buf); |
765 | int i; |
766 | for (i = 0; i < 8; i++) |
767 | env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; |
768 | return 4; |
769 | } |
770 | case 67: |
771 | env->lr = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
772 | return sizeof(target_ulong); |
773 | case 68: |
774 | env->ctr = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
775 | return sizeof(target_ulong); |
776 | case 69: |
777 | env->xer = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
778 | return sizeof(target_ulong); |
779 | case 70: |
780 | /* fpscr */ |
781 | if (gdb_has_xml) |
782 | return 0; |
783 | return 4; |
784 | } |
785 | } |
786 | return 0; |
787 | } |
788 | |
789 | #elif defined (TARGET_SPARC) |
790 | |
791 | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
792 | #define NUM_CORE_REGS73 86 |
793 | #else |
794 | #define NUM_CORE_REGS73 72 |
795 | #endif |
796 | |
797 | #ifdef TARGET_ABI32 |
798 | #define GET_REGA(val) GET_REG32(val)do { stl_le_p(mem_buf, val); return 4; } while(0) |
799 | #else |
800 | #define GET_REGA(val) GET_REGL(val)do { stl_le_p(mem_buf, val); return 4; } while(0) |
801 | #endif |
802 | |
803 | static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n) |
804 | { |
805 | if (n < 8) { |
806 | /* g0..g7 */ |
807 | GET_REGA(env->gregs[n]); |
808 | } |
809 | if (n < 32) { |
810 | /* register window */ |
811 | GET_REGA(env->regwptr[n - 8]); |
812 | } |
813 | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
814 | if (n < 64) { |
815 | /* fprs */ |
816 | if (n & 1) { |
817 | GET_REG32(env->fpr[(n - 32) / 2].l.lower)do { stl_le_p(mem_buf, env->fpr[(n - 32) / 2].l.lower); return 4; } while(0); |
818 | } else { |
819 | GET_REG32(env->fpr[(n - 32) / 2].l.upper)do { stl_le_p(mem_buf, env->fpr[(n - 32) / 2].l.upper); return 4; } while(0); |
820 | } |
821 | } |
822 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
823 | switch (n) { |
824 | case 64: GET_REGA(env->y); |
825 | case 65: GET_REGA(cpu_get_psr(env)); |
826 | case 66: GET_REGA(env->wim); |
827 | case 67: GET_REGA(env->tbr); |
828 | case 68: GET_REGA(env->pc); |
829 | case 69: GET_REGA(env->npc); |
830 | case 70: GET_REGA(env->fsr); |
831 | case 71: GET_REGA(0); /* csr */ |
832 | default: GET_REGA(0); |
833 | } |
834 | #else |
835 | if (n < 64) { |
836 | /* f0-f31 */ |
837 | if (n & 1) { |
838 | GET_REG32(env->fpr[(n - 32) / 2].l.lower)do { stl_le_p(mem_buf, env->fpr[(n - 32) / 2].l.lower); return 4; } while(0); |
839 | } else { |
840 | GET_REG32(env->fpr[(n - 32) / 2].l.upper)do { stl_le_p(mem_buf, env->fpr[(n - 32) / 2].l.upper); return 4; } while(0); |
841 | } |
842 | } |
843 | if (n < 80) { |
844 | /* f32-f62 (double width, even numbers only) */ |
845 | GET_REG64(env->fpr[(n - 32) / 2].ll)do { stq_le_p(mem_buf, env->fpr[(n - 32) / 2].ll); return 8 ; } while(0); |
846 | } |
847 | switch (n) { |
848 | case 80: GET_REGL(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
849 | case 81: GET_REGL(env->npc)do { stl_le_p(mem_buf, env->npc); return 4; } while(0); |
850 | case 82: GET_REGL((cpu_get_ccr(env) << 32) |do { stl_le_p(mem_buf, (cpu_get_ccr(env) << 32) | ((env ->asi & 0xff) << 24) | ((env->pstate & 0xfff ) << 8) | cpu_get_cwp64(env)); return 4; } while(0) |
851 | ((env->asi & 0xff) << 24) |do { stl_le_p(mem_buf, (cpu_get_ccr(env) << 32) | ((env ->asi & 0xff) << 24) | ((env->pstate & 0xfff ) << 8) | cpu_get_cwp64(env)); return 4; } while(0) |
852 | ((env->pstate & 0xfff) << 8) |do { stl_le_p(mem_buf, (cpu_get_ccr(env) << 32) | ((env ->asi & 0xff) << 24) | ((env->pstate & 0xfff ) << 8) | cpu_get_cwp64(env)); return 4; } while(0) |
853 | cpu_get_cwp64(env))do { stl_le_p(mem_buf, (cpu_get_ccr(env) << 32) | ((env ->asi & 0xff) << 24) | ((env->pstate & 0xfff ) << 8) | cpu_get_cwp64(env)); return 4; } while(0); |
854 | case 83: GET_REGL(env->fsr)do { stl_le_p(mem_buf, env->fsr); return 4; } while(0); |
855 | case 84: GET_REGL(env->fprs)do { stl_le_p(mem_buf, env->fprs); return 4; } while(0); |
856 | case 85: GET_REGL(env->y)do { stl_le_p(mem_buf, env->y); return 4; } while(0); |
857 | } |
858 | #endif |
859 | return 0; |
860 | } |
861 | |
862 | static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n) |
863 | { |
864 | #if defined(TARGET_ABI32) |
865 | abi_ulong tmp; |
866 | |
867 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
868 | #else |
869 | target_ulong tmp; |
870 | |
871 | tmp = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
872 | #endif |
873 | |
874 | if (n < 8) { |
875 | /* g0..g7 */ |
876 | env->gregs[n] = tmp; |
877 | } else if (n < 32) { |
878 | /* register window */ |
879 | env->regwptr[n - 8] = tmp; |
880 | } |
881 | #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
882 | else if (n < 64) { |
883 | /* fprs */ |
884 | /* f0-f31 */ |
885 | if (n & 1) { |
886 | env->fpr[(n - 32) / 2].l.lower = tmp; |
887 | } else { |
888 | env->fpr[(n - 32) / 2].l.upper = tmp; |
889 | } |
890 | } else { |
891 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
892 | switch (n) { |
893 | case 64: env->y = tmp; break; |
894 | case 65: cpu_put_psr(env, tmp); break; |
895 | case 66: env->wim = tmp; break; |
896 | case 67: env->tbr = tmp; break; |
897 | case 68: env->pc = tmp; break; |
898 | case 69: env->npc = tmp; break; |
899 | case 70: env->fsr = tmp; break; |
900 | default: return 0; |
901 | } |
902 | } |
903 | return 4; |
904 | #else |
905 | else if (n < 64) { |
906 | /* f0-f31 */ |
907 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
908 | if (n & 1) { |
909 | env->fpr[(n - 32) / 2].l.lower = tmp; |
910 | } else { |
911 | env->fpr[(n - 32) / 2].l.upper = tmp; |
912 | } |
913 | return 4; |
914 | } else if (n < 80) { |
915 | /* f32-f62 (double width, even numbers only) */ |
916 | env->fpr[(n - 32) / 2].ll = tmp; |
917 | } else { |
918 | switch (n) { |
919 | case 80: env->pc = tmp; break; |
920 | case 81: env->npc = tmp; break; |
921 | case 82: |
922 | cpu_put_ccr(env, tmp >> 32); |
923 | env->asi = (tmp >> 24) & 0xff; |
924 | env->pstate = (tmp >> 8) & 0xfff; |
925 | cpu_put_cwp64(env, tmp & 0xff); |
926 | break; |
927 | case 83: env->fsr = tmp; break; |
928 | case 84: env->fprs = tmp; break; |
929 | case 85: env->y = tmp; break; |
930 | default: return 0; |
931 | } |
932 | } |
933 | return 8; |
934 | #endif |
935 | } |
936 | #elif defined (TARGET_ARM) |
937 | |
938 | /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect |
939 | whatever the target description contains. Due to a historical mishap |
940 | the FPA registers appear in between core integer regs and the CPSR. |
941 | We hack round this by giving the FPA regs zero size when talking to a |
942 | newer gdb. */ |
943 | #define NUM_CORE_REGS73 26 |
944 | #define GDB_CORE_XML "arm-core.xml" |
945 | |
946 | static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n) |
947 | { |
948 | if (n < 16) { |
949 | /* Core integer register. */ |
950 | GET_REG32(env->regs[n])do { stl_le_p(mem_buf, env->regs[n]); return 4; } while(0); |
951 | } |
952 | if (n < 24) { |
953 | /* FPA registers. */ |
954 | if (gdb_has_xml) |
955 | return 0; |
956 | memset(mem_buf, 0, 12); |
957 | return 12; |
958 | } |
959 | switch (n) { |
960 | case 24: |
961 | /* FPA status register. */ |
962 | if (gdb_has_xml) |
963 | return 0; |
964 | GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); |
965 | case 25: |
966 | /* CPSR */ |
967 | GET_REG32(cpsr_read(env))do { stl_le_p(mem_buf, cpsr_read(env)); return 4; } while(0); |
968 | } |
969 | /* Unknown register. */ |
970 | return 0; |
971 | } |
972 | |
973 | static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n) |
974 | { |
975 | uint32_t tmp; |
976 | |
977 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
978 | |
979 | /* Mask out low bit of PC to workaround gdb bugs. This will probably |
980 | cause problems if we ever implement the Jazelle DBX extensions. */ |
981 | if (n == 15) |
982 | tmp &= ~1; |
983 | |
984 | if (n < 16) { |
985 | /* Core integer register. */ |
986 | env->regs[n] = tmp; |
987 | return 4; |
988 | } |
989 | if (n < 24) { /* 16-23 */ |
990 | /* FPA registers (ignored). */ |
991 | if (gdb_has_xml) |
992 | return 0; |
993 | return 12; |
994 | } |
995 | switch (n) { |
996 | case 24: |
997 | /* FPA status register (ignored). */ |
998 | if (gdb_has_xml) |
999 | return 0; |
1000 | return 4; |
1001 | case 25: |
1002 | /* CPSR */ |
1003 | cpsr_write (env, tmp, 0xffffffff); |
1004 | return 4; |
1005 | } |
1006 | /* Unknown register. */ |
1007 | return 0; |
1008 | } |
1009 | |
1010 | #elif defined (TARGET_M68K) |
1011 | |
1012 | #define NUM_CORE_REGS73 18 |
1013 | |
1014 | #define GDB_CORE_XML "cf-core.xml" |
1015 | |
1016 | static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n) |
1017 | { |
1018 | if (n < 8) { |
1019 | /* D0-D7 */ |
1020 | GET_REG32(env->dregs[n])do { stl_le_p(mem_buf, env->dregs[n]); return 4; } while(0 ); |
1021 | } else if (n < 16) { |
1022 | /* A0-A7 */ |
1023 | GET_REG32(env->aregs[n - 8])do { stl_le_p(mem_buf, env->aregs[n - 8]); return 4; } while (0); |
1024 | } else { |
1025 | switch (n) { |
1026 | case 16: GET_REG32(env->sr)do { stl_le_p(mem_buf, env->sr); return 4; } while(0); |
1027 | case 17: GET_REG32(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1028 | } |
1029 | } |
1030 | /* FP registers not included here because they vary between |
1031 | ColdFire and m68k. Use XML bits for these. */ |
1032 | return 0; |
1033 | } |
1034 | |
1035 | static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n) |
1036 | { |
1037 | uint32_t tmp; |
1038 | |
1039 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1040 | |
1041 | if (n < 8) { |
1042 | /* D0-D7 */ |
1043 | env->dregs[n] = tmp; |
1044 | } else if (n < 16) { |
1045 | /* A0-A7 */ |
1046 | env->aregs[n - 8] = tmp; |
1047 | } else { |
1048 | switch (n) { |
1049 | case 16: env->sr = tmp; break; |
1050 | case 17: env->pc = tmp; break; |
1051 | default: return 0; |
1052 | } |
1053 | } |
1054 | return 4; |
1055 | } |
1056 | #elif defined (TARGET_MIPS1) |
1057 | |
1058 | #define NUM_CORE_REGS73 73 |
1059 | |
1060 | static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n) |
1061 | { |
1062 | if (n < 32) { |
1063 | GET_REGL(env->active_tc.gpr[n])do { stl_le_p(mem_buf, env->active_tc.gpr[n]); return 4; } while(0); |
1064 | } |
1065 | if (env->CP0_Config1 & (1 << CP0C1_FP0)) { |
1066 | if (n >= 38 && n < 70) { |
1067 | if (env->CP0_Status & (1 << CP0St_FR26)) |
1068 | GET_REGL(env->active_fpu.fpr[n - 38].d)do { stl_le_p(mem_buf, env->active_fpu.fpr[n - 38].d); return 4; } while(0); |
1069 | else |
1070 | GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX])do { stl_le_p(mem_buf, env->active_fpu.fpr[n - 38].w[0]); return 4; } while(0); |
1071 | } |
1072 | switch (n) { |
1073 | case 70: GET_REGL((int32_t)env->active_fpu.fcr31)do { stl_le_p(mem_buf, (int32_t)env->active_fpu.fcr31); return 4; } while(0); |
1074 | case 71: GET_REGL((int32_t)env->active_fpu.fcr0)do { stl_le_p(mem_buf, (int32_t)env->active_fpu.fcr0); return 4; } while(0); |
1075 | } |
1076 | } |
1077 | switch (n) { |
1078 | case 32: GET_REGL((int32_t)env->CP0_Status)do { stl_le_p(mem_buf, (int32_t)env->CP0_Status); return 4 ; } while(0); |
1079 | case 33: GET_REGL(env->active_tc.LO[0])do { stl_le_p(mem_buf, env->active_tc.LO[0]); return 4; } while (0); |
1080 | case 34: GET_REGL(env->active_tc.HI[0])do { stl_le_p(mem_buf, env->active_tc.HI[0]); return 4; } while (0); |
1081 | case 35: GET_REGL(env->CP0_BadVAddr)do { stl_le_p(mem_buf, env->CP0_BadVAddr); return 4; } while (0); |
1082 | case 36: GET_REGL((int32_t)env->CP0_Cause)do { stl_le_p(mem_buf, (int32_t)env->CP0_Cause); return 4; } while(0); |
1083 | case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16))do { stl_le_p(mem_buf, env->active_tc.PC | !!(env->hflags & 0x00400)); return 4; } while(0); |
1084 | case 72: GET_REGL(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); /* fp */ |
1085 | case 89: GET_REGL((int32_t)env->CP0_PRid)do { stl_le_p(mem_buf, (int32_t)env->CP0_PRid); return 4; } while(0); |
1086 | } |
1087 | if (n >= 73 && n <= 88) { |
1088 | /* 16 embedded regs. */ |
1089 | GET_REGL(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); |
1090 | } |
1091 | |
1092 | return 0; |
1093 | } |
1094 | |
1095 | /* convert MIPS rounding mode in FCR31 to IEEE library */ |
1096 | static unsigned int ieee_rm[] = |
1097 | { |
1098 | float_round_nearest_even, |
1099 | float_round_to_zero, |
1100 | float_round_up, |
1101 | float_round_down |
1102 | }; |
1103 | #define RESTORE_ROUNDING_MODEset_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) \ |
1104 | set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) |
1105 | |
1106 | static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n) |
1107 | { |
1108 | target_ulong tmp; |
1109 | |
1110 | tmp = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
1111 | |
1112 | if (n < 32) { |
1113 | env->active_tc.gpr[n] = tmp; |
1114 | return sizeof(target_ulong); |
1115 | } |
1116 | if (env->CP0_Config1 & (1 << CP0C1_FP0) |
1117 | && n >= 38 && n < 73) { |
1118 | if (n < 70) { |
1119 | if (env->CP0_Status & (1 << CP0St_FR26)) |
1120 | env->active_fpu.fpr[n - 38].d = tmp; |
1121 | else |
1122 | env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX0] = tmp; |
1123 | } |
1124 | switch (n) { |
1125 | case 70: |
1126 | env->active_fpu.fcr31 = tmp & 0xFF83FFFF; |
1127 | /* set rounding mode */ |
1128 | RESTORE_ROUNDING_MODEset_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status); |
1129 | break; |
1130 | case 71: env->active_fpu.fcr0 = tmp; break; |
1131 | } |
1132 | return sizeof(target_ulong); |
1133 | } |
1134 | switch (n) { |
1135 | case 32: env->CP0_Status = tmp; break; |
1136 | case 33: env->active_tc.LO[0] = tmp; break; |
1137 | case 34: env->active_tc.HI[0] = tmp; break; |
1138 | case 35: env->CP0_BadVAddr = tmp; break; |
1139 | case 36: env->CP0_Cause = tmp; break; |
1140 | case 37: |
1141 | env->active_tc.PC = tmp & ~(target_ulong)1; |
1142 | if (tmp & 1) { |
1143 | env->hflags |= MIPS_HFLAG_M160x00400; |
1144 | } else { |
1145 | env->hflags &= ~(MIPS_HFLAG_M160x00400); |
1146 | } |
1147 | break; |
1148 | case 72: /* fp, ignored */ break; |
1149 | default: |
1150 | if (n > 89) |
1151 | return 0; |
1152 | /* Other registers are readonly. Ignore writes. */ |
1153 | break; |
1154 | } |
1155 | |
1156 | return sizeof(target_ulong); |
1157 | } |
1158 | #elif defined (TARGET_SH4) |
1159 | |
1160 | /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ |
1161 | /* FIXME: We should use XML for this. */ |
1162 | |
1163 | #define NUM_CORE_REGS73 59 |
1164 | |
1165 | static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n) |
1166 | { |
1167 | if (n < 8) { |
1168 | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
1169 | GET_REGL(env->gregs[n + 16])do { stl_le_p(mem_buf, env->gregs[n + 16]); return 4; } while (0); |
1170 | } else { |
1171 | GET_REGL(env->gregs[n])do { stl_le_p(mem_buf, env->gregs[n]); return 4; } while(0 ); |
1172 | } |
1173 | } else if (n < 16) { |
1174 | GET_REGL(env->gregs[n])do { stl_le_p(mem_buf, env->gregs[n]); return 4; } while(0 ); |
1175 | } else if (n >= 25 && n < 41) { |
1176 | GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)])do { stl_le_p(mem_buf, env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); return 4; } while(0); |
1177 | } else if (n >= 43 && n < 51) { |
1178 | GET_REGL(env->gregs[n - 43])do { stl_le_p(mem_buf, env->gregs[n - 43]); return 4; } while (0); |
1179 | } else if (n >= 51 && n < 59) { |
1180 | GET_REGL(env->gregs[n - (51 - 16)])do { stl_le_p(mem_buf, env->gregs[n - (51 - 16)]); return 4 ; } while(0); |
1181 | } |
1182 | switch (n) { |
1183 | case 16: GET_REGL(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1184 | case 17: GET_REGL(env->pr)do { stl_le_p(mem_buf, env->pr); return 4; } while(0); |
1185 | case 18: GET_REGL(env->gbr)do { stl_le_p(mem_buf, env->gbr); return 4; } while(0); |
1186 | case 19: GET_REGL(env->vbr)do { stl_le_p(mem_buf, env->vbr); return 4; } while(0); |
1187 | case 20: GET_REGL(env->mach)do { stl_le_p(mem_buf, env->mach); return 4; } while(0); |
1188 | case 21: GET_REGL(env->macl)do { stl_le_p(mem_buf, env->macl); return 4; } while(0); |
1189 | case 22: GET_REGL(env->sr)do { stl_le_p(mem_buf, env->sr); return 4; } while(0); |
1190 | case 23: GET_REGL(env->fpul)do { stl_le_p(mem_buf, env->fpul); return 4; } while(0); |
1191 | case 24: GET_REGL(env->fpscr)do { stl_le_p(mem_buf, env->fpscr); return 4; } while(0); |
1192 | case 41: GET_REGL(env->ssr)do { stl_le_p(mem_buf, env->ssr); return 4; } while(0); |
1193 | case 42: GET_REGL(env->spc)do { stl_le_p(mem_buf, env->spc); return 4; } while(0); |
1194 | } |
1195 | |
1196 | return 0; |
1197 | } |
1198 | |
1199 | static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n) |
1200 | { |
1201 | uint32_t tmp; |
1202 | |
1203 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1204 | |
1205 | if (n < 8) { |
1206 | if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
1207 | env->gregs[n + 16] = tmp; |
1208 | } else { |
1209 | env->gregs[n] = tmp; |
1210 | } |
1211 | return 4; |
1212 | } else if (n < 16) { |
1213 | env->gregs[n] = tmp; |
1214 | return 4; |
1215 | } else if (n >= 25 && n < 41) { |
1216 | env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; |
1217 | return 4; |
1218 | } else if (n >= 43 && n < 51) { |
1219 | env->gregs[n - 43] = tmp; |
1220 | return 4; |
1221 | } else if (n >= 51 && n < 59) { |
1222 | env->gregs[n - (51 - 16)] = tmp; |
1223 | return 4; |
1224 | } |
1225 | switch (n) { |
1226 | case 16: env->pc = tmp; break; |
1227 | case 17: env->pr = tmp; break; |
1228 | case 18: env->gbr = tmp; break; |
1229 | case 19: env->vbr = tmp; break; |
1230 | case 20: env->mach = tmp; break; |
1231 | case 21: env->macl = tmp; break; |
1232 | case 22: env->sr = tmp; break; |
1233 | case 23: env->fpul = tmp; break; |
1234 | case 24: env->fpscr = tmp; break; |
1235 | case 41: env->ssr = tmp; break; |
1236 | case 42: env->spc = tmp; break; |
1237 | default: return 0; |
1238 | } |
1239 | |
1240 | return 4; |
1241 | } |
1242 | #elif defined (TARGET_MICROBLAZE) |
1243 | |
1244 | #define NUM_CORE_REGS73 (32 + 5) |
1245 | |
1246 | static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n) |
1247 | { |
1248 | if (n < 32) { |
1249 | GET_REG32(env->regs[n])do { stl_le_p(mem_buf, env->regs[n]); return 4; } while(0); |
1250 | } else { |
1251 | GET_REG32(env->sregs[n - 32])do { stl_le_p(mem_buf, env->sregs[n - 32]); return 4; } while (0); |
1252 | } |
1253 | return 0; |
1254 | } |
1255 | |
1256 | static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n) |
1257 | { |
1258 | uint32_t tmp; |
1259 | |
1260 | if (n > NUM_CORE_REGS73) |
1261 | return 0; |
1262 | |
1263 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1264 | |
1265 | if (n < 32) { |
1266 | env->regs[n] = tmp; |
1267 | } else { |
1268 | env->sregs[n - 32] = tmp; |
1269 | } |
1270 | return 4; |
1271 | } |
1272 | #elif defined (TARGET_CRIS) |
1273 | |
1274 | #define NUM_CORE_REGS73 49 |
1275 | |
1276 | static int |
1277 | read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n) |
1278 | { |
1279 | if (n < 15) { |
1280 | GET_REG32(env->regs[n])do { stl_le_p(mem_buf, env->regs[n]); return 4; } while(0); |
1281 | } |
1282 | |
1283 | if (n == 15) { |
1284 | GET_REG32(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1285 | } |
1286 | |
1287 | if (n < 32) { |
1288 | switch (n) { |
1289 | case 16: |
1290 | GET_REG8(env->pregs[n - 16])do { stb_p(mem_buf, env->pregs[n - 16]); return 1; } while (0); |
1291 | break; |
1292 | case 17: |
1293 | GET_REG8(env->pregs[n - 16])do { stb_p(mem_buf, env->pregs[n - 16]); return 1; } while (0); |
1294 | break; |
1295 | case 20: |
1296 | case 21: |
1297 | GET_REG16(env->pregs[n - 16])do { stw_le_p(mem_buf, env->pregs[n - 16]); return 2; } while (0); |
1298 | break; |
1299 | default: |
1300 | if (n >= 23) { |
1301 | GET_REG32(env->pregs[n - 16])do { stl_le_p(mem_buf, env->pregs[n - 16]); return 4; } while (0); |
1302 | } |
1303 | break; |
1304 | } |
1305 | } |
1306 | return 0; |
1307 | } |
1308 | |
1309 | static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n) |
1310 | { |
1311 | uint8_t srs; |
1312 | |
1313 | if (env->pregs[PR_VR] < 32) |
1314 | return read_register_crisv10(env, mem_buf, n); |
1315 | |
1316 | srs = env->pregs[PR_SRS]; |
1317 | if (n < 16) { |
1318 | GET_REG32(env->regs[n])do { stl_le_p(mem_buf, env->regs[n]); return 4; } while(0); |
1319 | } |
1320 | |
1321 | if (n >= 21 && n < 32) { |
1322 | GET_REG32(env->pregs[n - 16])do { stl_le_p(mem_buf, env->pregs[n - 16]); return 4; } while (0); |
1323 | } |
1324 | if (n >= 33 && n < 49) { |
1325 | GET_REG32(env->sregs[srs][n - 33])do { stl_le_p(mem_buf, env->sregs[srs][n - 33]); return 4; } while(0); |
1326 | } |
1327 | switch (n) { |
1328 | case 16: GET_REG8(env->pregs[0])do { stb_p(mem_buf, env->pregs[0]); return 1; } while(0); |
1329 | case 17: GET_REG8(env->pregs[1])do { stb_p(mem_buf, env->pregs[1]); return 1; } while(0); |
1330 | case 18: GET_REG32(env->pregs[2])do { stl_le_p(mem_buf, env->pregs[2]); return 4; } while(0 ); |
1331 | case 19: GET_REG8(srs)do { stb_p(mem_buf, srs); return 1; } while(0); |
1332 | case 20: GET_REG16(env->pregs[4])do { stw_le_p(mem_buf, env->pregs[4]); return 2; } while(0 ); |
1333 | case 32: GET_REG32(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1334 | } |
1335 | |
1336 | return 0; |
1337 | } |
1338 | |
1339 | static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n) |
1340 | { |
1341 | uint32_t tmp; |
1342 | |
1343 | if (n > 49) |
1344 | return 0; |
1345 | |
1346 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1347 | |
1348 | if (n < 16) { |
1349 | env->regs[n] = tmp; |
1350 | } |
1351 | |
1352 | if (n >= 21 && n < 32) { |
1353 | env->pregs[n - 16] = tmp; |
1354 | } |
1355 | |
1356 | /* FIXME: Should support function regs be writable? */ |
1357 | switch (n) { |
1358 | case 16: return 1; |
1359 | case 17: return 1; |
1360 | case 18: env->pregs[PR_PID] = tmp; break; |
1361 | case 19: return 1; |
1362 | case 20: return 2; |
1363 | case 32: env->pc = tmp; break; |
1364 | } |
1365 | |
1366 | return 4; |
1367 | } |
1368 | #elif defined (TARGET_ALPHA) |
1369 | |
1370 | #define NUM_CORE_REGS73 67 |
1371 | |
1372 | static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n) |
1373 | { |
1374 | uint64_t val; |
1375 | CPU_DoubleU d; |
1376 | |
1377 | switch (n) { |
1378 | case 0 ... 30: |
1379 | val = env->ir[n]; |
1380 | break; |
1381 | case 32 ... 62: |
1382 | d.d = env->fir[n - 32]; |
1383 | val = d.ll; |
1384 | break; |
1385 | case 63: |
1386 | val = cpu_alpha_load_fpcr(env); |
1387 | break; |
1388 | case 64: |
1389 | val = env->pc; |
1390 | break; |
1391 | case 66: |
1392 | val = env->unique; |
1393 | break; |
1394 | case 31: |
1395 | case 65: |
1396 | /* 31 really is the zero register; 65 is unassigned in the |
1397 | gdb protocol, but is still required to occupy 8 bytes. */ |
1398 | val = 0; |
1399 | break; |
1400 | default: |
1401 | return 0; |
1402 | } |
1403 | GET_REGL(val)do { stl_le_p(mem_buf, val); return 4; } while(0); |
1404 | } |
1405 | |
1406 | static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n) |
1407 | { |
1408 | target_ulong tmp = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
1409 | CPU_DoubleU d; |
1410 | |
1411 | switch (n) { |
1412 | case 0 ... 30: |
1413 | env->ir[n] = tmp; |
1414 | break; |
1415 | case 32 ... 62: |
1416 | d.ll = tmp; |
1417 | env->fir[n - 32] = d.d; |
1418 | break; |
1419 | case 63: |
1420 | cpu_alpha_store_fpcr(env, tmp); |
1421 | break; |
1422 | case 64: |
1423 | env->pc = tmp; |
1424 | break; |
1425 | case 66: |
1426 | env->unique = tmp; |
1427 | break; |
1428 | case 31: |
1429 | case 65: |
1430 | /* 31 really is the zero register; 65 is unassigned in the |
1431 | gdb protocol, but is still required to occupy 8 bytes. */ |
1432 | break; |
1433 | default: |
1434 | return 0; |
1435 | } |
1436 | return 8; |
1437 | } |
1438 | #elif defined (TARGET_S390X) |
1439 | |
1440 | #define NUM_CORE_REGS73 S390_NUM_TOTAL_REGS |
1441 | |
1442 | static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n) |
1443 | { |
1444 | switch (n) { |
1445 | case S390_PSWM_REGNUM: GET_REGL(env->psw.mask)do { stl_le_p(mem_buf, env->psw.mask); return 4; } while(0 ); break; |
1446 | case S390_PSWA_REGNUM: GET_REGL(env->psw.addr)do { stl_le_p(mem_buf, env->psw.addr); return 4; } while(0 ); break; |
1447 | case S390_R0_REGNUM ... S390_R15_REGNUM: |
1448 | GET_REGL(env->regs[n-S390_R0_REGNUM])do { stl_le_p(mem_buf, env->regs[n-S390_R0_REGNUM]); return 4; } while(0); break; |
1449 | case S390_A0_REGNUM ... S390_A15_REGNUM: |
1450 | GET_REG32(env->aregs[n-S390_A0_REGNUM])do { stl_le_p(mem_buf, env->aregs[n-S390_A0_REGNUM]); return 4; } while(0); break; |
1451 | case S390_FPC_REGNUM: GET_REG32(env->fpc)do { stl_le_p(mem_buf, env->fpc); return 4; } while(0); break; |
1452 | case S390_F0_REGNUM ... S390_F15_REGNUM: |
1453 | /* XXX */ |
1454 | break; |
1455 | case S390_PC_REGNUM: GET_REGL(env->psw.addr)do { stl_le_p(mem_buf, env->psw.addr); return 4; } while(0 ); break; |
1456 | case S390_CC_REGNUM: |
1457 | env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, |
1458 | env->cc_vr); |
1459 | GET_REG32(env->cc_op)do { stl_le_p(mem_buf, env->cc_op); return 4; } while(0); |
1460 | break; |
1461 | } |
1462 | |
1463 | return 0; |
1464 | } |
1465 | |
1466 | static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n) |
1467 | { |
1468 | target_ulong tmpl; |
1469 | uint32_t tmp32; |
1470 | int r = 8; |
1471 | tmpl = ldtul_p(mem_buf)ldl_le_p(mem_buf); |
1472 | tmp32 = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1473 | |
1474 | switch (n) { |
1475 | case S390_PSWM_REGNUM: env->psw.mask = tmpl; break; |
1476 | case S390_PSWA_REGNUM: env->psw.addr = tmpl; break; |
1477 | case S390_R0_REGNUM ... S390_R15_REGNUM: |
1478 | env->regs[n-S390_R0_REGNUM] = tmpl; break; |
1479 | case S390_A0_REGNUM ... S390_A15_REGNUM: |
1480 | env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break; |
1481 | case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break; |
1482 | case S390_F0_REGNUM ... S390_F15_REGNUM: |
1483 | /* XXX */ |
1484 | break; |
1485 | case S390_PC_REGNUM: env->psw.addr = tmpl; break; |
1486 | case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break; |
1487 | } |
1488 | |
1489 | return r; |
1490 | } |
1491 | #elif defined (TARGET_LM32) |
1492 | |
1493 | #include "hw/lm32_pic.h" |
1494 | #define NUM_CORE_REGS73 (32 + 7) |
1495 | |
1496 | static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n) |
1497 | { |
1498 | if (n < 32) { |
1499 | GET_REG32(env->regs[n])do { stl_le_p(mem_buf, env->regs[n]); return 4; } while(0); |
1500 | } else { |
1501 | switch (n) { |
1502 | case 32: |
1503 | GET_REG32(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1504 | break; |
1505 | /* FIXME: put in right exception ID */ |
1506 | case 33: |
1507 | GET_REG32(0)do { stl_le_p(mem_buf, 0); return 4; } while(0); |
1508 | break; |
1509 | case 34: |
1510 | GET_REG32(env->eba)do { stl_le_p(mem_buf, env->eba); return 4; } while(0); |
1511 | break; |
1512 | case 35: |
1513 | GET_REG32(env->deba)do { stl_le_p(mem_buf, env->deba); return 4; } while(0); |
1514 | break; |
1515 | case 36: |
1516 | GET_REG32(env->ie)do { stl_le_p(mem_buf, env->ie); return 4; } while(0); |
1517 | break; |
1518 | case 37: |
1519 | GET_REG32(lm32_pic_get_im(env->pic_state))do { stl_le_p(mem_buf, lm32_pic_get_im(env->pic_state)); return 4; } while(0); |
1520 | break; |
1521 | case 38: |
1522 | GET_REG32(lm32_pic_get_ip(env->pic_state))do { stl_le_p(mem_buf, lm32_pic_get_ip(env->pic_state)); return 4; } while(0); |
1523 | break; |
1524 | } |
1525 | } |
1526 | return 0; |
1527 | } |
1528 | |
1529 | static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n) |
1530 | { |
1531 | uint32_t tmp; |
1532 | |
1533 | if (n > NUM_CORE_REGS73) { |
1534 | return 0; |
1535 | } |
1536 | |
1537 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1538 | |
1539 | if (n < 32) { |
1540 | env->regs[n] = tmp; |
1541 | } else { |
1542 | switch (n) { |
1543 | case 32: |
1544 | env->pc = tmp; |
1545 | break; |
1546 | case 34: |
1547 | env->eba = tmp; |
1548 | break; |
1549 | case 35: |
1550 | env->deba = tmp; |
1551 | break; |
1552 | case 36: |
1553 | env->ie = tmp; |
1554 | break; |
1555 | case 37: |
1556 | lm32_pic_set_im(env->pic_state, tmp); |
1557 | break; |
1558 | case 38: |
1559 | lm32_pic_set_ip(env->pic_state, tmp); |
1560 | break; |
1561 | } |
1562 | } |
1563 | return 4; |
1564 | } |
1565 | #elif defined(TARGET_XTENSA) |
1566 | |
1567 | /* Use num_core_regs to see only non-privileged registers in an unmodified gdb. |
1568 | * Use num_regs to see all registers. gdb modification is required for that: |
1569 | * reset bit 0 in the 'flags' field of the registers definitions in the |
1570 | * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay. |
1571 | */ |
1572 | #define NUM_CORE_REGS73 (env->config->gdb_regmap.num_regs) |
1573 | #define num_g_regs NUM_CORE_REGS73 |
1574 | |
1575 | static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n) |
1576 | { |
1577 | const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; |
1578 | |
1579 | if (n < 0 || n >= env->config->gdb_regmap.num_regs) { |
1580 | return 0; |
1581 | } |
1582 | |
1583 | switch (reg->type) { |
1584 | case 9: /*pc*/ |
1585 | GET_REG32(env->pc)do { stl_le_p(mem_buf, env->pc); return 4; } while(0); |
1586 | break; |
1587 | |
1588 | case 1: /*ar*/ |
1589 | xtensa_sync_phys_from_window(env); |
1590 | GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg])do { stl_le_p(mem_buf, env->phys_regs[(reg->targno & 0xff) % env->config->nareg]); return 4; } while(0); |
1591 | break; |
1592 | |
1593 | case 2: /*SR*/ |
1594 | GET_REG32(env->sregs[reg->targno & 0xff])do { stl_le_p(mem_buf, env->sregs[reg->targno & 0xff ]); return 4; } while(0); |
1595 | break; |
1596 | |
1597 | case 3: /*UR*/ |
1598 | GET_REG32(env->uregs[reg->targno & 0xff])do { stl_le_p(mem_buf, env->uregs[reg->targno & 0xff ]); return 4; } while(0); |
1599 | break; |
1600 | |
1601 | case 8: /*a*/ |
1602 | GET_REG32(env->regs[reg->targno & 0x0f])do { stl_le_p(mem_buf, env->regs[reg->targno & 0x0f ]); return 4; } while(0); |
1603 | break; |
1604 | |
1605 | default: |
1606 | qemu_log("%s from reg %d of unsupported type %d\n", |
1607 | __func__, n, reg->type); |
1608 | return 0; |
1609 | } |
1610 | } |
1611 | |
1612 | static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n) |
1613 | { |
1614 | uint32_t tmp; |
1615 | const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; |
1616 | |
1617 | if (n < 0 || n >= env->config->gdb_regmap.num_regs) { |
1618 | return 0; |
1619 | } |
1620 | |
1621 | tmp = ldl_p(mem_buf)ldl_le_p(mem_buf); |
1622 | |
1623 | switch (reg->type) { |
1624 | case 9: /*pc*/ |
1625 | env->pc = tmp; |
1626 | break; |
1627 | |
1628 | case 1: /*ar*/ |
1629 | env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp; |
1630 | xtensa_sync_window_from_phys(env); |
1631 | break; |
1632 | |
1633 | case 2: /*SR*/ |
1634 | env->sregs[reg->targno & 0xff] = tmp; |
1635 | break; |
1636 | |
1637 | case 3: /*UR*/ |
1638 | env->uregs[reg->targno & 0xff] = tmp; |
1639 | break; |
1640 | |
1641 | case 8: /*a*/ |
1642 | env->regs[reg->targno & 0x0f] = tmp; |
1643 | break; |
1644 | |
1645 | default: |
1646 | qemu_log("%s to reg %d of unsupported type %d\n", |
1647 | __func__, n, reg->type); |
1648 | return 0; |
1649 | } |
1650 | |
1651 | return 4; |
1652 | } |
1653 | #else |
1654 | |
1655 | #define NUM_CORE_REGS73 0 |
1656 | |
1657 | static int cpu_gdb_read_register(CPUArchStatestruct CPUMIPSState *env, uint8_t *mem_buf, int n) |
1658 | { |
1659 | return 0; |
1660 | } |
1661 | |
1662 | static int cpu_gdb_write_register(CPUArchStatestruct CPUMIPSState *env, uint8_t *mem_buf, int n) |
1663 | { |
1664 | return 0; |
1665 | } |
1666 | |
1667 | #endif |
1668 | |
1669 | #if !defined(TARGET_XTENSA) |
1670 | static int num_g_regs = NUM_CORE_REGS73; |
1671 | #endif |
1672 | |
1673 | #ifdef GDB_CORE_XML |
1674 | /* Encode data using the encoding for 'x' packets. */ |
1675 | static int memtox(char *buf, const char *mem, int len) |
1676 | { |
1677 | char *p = buf; |
1678 | char c; |
1679 | |
1680 | while (len--) { |
1681 | c = *(mem++); |
1682 | switch (c) { |
1683 | case '#': case '$': case '*': case '}': |
1684 | *(p++) = '}'; |
1685 | *(p++) = c ^ 0x20; |
1686 | break; |
1687 | default: |
1688 | *(p++) = c; |
1689 | break; |
1690 | } |
1691 | } |
1692 | return p - buf; |
1693 | } |
1694 | |
1695 | static const char *get_feature_xml(const char *p, const char **newp) |
1696 | { |
1697 | size_t len; |
1698 | int i; |
1699 | const char *name; |
1700 | static char target_xml[1024]; |
1701 | |
1702 | len = 0; |
1703 | while (p[len] && p[len] != ':') |
1704 | len++; |
1705 | *newp = p + len; |
1706 | |
1707 | name = NULL((void*)0); |
1708 | if (strncmp(p, "target.xml", len) == 0) { |
1709 | /* Generate the XML description for this CPU. */ |
1710 | if (!target_xml[0]) { |
1711 | GDBRegisterState *r; |
1712 | |
1713 | snprintf(target_xml, sizeof(target_xml), |
1714 | "<?xml version=\"1.0\"?>" |
1715 | "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" |
1716 | "<target>" |
1717 | "<xi:include href=\"%s\"/>", |
1718 | GDB_CORE_XML); |
1719 | |
1720 | for (r = first_cpu->gdb_regs; r; r = r->next) { |
1721 | pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); |
1722 | pstrcat(target_xml, sizeof(target_xml), r->xml); |
1723 | pstrcat(target_xml, sizeof(target_xml), "\"/>"); |
1724 | } |
1725 | pstrcat(target_xml, sizeof(target_xml), "</target>"); |
1726 | } |
1727 | return target_xml; |
1728 | } |
1729 | for (i = 0; ; i++) { |
1730 | name = xml_builtin[i][0]; |
1731 | if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) |
1732 | break; |
1733 | } |
1734 | return name ? xml_builtin[i][1] : NULL((void*)0); |
1735 | } |
1736 | #endif |
1737 | |
1738 | static int gdb_read_register(CPUArchStatestruct CPUMIPSState *env, uint8_t *mem_buf, int reg) |
1739 | { |
1740 | GDBRegisterState *r; |
1741 | |
1742 | if (reg < NUM_CORE_REGS73) |
1743 | return cpu_gdb_read_register(env, mem_buf, reg); |
1744 | |
1745 | for (r = env->gdb_regs; r; r = r->next) { |
1746 | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
1747 | return r->get_reg(env, mem_buf, reg - r->base_reg); |
1748 | } |
1749 | } |
1750 | return 0; |
1751 | } |
1752 | |
1753 | static int gdb_write_register(CPUArchStatestruct CPUMIPSState *env, uint8_t *mem_buf, int reg) |
1754 | { |
1755 | GDBRegisterState *r; |
1756 | |
1757 | if (reg < NUM_CORE_REGS73) |
1758 | return cpu_gdb_write_register(env, mem_buf, reg); |
1759 | |
1760 | for (r = env->gdb_regs; r; r = r->next) { |
1761 | if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
1762 | return r->set_reg(env, mem_buf, reg - r->base_reg); |
1763 | } |
1764 | } |
1765 | return 0; |
1766 | } |
1767 | |
1768 | #if !defined(TARGET_XTENSA) |
1769 | /* Register a supplemental set of CPU registers. If g_pos is nonzero it |
1770 | specifies the first register number and these registers are included in |
1771 | a standard "g" packet. Direction is relative to gdb, i.e. get_reg is |
1772 | gdb reading a CPU register, and set_reg is gdb modifying a CPU register. |
1773 | */ |
1774 | |
1775 | void gdb_register_coprocessor(CPUArchStatestruct CPUMIPSState * env, |
1776 | gdb_reg_cb get_reg, gdb_reg_cb set_reg, |
1777 | int num_regs, const char *xml, int g_pos) |
1778 | { |
1779 | GDBRegisterState *s; |
1780 | GDBRegisterState **p; |
1781 | static int last_reg = NUM_CORE_REGS73; |
1782 | |
1783 | p = &env->gdb_regs; |
1784 | while (*p) { |
1785 | /* Check for duplicates. */ |
1786 | if (strcmp((*p)->xml, xml) == 0) |
1787 | return; |
1788 | p = &(*p)->next; |
1789 | } |
1790 | |
1791 | s = g_new0(GDBRegisterState, 1)((GDBRegisterState *) g_malloc0_n ((1), sizeof (GDBRegisterState ))); |
1792 | s->base_reg = last_reg; |
1793 | s->num_regs = num_regs; |
1794 | s->get_reg = get_reg; |
1795 | s->set_reg = set_reg; |
1796 | s->xml = xml; |
1797 | |
1798 | /* Add to end of list. */ |
1799 | last_reg += num_regs; |
1800 | *p = s; |
1801 | if (g_pos) { |
1802 | if (g_pos != s->base_reg) { |
1803 | fprintf(stderrstderr, "Error: Bad gdb register numbering for '%s'\n" |
1804 | "Expected %d got %d\n", xml, g_pos, s->base_reg); |
1805 | } else { |
1806 | num_g_regs = last_reg; |
1807 | } |
1808 | } |
1809 | } |
1810 | #endif |
1811 | |
1812 | #ifndef CONFIG_USER_ONLY |
1813 | static const int xlat_gdb_type[] = { |
1814 | [GDB_WATCHPOINT_WRITE2] = BP_GDB0x10 | BP_MEM_WRITE0x02, |
1815 | [GDB_WATCHPOINT_READ3] = BP_GDB0x10 | BP_MEM_READ0x01, |
1816 | [GDB_WATCHPOINT_ACCESS4] = BP_GDB0x10 | BP_MEM_ACCESS(0x01 | 0x02), |
1817 | }; |
1818 | #endif |
1819 | |
1820 | static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) |
1821 | { |
1822 | CPUArchStatestruct CPUMIPSState *env; |
1823 | int err = 0; |
1824 | |
1825 | if (kvm_enabled()(0)) |
1826 | return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type); |
1827 | |
1828 | switch (type) { |
1829 | case GDB_BREAKPOINT_SW0: |
1830 | case GDB_BREAKPOINT_HW1: |
1831 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1832 | err = cpu_breakpoint_insert(env, addr, BP_GDB0x10, NULL((void*)0)); |
1833 | if (err) |
1834 | break; |
1835 | } |
1836 | return err; |
1837 | #ifndef CONFIG_USER_ONLY |
1838 | case GDB_WATCHPOINT_WRITE2: |
1839 | case GDB_WATCHPOINT_READ3: |
1840 | case GDB_WATCHPOINT_ACCESS4: |
1841 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1842 | err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], |
1843 | NULL((void*)0)); |
1844 | if (err) |
1845 | break; |
1846 | } |
1847 | return err; |
1848 | #endif |
1849 | default: |
1850 | return -ENOSYS38; |
1851 | } |
1852 | } |
1853 | |
1854 | static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) |
1855 | { |
1856 | CPUArchStatestruct CPUMIPSState *env; |
1857 | int err = 0; |
1858 | |
1859 | if (kvm_enabled()(0)) |
1860 | return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type); |
1861 | |
1862 | switch (type) { |
1863 | case GDB_BREAKPOINT_SW0: |
1864 | case GDB_BREAKPOINT_HW1: |
1865 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1866 | err = cpu_breakpoint_remove(env, addr, BP_GDB0x10); |
1867 | if (err) |
1868 | break; |
1869 | } |
1870 | return err; |
1871 | #ifndef CONFIG_USER_ONLY |
1872 | case GDB_WATCHPOINT_WRITE2: |
1873 | case GDB_WATCHPOINT_READ3: |
1874 | case GDB_WATCHPOINT_ACCESS4: |
1875 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1876 | err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); |
1877 | if (err) |
1878 | break; |
1879 | } |
1880 | return err; |
1881 | #endif |
1882 | default: |
1883 | return -ENOSYS38; |
1884 | } |
1885 | } |
1886 | |
1887 | static void gdb_breakpoint_remove_all(void) |
1888 | { |
1889 | CPUArchStatestruct CPUMIPSState *env; |
1890 | |
1891 | if (kvm_enabled()(0)) { |
1892 | kvm_remove_all_breakpoints(gdbserver_state->c_cpu); |
1893 | return; |
1894 | } |
1895 | |
1896 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1897 | cpu_breakpoint_remove_all(env, BP_GDB0x10); |
1898 | #ifndef CONFIG_USER_ONLY |
1899 | cpu_watchpoint_remove_all(env, BP_GDB0x10); |
1900 | #endif |
1901 | } |
1902 | } |
1903 | |
1904 | static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) |
1905 | { |
1906 | cpu_synchronize_state(s->c_cpu); |
1907 | #if defined(TARGET_I386) |
1908 | s->c_cpu->eip = pc; |
1909 | #elif defined (TARGET_PPC) |
1910 | s->c_cpu->nip = pc; |
1911 | #elif defined (TARGET_SPARC) |
1912 | s->c_cpu->pc = pc; |
1913 | s->c_cpu->npc = pc + 4; |
1914 | #elif defined (TARGET_ARM) |
1915 | s->c_cpu->regs[15] = pc; |
1916 | #elif defined (TARGET_SH4) |
1917 | s->c_cpu->pc = pc; |
1918 | #elif defined (TARGET_MIPS1) |
1919 | s->c_cpu->active_tc.PC = pc & ~(target_ulong)1; |
1920 | if (pc & 1) { |
1921 | s->c_cpu->hflags |= MIPS_HFLAG_M160x00400; |
1922 | } else { |
1923 | s->c_cpu->hflags &= ~(MIPS_HFLAG_M160x00400); |
1924 | } |
1925 | #elif defined (TARGET_MICROBLAZE) |
1926 | s->c_cpu->sregs[SR_PC] = pc; |
1927 | #elif defined (TARGET_CRIS) |
1928 | s->c_cpu->pc = pc; |
1929 | #elif defined (TARGET_ALPHA) |
1930 | s->c_cpu->pc = pc; |
1931 | #elif defined (TARGET_S390X) |
1932 | s->c_cpu->psw.addr = pc; |
1933 | #elif defined (TARGET_LM32) |
1934 | s->c_cpu->pc = pc; |
1935 | #elif defined(TARGET_XTENSA) |
1936 | s->c_cpu->pc = pc; |
1937 | #endif |
1938 | } |
1939 | |
1940 | static CPUArchStatestruct CPUMIPSState *find_cpu(uint32_t thread_id) |
1941 | { |
1942 | CPUArchStatestruct CPUMIPSState *env; |
1943 | |
1944 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { |
1945 | if (cpu_index(env) == thread_id) { |
1946 | return env; |
1947 | } |
1948 | } |
1949 | |
1950 | return NULL((void*)0); |
1951 | } |
1952 | |
1953 | static int gdb_handle_packet(GDBState *s, const char *line_buf) |
1954 | { |
1955 | CPUArchStatestruct CPUMIPSState *env; |
1956 | const char *p; |
1957 | uint32_t thread; |
1958 | int ch, reg_size, type, res; |
1959 | char buf[MAX_PACKET_LENGTH4096]; |
1960 | uint8_t mem_buf[MAX_PACKET_LENGTH4096]; |
1961 | uint8_t *registers; |
1962 | target_ulong addr, len; |
1963 | |
1964 | #ifdef DEBUG_GDB |
1965 | printf("command='%s'\n", line_buf); |
1966 | #endif |
1967 | p = line_buf; |
1968 | ch = *p++; |
1969 | switch(ch) { |
1970 | case '?': |
1971 | /* TODO: Make this return the correct value for user-mode. */ |
1972 | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, |
1973 | cpu_index(s->c_cpu)); |
1974 | put_packet(s, buf); |
1975 | /* Remove all the breakpoints when this query is issued, |
1976 | * because gdb is doing and initial connect and the state |
1977 | * should be cleaned up. |
1978 | */ |
1979 | gdb_breakpoint_remove_all(); |
1980 | break; |
1981 | case 'c': |
1982 | if (*p != '\0') { |
1983 | addr = strtoull(p, (char **)&p, 16); |
1984 | gdb_set_cpu_pc(s, addr); |
1985 | } |
1986 | s->signal = 0; |
1987 | gdb_continue(s); |
1988 | return RS_IDLE; |
1989 | case 'C': |
1990 | s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); |
1991 | if (s->signal == -1) |
1992 | s->signal = 0; |
1993 | gdb_continue(s); |
1994 | return RS_IDLE; |
1995 | case 'v': |
1996 | if (strncmp(p, "Cont", 4) == 0) { |
1997 | int res_signal, res_thread; |
1998 | |
1999 | p += 4; |
2000 | if (*p == '?') { |
2001 | put_packet(s, "vCont;c;C;s;S"); |
2002 | break; |
2003 | } |
2004 | res = 0; |
2005 | res_signal = 0; |
2006 | res_thread = 0; |
2007 | while (*p) { |
2008 | int action, signal; |
2009 | |
2010 | if (*p++ != ';') { |
2011 | res = 0; |
2012 | break; |
2013 | } |
2014 | action = *p++; |
2015 | signal = 0; |
2016 | if (action == 'C' || action == 'S') { |
2017 | signal = strtoul(p, (char **)&p, 16); |
2018 | } else if (action != 'c' && action != 's') { |
2019 | res = 0; |
2020 | break; |
2021 | } |
2022 | thread = 0; |
2023 | if (*p == ':') { |
2024 | thread = strtoull(p+1, (char **)&p, 16); |
2025 | } |
2026 | action = tolower(action); |
2027 | if (res == 0 || (res == 'c' && action == 's')) { |
2028 | res = action; |
2029 | res_signal = signal; |
2030 | res_thread = thread; |
2031 | } |
2032 | } |
2033 | if (res) { |
2034 | if (res_thread != -1 && res_thread != 0) { |
2035 | env = find_cpu(res_thread); |
2036 | if (env == NULL((void*)0)) { |
2037 | put_packet(s, "E22"); |
2038 | break; |
2039 | } |
2040 | s->c_cpu = env; |
2041 | } |
2042 | if (res == 's') { |
2043 | cpu_single_step(s->c_cpu, sstep_flags); |
2044 | } |
2045 | s->signal = res_signal; |
2046 | gdb_continue(s); |
2047 | return RS_IDLE; |
2048 | } |
2049 | break; |
2050 | } else { |
2051 | goto unknown_command; |
2052 | } |
2053 | case 'k': |
2054 | #ifdef CONFIG_USER_ONLY |
2055 | /* Kill the target */ |
2056 | fprintf(stderrstderr, "\nQEMU: Terminated via GDBstub\n"); |
2057 | exit(0); |
2058 | #endif |
2059 | case 'D': |
2060 | /* Detach packet */ |
2061 | gdb_breakpoint_remove_all(); |
2062 | gdb_syscall_mode = GDB_SYS_DISABLED; |
2063 | gdb_continue(s); |
2064 | put_packet(s, "OK"); |
2065 | break; |
2066 | case 's': |
2067 | if (*p != '\0') { |
2068 | addr = strtoull(p, (char **)&p, 16); |
2069 | gdb_set_cpu_pc(s, addr); |
2070 | } |
2071 | cpu_single_step(s->c_cpu, sstep_flags); |
2072 | gdb_continue(s); |
2073 | return RS_IDLE; |
2074 | case 'F': |
2075 | { |
2076 | target_ulong ret; |
2077 | target_ulong err; |
2078 | |
2079 | ret = strtoull(p, (char **)&p, 16); |
2080 | if (*p == ',') { |
2081 | p++; |
2082 | err = strtoull(p, (char **)&p, 16); |
2083 | } else { |
2084 | err = 0; |
2085 | } |
2086 | if (*p == ',') |
2087 | p++; |
2088 | type = *p; |
2089 | if (s->current_syscall_cb) { |
2090 | s->current_syscall_cb(s->c_cpu, ret, err); |
2091 | s->current_syscall_cb = NULL((void*)0); |
2092 | } |
2093 | if (type == 'C') { |
2094 | put_packet(s, "T02"); |
2095 | } else { |
2096 | gdb_continue(s); |
2097 | } |
2098 | } |
2099 | break; |
2100 | case 'g': |
2101 | cpu_synchronize_state(s->g_cpu); |
2102 | env = s->g_cpu; |
Value stored to 'env' is never read | |
2103 | len = 0; |
2104 | for (addr = 0; addr < num_g_regs; addr++) { |
2105 | reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); |
2106 | len += reg_size; |
2107 | } |
2108 | memtohex(buf, mem_buf, len); |
2109 | put_packet(s, buf); |
2110 | break; |
2111 | case 'G': |
2112 | cpu_synchronize_state(s->g_cpu); |
2113 | env = s->g_cpu; |
2114 | registers = mem_buf; |
2115 | len = strlen(p) / 2; |
2116 | hextomem((uint8_t *)registers, p, len); |
2117 | for (addr = 0; addr < num_g_regs && len > 0; addr++) { |
2118 | reg_size = gdb_write_register(s->g_cpu, registers, addr); |
2119 | len -= reg_size; |
2120 | registers += reg_size; |
2121 | } |
2122 | put_packet(s, "OK"); |
2123 | break; |
2124 | case 'm': |
2125 | addr = strtoull(p, (char **)&p, 16); |
2126 | if (*p == ',') |
2127 | p++; |
2128 | len = strtoull(p, NULL((void*)0), 16); |
2129 | if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { |
2130 | put_packet (s, "E14"); |
2131 | } else { |
2132 | memtohex(buf, mem_buf, len); |
2133 | put_packet(s, buf); |
2134 | } |
2135 | break; |
2136 | case 'M': |
2137 | addr = strtoull(p, (char **)&p, 16); |
2138 | if (*p == ',') |
2139 | p++; |
2140 | len = strtoull(p, (char **)&p, 16); |
2141 | if (*p == ':') |
2142 | p++; |
2143 | hextomem(mem_buf, p, len); |
2144 | if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) { |
2145 | put_packet(s, "E14"); |
2146 | } else { |
2147 | put_packet(s, "OK"); |
2148 | } |
2149 | break; |
2150 | case 'p': |
2151 | /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. |
2152 | This works, but can be very slow. Anything new enough to |
2153 | understand XML also knows how to use this properly. */ |
2154 | if (!gdb_has_xml) |
2155 | goto unknown_command; |
2156 | addr = strtoull(p, (char **)&p, 16); |
2157 | reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); |
2158 | if (reg_size) { |
2159 | memtohex(buf, mem_buf, reg_size); |
2160 | put_packet(s, buf); |
2161 | } else { |
2162 | put_packet(s, "E14"); |
2163 | } |
2164 | break; |
2165 | case 'P': |
2166 | if (!gdb_has_xml) |
2167 | goto unknown_command; |
2168 | addr = strtoull(p, (char **)&p, 16); |
2169 | if (*p == '=') |
2170 | p++; |
2171 | reg_size = strlen(p) / 2; |
2172 | hextomem(mem_buf, p, reg_size); |
2173 | gdb_write_register(s->g_cpu, mem_buf, addr); |
2174 | put_packet(s, "OK"); |
2175 | break; |
2176 | case 'Z': |
2177 | case 'z': |
2178 | type = strtoul(p, (char **)&p, 16); |
2179 | if (*p == ',') |
2180 | p++; |
2181 | addr = strtoull(p, (char **)&p, 16); |
2182 | if (*p == ',') |
2183 | p++; |
2184 | len = strtoull(p, (char **)&p, 16); |
2185 | if (ch == 'Z') |
2186 | res = gdb_breakpoint_insert(addr, len, type); |
2187 | else |
2188 | res = gdb_breakpoint_remove(addr, len, type); |
2189 | if (res >= 0) |
2190 | put_packet(s, "OK"); |
2191 | else if (res == -ENOSYS38) |
2192 | put_packet(s, ""); |
2193 | else |
2194 | put_packet(s, "E22"); |
2195 | break; |
2196 | case 'H': |
2197 | type = *p++; |
2198 | thread = strtoull(p, (char **)&p, 16); |
2199 | if (thread == -1 || thread == 0) { |
2200 | put_packet(s, "OK"); |
2201 | break; |
2202 | } |
2203 | env = find_cpu(thread); |
2204 | if (env == NULL((void*)0)) { |
2205 | put_packet(s, "E22"); |
2206 | break; |
2207 | } |
2208 | switch (type) { |
2209 | case 'c': |
2210 | s->c_cpu = env; |
2211 | put_packet(s, "OK"); |
2212 | break; |
2213 | case 'g': |
2214 | s->g_cpu = env; |
2215 | put_packet(s, "OK"); |
2216 | break; |
2217 | default: |
2218 | put_packet(s, "E22"); |
2219 | break; |
2220 | } |
2221 | break; |
2222 | case 'T': |
2223 | thread = strtoull(p, (char **)&p, 16); |
2224 | env = find_cpu(thread); |
2225 | |
2226 | if (env != NULL((void*)0)) { |
2227 | put_packet(s, "OK"); |
2228 | } else { |
2229 | put_packet(s, "E22"); |
2230 | } |
2231 | break; |
2232 | case 'q': |
2233 | case 'Q': |
2234 | /* parse any 'q' packets here */ |
2235 | if (!strcmp(p,"qemu.sstepbits")) { |
2236 | /* Query Breakpoint bit definitions */ |
2237 | snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", |
2238 | SSTEP_ENABLE0x1, |
2239 | SSTEP_NOIRQ0x2, |
2240 | SSTEP_NOTIMER0x4); |
2241 | put_packet(s, buf); |
2242 | break; |
2243 | } else if (strncmp(p,"qemu.sstep",10) == 0) { |
2244 | /* Display or change the sstep_flags */ |
2245 | p += 10; |
2246 | if (*p != '=') { |
2247 | /* Display current setting */ |
2248 | snprintf(buf, sizeof(buf), "0x%x", sstep_flags); |
2249 | put_packet(s, buf); |
2250 | break; |
2251 | } |
2252 | p++; |
2253 | type = strtoul(p, (char **)&p, 16); |
2254 | sstep_flags = type; |
2255 | put_packet(s, "OK"); |
2256 | break; |
2257 | } else if (strcmp(p,"C") == 0) { |
2258 | /* "Current thread" remains vague in the spec, so always return |
2259 | * the first CPU (gdb returns the first thread). */ |
2260 | put_packet(s, "QC1"); |
2261 | break; |
2262 | } else if (strcmp(p,"fThreadInfo") == 0) { |
2263 | s->query_cpu = first_cpu; |
2264 | goto report_cpuinfo; |
2265 | } else if (strcmp(p,"sThreadInfo") == 0) { |
2266 | report_cpuinfo: |
2267 | if (s->query_cpu) { |
2268 | snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu)); |
2269 | put_packet(s, buf); |
2270 | s->query_cpu = s->query_cpu->next_cpu; |
2271 | } else |
2272 | put_packet(s, "l"); |
2273 | break; |
2274 | } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { |
2275 | thread = strtoull(p+16, (char **)&p, 16); |
2276 | env = find_cpu(thread); |
2277 | if (env != NULL((void*)0)) { |
2278 | cpu_synchronize_state(env); |
2279 | len = snprintf((char *)mem_buf, sizeof(mem_buf), |
2280 | "CPU#%d [%s]", env->cpu_index, |
2281 | env->halted ? "halted " : "running"); |
2282 | memtohex(buf, mem_buf, len); |
2283 | put_packet(s, buf); |
2284 | } |
2285 | break; |
2286 | } |
2287 | #ifdef CONFIG_USER_ONLY |
2288 | else if (strncmp(p, "Offsets", 7) == 0) { |
2289 | TaskState *ts = s->c_cpu->opaque; |
2290 | |
2291 | snprintf(buf, sizeof(buf), |
2292 | "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx |
2293 | ";Bss=" TARGET_ABI_FMT_lx, |
2294 | ts->info->code_offset, |
2295 | ts->info->data_offset, |
2296 | ts->info->data_offset); |
2297 | put_packet(s, buf); |
2298 | break; |
2299 | } |
2300 | #else /* !CONFIG_USER_ONLY */ |
2301 | else if (strncmp(p, "Rcmd,", 5) == 0) { |
2302 | int len = strlen(p + 5); |
2303 | |
2304 | if ((len % 2) != 0) { |
2305 | put_packet(s, "E01"); |
2306 | break; |
2307 | } |
2308 | hextomem(mem_buf, p + 5, len); |
2309 | len = len / 2; |
2310 | mem_buf[len++] = 0; |
2311 | qemu_chr_be_write(s->mon_chr, mem_buf, len); |
2312 | put_packet(s, "OK"); |
2313 | break; |
2314 | } |
2315 | #endif /* !CONFIG_USER_ONLY */ |
2316 | if (strncmp(p, "Supported", 9) == 0) { |
2317 | snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH4096); |
2318 | #ifdef GDB_CORE_XML |
2319 | pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); |
2320 | #endif |
2321 | put_packet(s, buf); |
2322 | break; |
2323 | } |
2324 | #ifdef GDB_CORE_XML |
2325 | if (strncmp(p, "Xfer:features:read:", 19) == 0) { |
2326 | const char *xml; |
2327 | target_ulong total_len; |
2328 | |
2329 | gdb_has_xml = 1; |
2330 | p += 19; |
2331 | xml = get_feature_xml(p, &p); |
2332 | if (!xml) { |
2333 | snprintf(buf, sizeof(buf), "E00"); |
2334 | put_packet(s, buf); |
2335 | break; |
2336 | } |
2337 | |
2338 | if (*p == ':') |
2339 | p++; |
2340 | addr = strtoul(p, (char **)&p, 16); |
2341 | if (*p == ',') |
2342 | p++; |
2343 | len = strtoul(p, (char **)&p, 16); |
2344 | |
2345 | total_len = strlen(xml); |
2346 | if (addr > total_len) { |
2347 | snprintf(buf, sizeof(buf), "E00"); |
2348 | put_packet(s, buf); |
2349 | break; |
2350 | } |
2351 | if (len > (MAX_PACKET_LENGTH4096 - 5) / 2) |
2352 | len = (MAX_PACKET_LENGTH4096 - 5) / 2; |
2353 | if (len < total_len - addr) { |
2354 | buf[0] = 'm'; |
2355 | len = memtox(buf + 1, xml + addr, len); |
2356 | } else { |
2357 | buf[0] = 'l'; |
2358 | len = memtox(buf + 1, xml + addr, total_len - addr); |
2359 | } |
2360 | put_packet_binary(s, buf, len + 1); |
2361 | break; |
2362 | } |
2363 | #endif |
2364 | /* Unrecognised 'q' command. */ |
2365 | goto unknown_command; |
2366 | |
2367 | default: |
2368 | unknown_command: |
2369 | /* put empty packet */ |
2370 | buf[0] = '\0'; |
2371 | put_packet(s, buf); |
2372 | break; |
2373 | } |
2374 | return RS_IDLE; |
2375 | } |
2376 | |
2377 | void gdb_set_stop_cpu(CPUArchStatestruct CPUMIPSState *env) |
2378 | { |
2379 | gdbserver_state->c_cpu = env; |
2380 | gdbserver_state->g_cpu = env; |
2381 | } |
2382 | |
2383 | #ifndef CONFIG_USER_ONLY |
2384 | static void gdb_vm_state_change(void *opaque, int running, RunState state) |
2385 | { |
2386 | GDBState *s = gdbserver_state; |
2387 | CPUArchStatestruct CPUMIPSState *env = s->c_cpu; |
2388 | char buf[256]; |
2389 | const char *type; |
2390 | int ret; |
2391 | |
2392 | if (running || s->state == RS_INACTIVE) { |
2393 | return; |
2394 | } |
2395 | /* Is there a GDB syscall waiting to be sent? */ |
2396 | if (s->current_syscall_cb) { |
2397 | put_packet(s, s->syscall_buf); |
2398 | return; |
2399 | } |
2400 | switch (state) { |
2401 | case RUN_STATE_DEBUG: |
2402 | if (env->watchpoint_hit) { |
2403 | switch (env->watchpoint_hit->flags & BP_MEM_ACCESS(0x01 | 0x02)) { |
2404 | case BP_MEM_READ0x01: |
2405 | type = "r"; |
2406 | break; |
2407 | case BP_MEM_ACCESS(0x01 | 0x02): |
2408 | type = "a"; |
2409 | break; |
2410 | default: |
2411 | type = ""; |
2412 | break; |
2413 | } |
2414 | snprintf(buf, sizeof(buf), |
2415 | "T%02xthread:%02x;%swatch:" TARGET_FMT_lx"%08x" ";", |
2416 | GDB_SIGNAL_TRAP, cpu_index(env), type, |
2417 | env->watchpoint_hit->vaddr); |
2418 | env->watchpoint_hit = NULL((void*)0); |
2419 | goto send_packet; |
2420 | } |
2421 | tb_flush(env); |
2422 | ret = GDB_SIGNAL_TRAP; |
2423 | break; |
2424 | case RUN_STATE_PAUSED: |
2425 | ret = GDB_SIGNAL_INT; |
2426 | break; |
2427 | case RUN_STATE_SHUTDOWN: |
2428 | ret = GDB_SIGNAL_QUIT; |
2429 | break; |
2430 | case RUN_STATE_IO_ERROR: |
2431 | ret = GDB_SIGNAL_IO; |
2432 | break; |
2433 | case RUN_STATE_WATCHDOG: |
2434 | ret = GDB_SIGNAL_ALRM; |
2435 | break; |
2436 | case RUN_STATE_INTERNAL_ERROR: |
2437 | ret = GDB_SIGNAL_ABRT; |
2438 | break; |
2439 | case RUN_STATE_SAVE_VM: |
2440 | case RUN_STATE_RESTORE_VM: |
2441 | return; |
2442 | case RUN_STATE_FINISH_MIGRATE: |
2443 | ret = GDB_SIGNAL_XCPU; |
2444 | break; |
2445 | default: |
2446 | ret = GDB_SIGNAL_UNKNOWN; |
2447 | break; |
2448 | } |
2449 | snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(env)); |
2450 | |
2451 | send_packet: |
2452 | put_packet(s, buf); |
2453 | |
2454 | /* disable single step if it was enabled */ |
2455 | cpu_single_step(env, 0); |
2456 | } |
2457 | #endif |
2458 | |
2459 | /* Send a gdb syscall request. |
2460 | This accepts limited printf-style format specifiers, specifically: |
2461 | %x - target_ulong argument printed in hex. |
2462 | %lx - 64-bit argument printed in hex. |
2463 | %s - string pointer (target_ulong) and length (int) pair. */ |
2464 | void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) |
2465 | { |
2466 | va_list va; |
2467 | char *p; |
2468 | char *p_end; |
2469 | target_ulong addr; |
2470 | uint64_t i64; |
2471 | GDBState *s; |
2472 | |
2473 | s = gdbserver_state; |
2474 | if (!s) |
2475 | return; |
2476 | s->current_syscall_cb = cb; |
2477 | #ifndef CONFIG_USER_ONLY |
2478 | vm_stop(RUN_STATE_DEBUG); |
2479 | #endif |
2480 | va_start(va, fmt)__builtin_va_start(va, fmt); |
2481 | p = s->syscall_buf; |
2482 | p_end = &s->syscall_buf[sizeof(s->syscall_buf)]; |
2483 | *(p++) = 'F'; |
2484 | while (*fmt) { |
2485 | if (*fmt == '%') { |
2486 | fmt++; |
2487 | switch (*fmt++) { |
2488 | case 'x': |
2489 | addr = va_arg(va, target_ulong)__builtin_va_arg(va, target_ulong); |
2490 | p += snprintf(p, p_end - p, TARGET_FMT_lx"%08x", addr); |
2491 | break; |
2492 | case 'l': |
2493 | if (*(fmt++) != 'x') |
2494 | goto bad_format; |
2495 | i64 = va_arg(va, uint64_t)__builtin_va_arg(va, uint64_t); |
2496 | p += snprintf(p, p_end - p, "%" PRIx64"l" "x", i64); |
2497 | break; |
2498 | case 's': |
2499 | addr = va_arg(va, target_ulong)__builtin_va_arg(va, target_ulong); |
2500 | p += snprintf(p, p_end - p, TARGET_FMT_lx"%08x" "/%x", |
2501 | addr, va_arg(va, int)__builtin_va_arg(va, int)); |
2502 | break; |
2503 | default: |
2504 | bad_format: |
2505 | fprintf(stderrstderr, "gdbstub: Bad syscall format string '%s'\n", |
2506 | fmt - 1); |
2507 | break; |
2508 | } |
2509 | } else { |
2510 | *(p++) = *(fmt++); |
2511 | } |
2512 | } |
2513 | *p = 0; |
2514 | va_end(va)__builtin_va_end(va); |
2515 | #ifdef CONFIG_USER_ONLY |
2516 | put_packet(s, s->syscall_buf); |
2517 | gdb_handlesig(s->c_cpu, 0); |
2518 | #else |
2519 | /* In this case wait to send the syscall packet until notification that |
2520 | the CPU has stopped. This must be done because if the packet is sent |
2521 | now the reply from the syscall request could be received while the CPU |
2522 | is still in the running state, which can cause packets to be dropped |
2523 | and state transition 'T' packets to be sent while the syscall is still |
2524 | being processed. */ |
2525 | cpu_exit(s->c_cpu); |
2526 | #endif |
2527 | } |
2528 | |
2529 | static void gdb_read_byte(GDBState *s, int ch) |
2530 | { |
2531 | int i, csum; |
2532 | uint8_t reply; |
2533 | |
2534 | #ifndef CONFIG_USER_ONLY |
2535 | if (s->last_packet_len) { |
2536 | /* Waiting for a response to the last packet. If we see the start |
2537 | of a new command then abandon the previous response. */ |
2538 | if (ch == '-') { |
2539 | #ifdef DEBUG_GDB |
2540 | printf("Got NACK, retransmitting\n"); |
2541 | #endif |
2542 | put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
2543 | } |
2544 | #ifdef DEBUG_GDB |
2545 | else if (ch == '+') |
2546 | printf("Got ACK\n"); |
2547 | else |
2548 | printf("Got '%c' when expecting ACK/NACK\n", ch); |
2549 | #endif |
2550 | if (ch == '+' || ch == '$') |
2551 | s->last_packet_len = 0; |
2552 | if (ch != '$') |
2553 | return; |
2554 | } |
2555 | if (runstate_is_running()) { |
2556 | /* when the CPU is running, we cannot do anything except stop |
2557 | it when receiving a char */ |
2558 | vm_stop(RUN_STATE_PAUSED); |
2559 | } else |
2560 | #endif |
2561 | { |
2562 | switch(s->state) { |
2563 | case RS_IDLE: |
2564 | if (ch == '$') { |
2565 | s->line_buf_index = 0; |
2566 | s->state = RS_GETLINE; |
2567 | } |
2568 | break; |
2569 | case RS_GETLINE: |
2570 | if (ch == '#') { |
2571 | s->state = RS_CHKSUM1; |
2572 | } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { |
2573 | s->state = RS_IDLE; |
2574 | } else { |
2575 | s->line_buf[s->line_buf_index++] = ch; |
2576 | } |
2577 | break; |
2578 | case RS_CHKSUM1: |
2579 | s->line_buf[s->line_buf_index] = '\0'; |
2580 | s->line_csum = fromhex(ch) << 4; |
2581 | s->state = RS_CHKSUM2; |
2582 | break; |
2583 | case RS_CHKSUM2: |
2584 | s->line_csum |= fromhex(ch); |
2585 | csum = 0; |
2586 | for(i = 0; i < s->line_buf_index; i++) { |
2587 | csum += s->line_buf[i]; |
2588 | } |
2589 | if (s->line_csum != (csum & 0xff)) { |
2590 | reply = '-'; |
2591 | put_buffer(s, &reply, 1); |
2592 | s->state = RS_IDLE; |
2593 | } else { |
2594 | reply = '+'; |
2595 | put_buffer(s, &reply, 1); |
2596 | s->state = gdb_handle_packet(s, s->line_buf); |
2597 | } |
2598 | break; |
2599 | default: |
2600 | abort(); |
2601 | } |
2602 | } |
2603 | } |
2604 | |
2605 | /* Tell the remote gdb that the process has exited. */ |
2606 | void gdb_exit(CPUArchStatestruct CPUMIPSState *env, int code) |
2607 | { |
2608 | GDBState *s; |
2609 | char buf[4]; |
2610 | |
2611 | s = gdbserver_state; |
2612 | if (!s) { |
2613 | return; |
2614 | } |
2615 | #ifdef CONFIG_USER_ONLY |
2616 | if (gdbserver_fd < 0 || s->fd < 0) { |
2617 | return; |
2618 | } |
2619 | #endif |
2620 | |
2621 | snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); |
2622 | put_packet(s, buf); |
2623 | |
2624 | #ifndef CONFIG_USER_ONLY |
2625 | if (s->chr) { |
2626 | qemu_chr_delete(s->chr); |
2627 | } |
2628 | #endif |
2629 | } |
2630 | |
2631 | #ifdef CONFIG_USER_ONLY |
2632 | int |
2633 | gdb_queuesig (void) |
2634 | { |
2635 | GDBState *s; |
2636 | |
2637 | s = gdbserver_state; |
2638 | |
2639 | if (gdbserver_fd < 0 || s->fd < 0) |
2640 | return 0; |
2641 | else |
2642 | return 1; |
2643 | } |
2644 | |
2645 | int |
2646 | gdb_handlesig (CPUArchStatestruct CPUMIPSState *env, int sig) |
2647 | { |
2648 | GDBState *s; |
2649 | char buf[256]; |
2650 | int n; |
2651 | |
2652 | s = gdbserver_state; |
2653 | if (gdbserver_fd < 0 || s->fd < 0) |
2654 | return sig; |
2655 | |
2656 | /* disable single step if it was enabled */ |
2657 | cpu_single_step(env, 0); |
2658 | tb_flush(env); |
2659 | |
2660 | if (sig != 0) |
2661 | { |
2662 | snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); |
2663 | put_packet(s, buf); |
2664 | } |
2665 | /* put_packet() might have detected that the peer terminated the |
2666 | connection. */ |
2667 | if (s->fd < 0) |
2668 | return sig; |
2669 | |
2670 | sig = 0; |
2671 | s->state = RS_IDLE; |
2672 | s->running_state = 0; |
2673 | while (s->running_state == 0) { |
2674 | n = read (s->fd, buf, 256); |
2675 | if (n > 0) |
2676 | { |
2677 | int i; |
2678 | |
2679 | for (i = 0; i < n; i++) |
2680 | gdb_read_byte (s, buf[i]); |
2681 | } |
2682 | else if (n == 0 || errno(*__errno_location ()) != EAGAIN11) |
2683 | { |
2684 | /* XXX: Connection closed. Should probably wait for another |
2685 | connection before continuing. */ |
2686 | return sig; |
2687 | } |
2688 | } |
2689 | sig = s->signal; |
2690 | s->signal = 0; |
2691 | return sig; |
2692 | } |
2693 | |
2694 | /* Tell the remote gdb that the process has exited due to SIG. */ |
2695 | void gdb_signalled(CPUArchStatestruct CPUMIPSState *env, int sig) |
2696 | { |
2697 | GDBState *s; |
2698 | char buf[4]; |
2699 | |
2700 | s = gdbserver_state; |
2701 | if (gdbserver_fd < 0 || s->fd < 0) |
2702 | return; |
2703 | |
2704 | snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); |
2705 | put_packet(s, buf); |
2706 | } |
2707 | |
2708 | static void gdb_accept(void) |
2709 | { |
2710 | GDBState *s; |
2711 | struct sockaddr_in sockaddr; |
2712 | socklen_t len; |
2713 | int val, fd; |
2714 | |
2715 | for(;;) { |
2716 | len = sizeof(sockaddr); |
2717 | fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); |
2718 | if (fd < 0 && errno(*__errno_location ()) != EINTR4) { |
2719 | perror("accept"); |
2720 | return; |
2721 | } else if (fd >= 0) { |
2722 | #ifndef _WIN32 |
2723 | fcntl(fd, F_SETFD2, FD_CLOEXEC1); |
2724 | #endif |
2725 | break; |
2726 | } |
2727 | } |
2728 | |
2729 | /* set short latency */ |
2730 | val = 1; |
2731 | setsockopt(fd, IPPROTO_TCPIPPROTO_TCP, TCP_NODELAY1, (char *)&val, sizeof(val)); |
2732 | |
2733 | s = g_malloc0(sizeof(GDBState)); |
2734 | s->c_cpu = first_cpu; |
2735 | s->g_cpu = first_cpu; |
2736 | s->fd = fd; |
2737 | gdb_has_xml = 0; |
2738 | |
2739 | gdbserver_state = s; |
2740 | |
2741 | fcntl(fd, F_SETFL4, O_NONBLOCK04000); |
2742 | } |
2743 | |
2744 | static int gdbserver_open(int port) |
2745 | { |
2746 | struct sockaddr_in sockaddr; |
2747 | int fd, val, ret; |
2748 | |
2749 | fd = socket(PF_INET2, SOCK_STREAMSOCK_STREAM, 0); |
2750 | if (fd < 0) { |
2751 | perror("socket"); |
2752 | return -1; |
2753 | } |
2754 | #ifndef _WIN32 |
2755 | fcntl(fd, F_SETFD2, FD_CLOEXEC1); |
2756 | #endif |
2757 | |
2758 | /* allow fast reuse */ |
2759 | val = 1; |
2760 | setsockopt(fd, SOL_SOCKET1, SO_REUSEADDR2, (char *)&val, sizeof(val)); |
2761 | |
2762 | sockaddr.sin_family = AF_INET2; |
2763 | sockaddr.sin_port = htons(port); |
2764 | sockaddr.sin_addr.s_addr = 0; |
2765 | ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); |
2766 | if (ret < 0) { |
2767 | perror("bind"); |
2768 | close(fd); |
2769 | return -1; |
2770 | } |
2771 | ret = listen(fd, 0); |
2772 | if (ret < 0) { |
2773 | perror("listen"); |
2774 | close(fd); |
2775 | return -1; |
2776 | } |
2777 | return fd; |
2778 | } |
2779 | |
2780 | int gdbserver_start(int port) |
2781 | { |
2782 | gdbserver_fd = gdbserver_open(port); |
2783 | if (gdbserver_fd < 0) |
2784 | return -1; |
2785 | /* accept connections */ |
2786 | gdb_accept(); |
2787 | return 0; |
2788 | } |
2789 | |
2790 | /* Disable gdb stub for child processes. */ |
2791 | void gdbserver_fork(CPUArchStatestruct CPUMIPSState *env) |
2792 | { |
2793 | GDBState *s = gdbserver_state; |
2794 | if (gdbserver_fd < 0 || s->fd < 0) |
2795 | return; |
2796 | close(s->fd); |
2797 | s->fd = -1; |
2798 | cpu_breakpoint_remove_all(env, BP_GDB0x10); |
2799 | cpu_watchpoint_remove_all(env, BP_GDB0x10); |
2800 | } |
2801 | #else |
2802 | static int gdb_chr_can_receive(void *opaque) |
2803 | { |
2804 | /* We can handle an arbitrarily large amount of data. |
2805 | Pick the maximum packet size, which is as good as anything. */ |
2806 | return MAX_PACKET_LENGTH4096; |
2807 | } |
2808 | |
2809 | static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) |
2810 | { |
2811 | int i; |
2812 | |
2813 | for (i = 0; i < size; i++) { |
2814 | gdb_read_byte(gdbserver_state, buf[i]); |
2815 | } |
2816 | } |
2817 | |
2818 | static void gdb_chr_event(void *opaque, int event) |
2819 | { |
2820 | switch (event) { |
2821 | case CHR_EVENT_OPENED2: |
2822 | vm_stop(RUN_STATE_PAUSED); |
2823 | gdb_has_xml = 0; |
2824 | break; |
2825 | default: |
2826 | break; |
2827 | } |
2828 | } |
2829 | |
2830 | static void gdb_monitor_output(GDBState *s, const char *msg, int len) |
2831 | { |
2832 | char buf[MAX_PACKET_LENGTH4096]; |
2833 | |
2834 | buf[0] = 'O'; |
2835 | if (len > (MAX_PACKET_LENGTH4096/2) - 1) |
2836 | len = (MAX_PACKET_LENGTH4096/2) - 1; |
2837 | memtohex(buf + 1, (uint8_t *)msg, len); |
2838 | put_packet(s, buf); |
2839 | } |
2840 | |
2841 | static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) |
2842 | { |
2843 | const char *p = (const char *)buf; |
2844 | int max_sz; |
2845 | |
2846 | max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; |
2847 | for (;;) { |
2848 | if (len <= max_sz) { |
2849 | gdb_monitor_output(gdbserver_state, p, len); |
2850 | break; |
2851 | } |
2852 | gdb_monitor_output(gdbserver_state, p, max_sz); |
2853 | p += max_sz; |
2854 | len -= max_sz; |
2855 | } |
2856 | return len; |
2857 | } |
2858 | |
2859 | #ifndef _WIN32 |
2860 | static void gdb_sigterm_handler(int signal) |
2861 | { |
2862 | if (runstate_is_running()) { |
2863 | vm_stop(RUN_STATE_PAUSED); |
2864 | } |
2865 | } |
2866 | #endif |
2867 | |
2868 | int gdbserver_start(const char *device) |
2869 | { |
2870 | GDBState *s; |
2871 | char gdbstub_device_name[128]; |
2872 | CharDriverState *chr = NULL((void*)0); |
2873 | CharDriverState *mon_chr; |
2874 | |
2875 | if (!device) |
2876 | return -1; |
2877 | if (strcmp(device, "none") != 0) { |
2878 | if (strstart(device, "tcp:", NULL((void*)0))) { |
2879 | /* enforce required TCP attributes */ |
2880 | snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), |
2881 | "%s,nowait,nodelay,server", device); |
2882 | device = gdbstub_device_name; |
2883 | } |
2884 | #ifndef _WIN32 |
2885 | else if (strcmp(device, "stdio") == 0) { |
2886 | struct sigaction act; |
2887 | |
2888 | memset(&act, 0, sizeof(act)); |
2889 | act.sa_handler__sigaction_handler.sa_handler = gdb_sigterm_handler; |
2890 | sigaction(SIGINT2, &act, NULL((void*)0)); |
2891 | } |
2892 | #endif |
2893 | chr = qemu_chr_new("gdb", device, NULL((void*)0)); |
2894 | if (!chr) |
2895 | return -1; |
2896 | |
2897 | qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, |
2898 | gdb_chr_event, NULL((void*)0)); |
2899 | } |
2900 | |
2901 | s = gdbserver_state; |
2902 | if (!s) { |
2903 | s = g_malloc0(sizeof(GDBState)); |
2904 | gdbserver_state = s; |
2905 | |
2906 | qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL((void*)0)); |
2907 | |
2908 | /* Initialize a monitor terminal for gdb */ |
2909 | mon_chr = g_malloc0(sizeof(*mon_chr)); |
2910 | mon_chr->chr_write = gdb_monitor_write; |
2911 | monitor_init(mon_chr, 0); |
2912 | } else { |
2913 | if (s->chr) |
2914 | qemu_chr_delete(s->chr); |
2915 | mon_chr = s->mon_chr; |
2916 | memset(s, 0, sizeof(GDBState)); |
2917 | } |
2918 | s->c_cpu = first_cpu; |
2919 | s->g_cpu = first_cpu; |
2920 | s->chr = chr; |
2921 | s->state = chr ? RS_IDLE : RS_INACTIVE; |
2922 | s->mon_chr = mon_chr; |
2923 | s->current_syscall_cb = NULL((void*)0); |
2924 | |
2925 | return 0; |
2926 | } |
2927 | #endif |