File: | hw/mips/../mips_malta.c |
Location: | line 879, column 5 |
Description: | Value stored to 'fl_idx' is never read |
1 | /* |
2 | * QEMU Malta board support |
3 | * |
4 | * Copyright (c) 2006 Aurelien Jarno |
5 | * |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
7 | * of this software and associated documentation files (the "Software"), to deal |
8 | * in the Software without restriction, including without limitation the rights |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
10 | * copies of the Software, and to permit persons to whom the Software is |
11 | * furnished to do so, subject to the following conditions: |
12 | * |
13 | * The above copyright notice and this permission notice shall be included in |
14 | * all copies or substantial portions of the Software. |
15 | * |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
22 | * THE SOFTWARE. |
23 | */ |
24 | |
25 | #include "hw.h" |
26 | #include "pc.h" |
27 | #include "fdc.h" |
28 | #include "net.h" |
29 | #include "boards.h" |
30 | #include "smbus.h" |
31 | #include "block.h" |
32 | #include "flash.h" |
33 | #include "mips.h" |
34 | #include "mips_cpudevs.h" |
35 | #include "pci.h" |
36 | #include "vmware_vga.h" |
37 | #include "qemu-char.h" |
38 | #include "sysemu.h" |
39 | #include "arch_init.h" |
40 | #include "boards.h" |
41 | #include "qemu-log.h" |
42 | #include "mips-bios.h" |
43 | #include "ide.h" |
44 | #include "loader.h" |
45 | #include "elf.h" |
46 | #include "mc146818rtc.h" |
47 | #include "i8254.h" |
48 | #include "blockdev.h" |
49 | #include "exec-memory.h" |
50 | #include "sysbus.h" /* SysBusDevice */ |
51 | |
52 | //#define DEBUG_BOARD_INIT |
53 | |
54 | #define ENVP_ADDR0x80002000l 0x80002000l |
55 | #define ENVP_NB_ENTRIES16 16 |
56 | #define ENVP_ENTRY_SIZE256 256 |
57 | |
58 | /* Hardware addresses */ |
59 | #define FLASH_ADDRESS0x1e000000ULL 0x1e000000ULL |
60 | #define FPGA_ADDRESS0x1f000000ULL 0x1f000000ULL |
61 | #define RESET_ADDRESS0x1fc00000ULL 0x1fc00000ULL |
62 | |
63 | #define FLASH_SIZE0x400000 0x400000 |
64 | |
65 | #define MAX_IDE_BUS2 2 |
66 | |
67 | typedef struct { |
68 | MemoryRegion iomem; |
69 | MemoryRegion iomem_lo; /* 0 - 0x900 */ |
70 | MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ |
71 | uint32_t leds; |
72 | uint32_t brk; |
73 | uint32_t gpout; |
74 | uint32_t i2cin; |
75 | uint32_t i2coe; |
76 | uint32_t i2cout; |
77 | uint32_t i2csel; |
78 | CharDriverState *display; |
79 | char display_text[9]; |
80 | SerialState *uart; |
81 | } MaltaFPGAState; |
82 | |
83 | typedef struct { |
84 | SysBusDevice busdev; |
85 | qemu_irq *i8259; |
86 | } MaltaState; |
87 | |
88 | static ISADevice *pit; |
89 | |
90 | static struct _loaderparams { |
91 | int ram_size; |
92 | const char *kernel_filename; |
93 | const char *kernel_cmdline; |
94 | const char *initrd_filename; |
95 | } loaderparams; |
96 | |
97 | /* Malta FPGA */ |
98 | static void malta_fpga_update_display(void *opaque) |
99 | { |
100 | char leds_text[9]; |
101 | int i; |
102 | MaltaFPGAState *s = opaque; |
103 | |
104 | for (i = 7 ; i >= 0 ; i--) { |
105 | if (s->leds & (1 << i)) |
106 | leds_text[i] = '#'; |
107 | else |
108 | leds_text[i] = ' '; |
109 | } |
110 | leds_text[8] = '\0'; |
111 | |
112 | qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text); |
113 | qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text); |
114 | } |
115 | |
116 | /* |
117 | * EEPROM 24C01 / 24C02 emulation. |
118 | * |
119 | * Emulation for serial EEPROMs: |
120 | * 24C01 - 1024 bit (128 x 8) |
121 | * 24C02 - 2048 bit (256 x 8) |
122 | * |
123 | * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. |
124 | */ |
125 | |
126 | //~ #define DEBUG |
127 | |
128 | #if defined(DEBUG) |
129 | # define logout(fmt, ...)((void)0) fprintf(stderrstderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) |
130 | #else |
131 | # define logout(fmt, ...)((void)0) ((void)0) |
132 | #endif |
133 | |
134 | struct _eeprom24c0x_t { |
135 | uint8_t tick; |
136 | uint8_t address; |
137 | uint8_t command; |
138 | uint8_t ack; |
139 | uint8_t scl; |
140 | uint8_t sda; |
141 | uint8_t data; |
142 | //~ uint16_t size; |
143 | uint8_t contents[256]; |
144 | }; |
145 | |
146 | typedef struct _eeprom24c0x_t eeprom24c0x_t; |
147 | |
148 | static eeprom24c0x_t eeprom = { |
149 | .contents = { |
150 | /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00, |
151 | /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01, |
152 | /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00, |
153 | /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40, |
154 | /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00, |
155 | /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
156 | /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
157 | /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0, |
158 | /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
159 | /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
160 | /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
161 | /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
162 | /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
163 | /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
164 | /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
165 | /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4, |
166 | }, |
167 | }; |
168 | |
169 | static uint8_t eeprom24c0x_read(void) |
170 | { |
171 | logout("%u: scl = %u, sda = %u, data = 0x%02x\n",((void)0) |
172 | eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data)((void)0); |
173 | return eeprom.sda; |
174 | } |
175 | |
176 | static void eeprom24c0x_write(int scl, int sda) |
177 | { |
178 | if (eeprom.scl && scl && (eeprom.sda != sda)) { |
179 | logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",((void)0) |
180 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start")((void)0); |
181 | if (!sda) { |
182 | eeprom.tick = 1; |
183 | eeprom.command = 0; |
184 | } |
185 | } else if (eeprom.tick == 0 && !eeprom.ack) { |
186 | /* Waiting for start. */ |
187 | logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",((void)0) |
188 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); |
189 | } else if (!eeprom.scl && scl) { |
190 | logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",((void)0) |
191 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); |
192 | if (eeprom.ack) { |
193 | logout("\ti2c ack bit = 0\n")((void)0); |
194 | sda = 0; |
195 | eeprom.ack = 0; |
196 | } else if (eeprom.sda == sda) { |
197 | uint8_t bit = (sda != 0); |
198 | logout("\ti2c bit = %d\n", bit)((void)0); |
199 | if (eeprom.tick < 9) { |
200 | eeprom.command <<= 1; |
201 | eeprom.command += bit; |
202 | eeprom.tick++; |
203 | if (eeprom.tick == 9) { |
204 | logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write")((void)0); |
205 | eeprom.ack = 1; |
206 | } |
207 | } else if (eeprom.tick < 17) { |
208 | if (eeprom.command & 1) { |
209 | sda = ((eeprom.data & 0x80) != 0); |
210 | } |
211 | eeprom.address <<= 1; |
212 | eeprom.address += bit; |
213 | eeprom.tick++; |
214 | eeprom.data <<= 1; |
215 | if (eeprom.tick == 17) { |
216 | eeprom.data = eeprom.contents[eeprom.address]; |
217 | logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data)((void)0); |
218 | eeprom.ack = 1; |
219 | eeprom.tick = 0; |
220 | } |
221 | } else if (eeprom.tick >= 17) { |
222 | sda = 0; |
223 | } |
224 | } else { |
225 | logout("\tsda changed with raising scl\n")((void)0); |
226 | } |
227 | } else { |
228 | logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); |
229 | } |
230 | eeprom.scl = scl; |
231 | eeprom.sda = sda; |
232 | } |
233 | |
234 | static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr, |
235 | unsigned size) |
236 | { |
237 | MaltaFPGAState *s = opaque; |
238 | uint32_t val = 0; |
239 | uint32_t saddr; |
240 | |
241 | saddr = (addr & 0xfffff); |
242 | |
243 | switch (saddr) { |
244 | |
245 | /* SWITCH Register */ |
246 | case 0x00200: |
247 | val = 0x00000000; /* All switches closed */ |
248 | break; |
249 | |
250 | /* STATUS Register */ |
251 | case 0x00208: |
252 | #ifdef TARGET_WORDS_BIGENDIAN |
253 | val = 0x00000012; |
254 | #else |
255 | val = 0x00000010; |
256 | #endif |
257 | break; |
258 | |
259 | /* JMPRS Register */ |
260 | case 0x00210: |
261 | val = 0x00; |
262 | break; |
263 | |
264 | /* LEDBAR Register */ |
265 | case 0x00408: |
266 | val = s->leds; |
267 | break; |
268 | |
269 | /* BRKRES Register */ |
270 | case 0x00508: |
271 | val = s->brk; |
272 | break; |
273 | |
274 | /* UART Registers are handled directly by the serial device */ |
275 | |
276 | /* GPOUT Register */ |
277 | case 0x00a00: |
278 | val = s->gpout; |
279 | break; |
280 | |
281 | /* XXX: implement a real I2C controller */ |
282 | |
283 | /* GPINP Register */ |
284 | case 0x00a08: |
285 | /* IN = OUT until a real I2C control is implemented */ |
286 | if (s->i2csel) |
287 | val = s->i2cout; |
288 | else |
289 | val = 0x00; |
290 | break; |
291 | |
292 | /* I2CINP Register */ |
293 | case 0x00b00: |
294 | val = ((s->i2cin & ~1) | eeprom24c0x_read()); |
295 | break; |
296 | |
297 | /* I2COE Register */ |
298 | case 0x00b08: |
299 | val = s->i2coe; |
300 | break; |
301 | |
302 | /* I2COUT Register */ |
303 | case 0x00b10: |
304 | val = s->i2cout; |
305 | break; |
306 | |
307 | /* I2CSEL Register */ |
308 | case 0x00b18: |
309 | val = s->i2csel; |
310 | break; |
311 | |
312 | default: |
313 | #if 0 |
314 | printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx"%08x" "\n", |
315 | addr); |
316 | #endif |
317 | break; |
318 | } |
319 | return val; |
320 | } |
321 | |
322 | static void malta_fpga_write(void *opaque, target_phys_addr_t addr, |
323 | uint64_t val, unsigned size) |
324 | { |
325 | MaltaFPGAState *s = opaque; |
326 | uint32_t saddr; |
327 | |
328 | saddr = (addr & 0xfffff); |
329 | |
330 | switch (saddr) { |
331 | |
332 | /* SWITCH Register */ |
333 | case 0x00200: |
334 | break; |
335 | |
336 | /* JMPRS Register */ |
337 | case 0x00210: |
338 | break; |
339 | |
340 | /* LEDBAR Register */ |
341 | case 0x00408: |
342 | s->leds = val & 0xff; |
343 | malta_fpga_update_display(s); |
344 | break; |
345 | |
346 | /* ASCIIWORD Register */ |
347 | case 0x00410: |
348 | snprintf(s->display_text, 9, "%08X", (uint32_t)val); |
349 | malta_fpga_update_display(s); |
350 | break; |
351 | |
352 | /* ASCIIPOS0 to ASCIIPOS7 Registers */ |
353 | case 0x00418: |
354 | case 0x00420: |
355 | case 0x00428: |
356 | case 0x00430: |
357 | case 0x00438: |
358 | case 0x00440: |
359 | case 0x00448: |
360 | case 0x00450: |
361 | s->display_text[(saddr - 0x00418) >> 3] = (char) val; |
362 | malta_fpga_update_display(s); |
363 | break; |
364 | |
365 | /* SOFTRES Register */ |
366 | case 0x00500: |
367 | if (val == 0x42) |
368 | qemu_system_reset_request (); |
369 | break; |
370 | |
371 | /* BRKRES Register */ |
372 | case 0x00508: |
373 | s->brk = val & 0xff; |
374 | break; |
375 | |
376 | /* UART Registers are handled directly by the serial device */ |
377 | |
378 | /* GPOUT Register */ |
379 | case 0x00a00: |
380 | s->gpout = val & 0xff; |
381 | break; |
382 | |
383 | /* I2COE Register */ |
384 | case 0x00b08: |
385 | s->i2coe = val & 0x03; |
386 | break; |
387 | |
388 | /* I2COUT Register */ |
389 | case 0x00b10: |
390 | eeprom24c0x_write(val & 0x02, val & 0x01); |
391 | s->i2cout = val; |
392 | break; |
393 | |
394 | /* I2CSEL Register */ |
395 | case 0x00b18: |
396 | s->i2csel = val & 0x01; |
397 | break; |
398 | |
399 | default: |
400 | #if 0 |
401 | printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx"%08x" "\n", |
402 | addr); |
403 | #endif |
404 | break; |
405 | } |
406 | } |
407 | |
408 | static const MemoryRegionOps malta_fpga_ops = { |
409 | .read = malta_fpga_read, |
410 | .write = malta_fpga_write, |
411 | .endianness = DEVICE_NATIVE_ENDIAN, |
412 | }; |
413 | |
414 | static void malta_fpga_reset(void *opaque) |
415 | { |
416 | MaltaFPGAState *s = opaque; |
417 | |
418 | s->leds = 0x00; |
419 | s->brk = 0x0a; |
420 | s->gpout = 0x00; |
421 | s->i2cin = 0x3; |
422 | s->i2coe = 0x0; |
423 | s->i2cout = 0x3; |
424 | s->i2csel = 0x1; |
425 | |
426 | s->display_text[8] = '\0'; |
427 | snprintf(s->display_text, 9, " "); |
428 | } |
429 | |
430 | static void malta_fpga_led_init(CharDriverState *chr) |
431 | { |
432 | qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n"); |
433 | qemu_chr_fe_printf(chr, "+--------+\r\n"); |
434 | qemu_chr_fe_printf(chr, "+ +\r\n"); |
435 | qemu_chr_fe_printf(chr, "+--------+\r\n"); |
436 | qemu_chr_fe_printf(chr, "\n"); |
437 | qemu_chr_fe_printf(chr, "Malta ASCII\r\n"); |
438 | qemu_chr_fe_printf(chr, "+--------+\r\n"); |
439 | qemu_chr_fe_printf(chr, "+ +\r\n"); |
440 | qemu_chr_fe_printf(chr, "+--------+\r\n"); |
441 | } |
442 | |
443 | static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, |
444 | target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr) |
445 | { |
446 | MaltaFPGAState *s; |
447 | |
448 | s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState)); |
449 | |
450 | memory_region_init_io(&s->iomem, &malta_fpga_ops, s, |
451 | "malta-fpga", 0x100000); |
452 | memory_region_init_alias(&s->iomem_lo, "malta-fpga", |
453 | &s->iomem, 0, 0x900); |
454 | memory_region_init_alias(&s->iomem_hi, "malta-fpga", |
455 | &s->iomem, 0xa00, 0x10000-0xa00); |
456 | |
457 | memory_region_add_subregion(address_space, base, &s->iomem_lo); |
458 | memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); |
459 | |
460 | s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init); |
461 | |
462 | s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, |
463 | 230400, uart_chr, DEVICE_NATIVE_ENDIAN); |
464 | |
465 | malta_fpga_reset(s); |
466 | qemu_register_reset(malta_fpga_reset, s); |
467 | |
468 | return s; |
469 | } |
470 | |
471 | /* Network support */ |
472 | static void network_init(void) |
473 | { |
474 | int i; |
475 | |
476 | for(i = 0; i < nb_nics; i++) { |
477 | NICInfo *nd = &nd_table[i]; |
478 | const char *default_devaddr = NULL((void*)0); |
479 | |
480 | if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) |
481 | /* The malta board has a PCNet card using PCI SLOT 11 */ |
482 | default_devaddr = "0b"; |
483 | |
484 | pci_nic_init_nofail(nd, "pcnet", default_devaddr); |
485 | } |
486 | } |
487 | |
488 | /* ROM and pseudo bootloader |
489 | |
490 | The following code implements a very very simple bootloader. It first |
491 | loads the registers a0 to a3 to the values expected by the OS, and |
492 | then jump at the kernel address. |
493 | |
494 | The bootloader should pass the locations of the kernel arguments and |
495 | environment variables tables. Those tables contain the 32-bit address |
496 | of NULL terminated strings. The environment variables table should be |
497 | terminated by a NULL address. |
498 | |
499 | For a simpler implementation, the number of kernel arguments is fixed |
500 | to two (the name of the kernel and the command line), and the two |
501 | tables are actually the same one. |
502 | |
503 | The registers a0 to a3 should contain the following values: |
504 | a0 - number of kernel arguments |
505 | a1 - 32-bit address of the kernel arguments table |
506 | a2 - 32-bit address of the environment variables table |
507 | a3 - RAM size in bytes |
508 | */ |
509 | |
510 | static void write_bootloader (CPUMIPSState *env, uint8_t *base, |
511 | int64_t kernel_entry) |
512 | { |
513 | uint32_t *p; |
514 | |
515 | /* Small bootloader */ |
516 | p = (uint32_t *)base; |
517 | stl_raw(p++, 0x0bf00160)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0bf00160); /* j 0x1fc00580 */ |
518 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
519 | |
520 | /* YAMON service vector */ |
521 | stl_raw(base + 0x500, 0xbfc00580)stl_le_p((uint8_t *)(intptr_t)((base + 0x500)), 0xbfc00580); /* start: */ |
522 | stl_raw(base + 0x504, 0xbfc0083c)stl_le_p((uint8_t *)(intptr_t)((base + 0x504)), 0xbfc0083c); /* print_count: */ |
523 | stl_raw(base + 0x520, 0xbfc00580)stl_le_p((uint8_t *)(intptr_t)((base + 0x520)), 0xbfc00580); /* start: */ |
524 | stl_raw(base + 0x52c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x52c)), 0xbfc00800); /* flush_cache: */ |
525 | stl_raw(base + 0x534, 0xbfc00808)stl_le_p((uint8_t *)(intptr_t)((base + 0x534)), 0xbfc00808); /* print: */ |
526 | stl_raw(base + 0x538, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x538)), 0xbfc00800); /* reg_cpu_isr: */ |
527 | stl_raw(base + 0x53c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x53c)), 0xbfc00800); /* unred_cpu_isr: */ |
528 | stl_raw(base + 0x540, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x540)), 0xbfc00800); /* reg_ic_isr: */ |
529 | stl_raw(base + 0x544, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x544)), 0xbfc00800); /* unred_ic_isr: */ |
530 | stl_raw(base + 0x548, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x548)), 0xbfc00800); /* reg_esr: */ |
531 | stl_raw(base + 0x54c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x54c)), 0xbfc00800); /* unreg_esr: */ |
532 | stl_raw(base + 0x550, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x550)), 0xbfc00800); /* getchar: */ |
533 | stl_raw(base + 0x554, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x554)), 0xbfc00800); /* syscon_read: */ |
534 | |
535 | |
536 | /* Second part of the bootloader */ |
537 | p = (uint32_t *) (base + 0x580); |
538 | stl_raw(p++, 0x24040002)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x24040002); /* addiu a0, zero, 2 */ |
539 | stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c1d0000 | (((0x80002000l - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */ |
540 | stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x37bd0000 | ((0x80002000l - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */ |
541 | stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c050000 | ((0x80002000l >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */ |
542 | stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34a50000 | (0x80002000l & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */ |
543 | stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c060000 | (((0x80002000l + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */ |
544 | stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34c60000 | ((0x80002000l + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */ |
545 | stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c070000 | (loaderparams .ram_size >> 16)); /* lui a3, high(ram_size) */ |
546 | stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34e70000 | (loaderparams .ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */ |
547 | |
548 | /* Load BAR registers as done by YAMON */ |
549 | stl_raw(p++, 0x3c09b400)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c09b400); /* lui t1, 0xb400 */ |
550 | |
551 | #ifdef TARGET_WORDS_BIGENDIAN |
552 | stl_raw(p++, 0x3c08df00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08df00); /* lui t0, 0xdf00 */ |
553 | #else |
554 | stl_raw(p++, 0x340800df)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800df); /* ori t0, r0, 0x00df */ |
555 | #endif |
556 | stl_raw(p++, 0xad280068)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280068); /* sw t0, 0x0068(t1) */ |
557 | |
558 | stl_raw(p++, 0x3c09bbe0)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c09bbe0); /* lui t1, 0xbbe0 */ |
559 | |
560 | #ifdef TARGET_WORDS_BIGENDIAN |
561 | stl_raw(p++, 0x3c08c000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08c000); /* lui t0, 0xc000 */ |
562 | #else |
563 | stl_raw(p++, 0x340800c0)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800c0); /* ori t0, r0, 0x00c0 */ |
564 | #endif |
565 | stl_raw(p++, 0xad280048)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280048); /* sw t0, 0x0048(t1) */ |
566 | #ifdef TARGET_WORDS_BIGENDIAN |
567 | stl_raw(p++, 0x3c084000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c084000); /* lui t0, 0x4000 */ |
568 | #else |
569 | stl_raw(p++, 0x34080040)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34080040); /* ori t0, r0, 0x0040 */ |
570 | #endif |
571 | stl_raw(p++, 0xad280050)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280050); /* sw t0, 0x0050(t1) */ |
572 | |
573 | #ifdef TARGET_WORDS_BIGENDIAN |
574 | stl_raw(p++, 0x3c088000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c088000); /* lui t0, 0x8000 */ |
575 | #else |
576 | stl_raw(p++, 0x34080080)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34080080); /* ori t0, r0, 0x0080 */ |
577 | #endif |
578 | stl_raw(p++, 0xad280058)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280058); /* sw t0, 0x0058(t1) */ |
579 | #ifdef TARGET_WORDS_BIGENDIAN |
580 | stl_raw(p++, 0x3c083f00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c083f00); /* lui t0, 0x3f00 */ |
581 | #else |
582 | stl_raw(p++, 0x3408003f)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3408003f); /* ori t0, r0, 0x003f */ |
583 | #endif |
584 | stl_raw(p++, 0xad280060)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280060); /* sw t0, 0x0060(t1) */ |
585 | |
586 | #ifdef TARGET_WORDS_BIGENDIAN |
587 | stl_raw(p++, 0x3c08c100)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08c100); /* lui t0, 0xc100 */ |
588 | #else |
589 | stl_raw(p++, 0x340800c1)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800c1); /* ori t0, r0, 0x00c1 */ |
590 | #endif |
591 | stl_raw(p++, 0xad280080)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280080); /* sw t0, 0x0080(t1) */ |
592 | #ifdef TARGET_WORDS_BIGENDIAN |
593 | stl_raw(p++, 0x3c085e00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c085e00); /* lui t0, 0x5e00 */ |
594 | #else |
595 | stl_raw(p++, 0x3408005e)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3408005e); /* ori t0, r0, 0x005e */ |
596 | #endif |
597 | stl_raw(p++, 0xad280088)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280088); /* sw t0, 0x0088(t1) */ |
598 | |
599 | /* Jump to kernel code */ |
600 | stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ |
601 | stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ |
602 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ |
603 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
604 | |
605 | /* YAMON subroutines */ |
606 | p = (uint32_t *) (base + 0x800); |
607 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ |
608 | stl_raw(p++, 0x24020000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x24020000); /* li v0,0 */ |
609 | /* 808 YAMON print */ |
610 | stl_raw(p++, 0x03e06821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e06821); /* move t5,ra */ |
611 | stl_raw(p++, 0x00805821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00805821); /* move t3,a0 */ |
612 | stl_raw(p++, 0x00a05021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00a05021); /* move t2,a1 */ |
613 | stl_raw(p++, 0x91440000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91440000); /* lbu a0,0(t2) */ |
614 | stl_raw(p++, 0x254a0001)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x254a0001); /* addiu t2,t2,1 */ |
615 | stl_raw(p++, 0x10800005)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x10800005); /* beqz a0,834 */ |
616 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
617 | stl_raw(p++, 0x0ff0021c)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0ff0021c); /* jal 870 */ |
618 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
619 | stl_raw(p++, 0x08000205)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x08000205); /* j 814 */ |
620 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
621 | stl_raw(p++, 0x01a00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01a00008); /* jr t5 */ |
622 | stl_raw(p++, 0x01602021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01602021); /* move a0,t3 */ |
623 | /* 0x83c YAMON print_count */ |
624 | stl_raw(p++, 0x03e06821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e06821); /* move t5,ra */ |
625 | stl_raw(p++, 0x00805821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00805821); /* move t3,a0 */ |
626 | stl_raw(p++, 0x00a05021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00a05021); /* move t2,a1 */ |
627 | stl_raw(p++, 0x00c06021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00c06021); /* move t4,a2 */ |
628 | stl_raw(p++, 0x91440000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91440000); /* lbu a0,0(t2) */ |
629 | stl_raw(p++, 0x0ff0021c)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0ff0021c); /* jal 870 */ |
630 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
631 | stl_raw(p++, 0x254a0001)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x254a0001); /* addiu t2,t2,1 */ |
632 | stl_raw(p++, 0x258cffff)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x258cffff); /* addiu t4,t4,-1 */ |
633 | stl_raw(p++, 0x1580fffa)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x1580fffa); /* bnez t4,84c */ |
634 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
635 | stl_raw(p++, 0x01a00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01a00008); /* jr t5 */ |
636 | stl_raw(p++, 0x01602021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01602021); /* move a0,t3 */ |
637 | /* 0x870 */ |
638 | stl_raw(p++, 0x3c08b800)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08b800); /* lui t0,0xb400 */ |
639 | stl_raw(p++, 0x350803f8)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x350803f8); /* ori t0,t0,0x3f8 */ |
640 | stl_raw(p++, 0x91090005)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91090005); /* lbu t1,5(t0) */ |
641 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
642 | stl_raw(p++, 0x31290040)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x31290040); /* andi t1,t1,0x40 */ |
643 | stl_raw(p++, 0x1120fffc)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x1120fffc); /* beqz t1,878 <outch+0x8> */ |
644 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ |
645 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ |
646 | stl_raw(p++, 0xa1040000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xa1040000); /* sb a0,0(t0) */ |
647 | |
648 | } |
649 | |
650 | static void GCC_FMT_ATTR(3, 4)__attribute__((format(printf, 3, 4))) prom_set(uint32_t* prom_buf, int index, |
651 | const char *string, ...) |
652 | { |
653 | va_list ap; |
654 | int32_t table_addr; |
655 | |
656 | if (index >= ENVP_NB_ENTRIES16) |
657 | return; |
658 | |
659 | if (string == NULL((void*)0)) { |
660 | prom_buf[index] = 0; |
661 | return; |
662 | } |
663 | |
664 | table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES16 + index * ENVP_ENTRY_SIZE256; |
665 | prom_buf[index] = tswap32(ENVP_ADDR0x80002000l + table_addr); |
666 | |
667 | va_start(ap, string)__builtin_va_start(ap, string); |
668 | vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE256, string, ap); |
669 | va_end(ap)__builtin_va_end(ap); |
670 | } |
671 | |
672 | /* Kernel */ |
673 | static int64_t load_kernel (void) |
674 | { |
675 | int64_t kernel_entry, kernel_high; |
676 | long initrd_size; |
677 | ram_addr_t initrd_offset; |
678 | int big_endian; |
679 | uint32_t *prom_buf; |
680 | long prom_size; |
681 | int prom_index = 0; |
682 | |
683 | #ifdef TARGET_WORDS_BIGENDIAN |
684 | big_endian = 1; |
685 | #else |
686 | big_endian = 0; |
687 | #endif |
688 | |
689 | if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL((void*)0), |
690 | (uint64_t *)&kernel_entry, NULL((void*)0), (uint64_t *)&kernel_high, |
691 | big_endian, ELF_MACHINE8, 1) < 0) { |
692 | fprintf(stderrstderr, "qemu: could not load kernel '%s'\n", |
693 | loaderparams.kernel_filename); |
694 | exit(1); |
695 | } |
696 | |
697 | /* load initrd */ |
698 | initrd_size = 0; |
699 | initrd_offset = 0; |
700 | if (loaderparams.initrd_filename) { |
701 | initrd_size = get_image_size (loaderparams.initrd_filename); |
702 | if (initrd_size > 0) { |
703 | initrd_offset = (kernel_high + ~TARGET_PAGE_MASK~((1 << 12) - 1)) & TARGET_PAGE_MASK~((1 << 12) - 1); |
704 | if (initrd_offset + initrd_size > ram_size) { |
705 | fprintf(stderrstderr, |
706 | "qemu: memory too small for initial ram disk '%s'\n", |
707 | loaderparams.initrd_filename); |
708 | exit(1); |
709 | } |
710 | initrd_size = load_image_targphys(loaderparams.initrd_filename, |
711 | initrd_offset, |
712 | ram_size - initrd_offset); |
713 | } |
714 | if (initrd_size == (target_ulong) -1) { |
715 | fprintf(stderrstderr, "qemu: could not load initial ram disk '%s'\n", |
716 | loaderparams.initrd_filename); |
717 | exit(1); |
718 | } |
719 | } |
720 | |
721 | /* Setup prom parameters. */ |
722 | prom_size = ENVP_NB_ENTRIES16 * (sizeof(int32_t) + ENVP_ENTRY_SIZE256); |
723 | prom_buf = g_malloc(prom_size); |
724 | |
725 | prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); |
726 | if (initrd_size > 0) { |
727 | prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64"l" "x" " rd_size=%li %s", |
728 | cpu_mips_phys_to_kseg0(NULL((void*)0), initrd_offset), initrd_size, |
729 | loaderparams.kernel_cmdline); |
730 | } else { |
731 | prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); |
732 | } |
733 | |
734 | prom_set(prom_buf, prom_index++, "memsize"); |
735 | prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size); |
736 | prom_set(prom_buf, prom_index++, "modetty0"); |
737 | prom_set(prom_buf, prom_index++, "38400n8r"); |
738 | prom_set(prom_buf, prom_index++, NULL((void*)0)); |
739 | |
740 | rom_add_blob_fixed("prom", prom_buf, prom_size,rom_add_blob("prom", prom_buf, prom_size, cpu_mips_kseg0_to_phys (((void*)0), 0x80002000l)) |
741 | cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR))rom_add_blob("prom", prom_buf, prom_size, cpu_mips_kseg0_to_phys (((void*)0), 0x80002000l)); |
742 | |
743 | return kernel_entry; |
744 | } |
745 | |
746 | static void malta_mips_config(CPUMIPSState *env) |
747 | { |
748 | env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE10) | |
749 | ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC0); |
750 | } |
751 | |
752 | static void main_cpu_reset(void *opaque) |
753 | { |
754 | MIPSCPU *cpu = opaque; |
755 | CPUMIPSState *env = &cpu->env; |
756 | |
757 | cpu_reset(CPU(cpu)((CPUState *)object_dynamic_cast_assert(((Object *)((cpu))), ( "cpu")))); |
758 | |
759 | /* The bootloader does not need to be rewritten as it is located in a |
760 | read only location. The kernel location and the arguments table |
761 | location does not change. */ |
762 | if (loaderparams.kernel_filename) { |
763 | env->CP0_Status &= ~((1 << CP0St_BEV22) | (1 << CP0St_ERL2)); |
764 | } |
765 | |
766 | malta_mips_config(env); |
767 | } |
768 | |
769 | static void cpu_request_exit(void *opaque, int irq, int level) |
770 | { |
771 | CPUMIPSState *env = cpu_single_envtls__cpu_single_env; |
772 | |
773 | if (env && level) { |
774 | cpu_exit(env); |
775 | } |
776 | } |
777 | |
778 | static |
779 | void mips_malta_init (ram_addr_t ram_size, |
780 | const char *boot_device, |
781 | const char *kernel_filename, const char *kernel_cmdline, |
782 | const char *initrd_filename, const char *cpu_model) |
783 | { |
784 | char *filename; |
785 | pflash_t *fl; |
786 | MemoryRegion *system_memory = get_system_memory(); |
787 | MemoryRegion *ram = g_new(MemoryRegion, 1)((MemoryRegion *) g_malloc_n ((1), sizeof (MemoryRegion))); |
788 | MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1)((MemoryRegion *) g_malloc_n ((1), sizeof (MemoryRegion))); |
789 | target_long bios_size = FLASH_SIZE0x400000; |
790 | int64_t kernel_entry; |
791 | PCIBus *pci_bus; |
792 | ISABus *isa_bus; |
793 | MIPSCPU *cpu; |
794 | CPUMIPSState *env; |
795 | qemu_irq *isa_irq; |
796 | qemu_irq *cpu_exit_irq; |
797 | int piix4_devfn; |
798 | i2c_bus *smbus; |
799 | int i; |
800 | DriveInfo *dinfo; |
801 | DriveInfo *hd[MAX_IDE_BUS2 * MAX_IDE_DEVS2]; |
802 | DriveInfo *fd[MAX_FD2]; |
803 | int fl_idx = 0; |
804 | int fl_sectors = bios_size >> 16; |
805 | int be; |
806 | |
807 | DeviceState *dev = qdev_create(NULL((void*)0), "mips-malta"); |
808 | MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev)( __extension__ ( { char __attribute__((unused)) offset_must_be_zero [ -__builtin_offsetof(MaltaState, busdev.qdev)]; ({ const typeof (((MaltaState *) 0)->busdev.qdev) *__mptr = (dev); (MaltaState *) ((char *) __mptr - __builtin_offsetof(MaltaState, busdev. qdev));});})); |
809 | |
810 | qdev_init_nofail(dev); |
811 | |
812 | /* Make sure the first 3 serial ports are associated with a device. */ |
813 | for(i = 0; i < 3; i++) { |
814 | if (!serial_hds[i]) { |
815 | char label[32]; |
816 | snprintf(label, sizeof(label), "serial%d", i); |
817 | serial_hds[i] = qemu_chr_new(label, "null", NULL((void*)0)); |
818 | } |
819 | } |
820 | |
821 | /* init CPUs */ |
822 | if (cpu_model == NULL((void*)0)) { |
823 | #ifdef TARGET_MIPS64 |
824 | cpu_model = "20Kc"; |
825 | #else |
826 | cpu_model = "24Kf"; |
827 | #endif |
828 | } |
829 | |
830 | for (i = 0; i < smp_cpus; i++) { |
831 | cpu = cpu_mips_init(cpu_model); |
832 | if (cpu == NULL((void*)0)) { |
833 | fprintf(stderrstderr, "Unable to find CPU definition\n"); |
834 | exit(1); |
835 | } |
836 | env = &cpu->env; |
837 | |
838 | /* Init internal devices */ |
839 | cpu_mips_irq_init_cpu(env); |
840 | cpu_mips_clock_init(env); |
841 | qemu_register_reset(main_cpu_reset, cpu); |
842 | } |
843 | env = first_cpu; |
844 | |
845 | /* allocate RAM */ |
846 | if (ram_size > (256 << 20)) { |
847 | fprintf(stderrstderr, |
848 | "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n", |
849 | ((unsigned int)ram_size / (1 << 20))); |
850 | exit(1); |
851 | } |
852 | memory_region_init_ram(ram, "mips_malta.ram", ram_size); |
853 | vmstate_register_ram_global(ram); |
854 | memory_region_add_subregion(system_memory, 0, ram); |
855 | |
856 | #ifdef TARGET_WORDS_BIGENDIAN |
857 | be = 1; |
858 | #else |
859 | be = 0; |
860 | #endif |
861 | /* FPGA */ |
862 | malta_fpga_init(system_memory, FPGA_ADDRESS0x1f000000ULL, env->irq[2], serial_hds[2]); |
863 | |
864 | /* Load firmware in flash / BIOS. */ |
865 | dinfo = drive_get(IF_PFLASH, 0, fl_idx); |
866 | #ifdef DEBUG_BOARD_INIT |
867 | if (dinfo) { |
868 | printf("Register parallel flash %d size " TARGET_FMT_lx"%08x" " at " |
869 | "addr %08llx '%s' %x\n", |
870 | fl_idx, bios_size, FLASH_ADDRESS0x1e000000ULL, |
871 | bdrv_get_device_name(dinfo->bdrv), fl_sectors); |
872 | } |
873 | #endif |
874 | fl = pflash_cfi01_register(FLASH_ADDRESS0x1e000000ULL, NULL((void*)0), "mips_malta.bios", |
875 | BIOS_SIZE(4 * 1024 * 1024), dinfo ? dinfo->bdrv : NULL((void*)0), |
876 | 65536, fl_sectors, |
877 | 4, 0x0000, 0x0000, 0x0000, 0x0000, be); |
878 | bios = pflash_cfi01_get_memory(fl); |
879 | fl_idx++; |
Value stored to 'fl_idx' is never read | |
880 | if (kernel_filename) { |
881 | /* Write a small bootloader to the flash location. */ |
882 | loaderparams.ram_size = ram_size; |
883 | loaderparams.kernel_filename = kernel_filename; |
884 | loaderparams.kernel_cmdline = kernel_cmdline; |
885 | loaderparams.initrd_filename = initrd_filename; |
886 | kernel_entry = load_kernel(); |
887 | write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry); |
888 | } else { |
889 | /* Load firmware from flash. */ |
890 | if (!dinfo) { |
891 | /* Load a BIOS image. */ |
892 | if (bios_name == NULL((void*)0)) { |
893 | bios_name = BIOS_FILENAME"mipsel_bios.bin"; |
894 | } |
895 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS0, bios_name); |
896 | if (filename) { |
897 | bios_size = load_image_targphys(filename, FLASH_ADDRESS0x1e000000ULL, |
898 | BIOS_SIZE(4 * 1024 * 1024)); |
899 | g_free(filename); |
900 | } else { |
901 | bios_size = -1; |
902 | } |
903 | if ((bios_size < 0 || bios_size > BIOS_SIZE(4 * 1024 * 1024)) && !kernel_filename) { |
904 | fprintf(stderrstderr, |
905 | "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n", |
906 | bios_name); |
907 | exit(1); |
908 | } |
909 | } |
910 | /* In little endian mode the 32bit words in the bios are swapped, |
911 | a neat trick which allows bi-endian firmware. */ |
912 | #ifndef TARGET_WORDS_BIGENDIAN |
913 | { |
914 | uint32_t *addr = memory_region_get_ram_ptr(bios); |
915 | uint32_t *end = addr + bios_size; |
916 | while (addr < end) { |
917 | bswap32s(addr); |
918 | addr++; |
919 | } |
920 | } |
921 | #endif |
922 | } |
923 | |
924 | /* Map the BIOS at a 2nd physical location, as on the real board. */ |
925 | memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE(4 * 1024 * 1024)); |
926 | memory_region_add_subregion(system_memory, RESET_ADDRESS0x1fc00000ULL, bios_alias); |
927 | |
928 | /* Board ID = 0x420 (Malta Board with CoreLV) |
929 | XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should |
930 | map to the board ID. */ |
931 | stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420)stl_le_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420); |
932 | |
933 | /* Init internal devices */ |
934 | cpu_mips_irq_init_cpu(env); |
935 | cpu_mips_clock_init(env); |
936 | |
937 | /* |
938 | * We have a circular dependency problem: pci_bus depends on isa_irq, |
939 | * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends |
940 | * on piix4, and piix4 depends on pci_bus. To stop the cycle we have |
941 | * qemu_irq_proxy() adds an extra bit of indirection, allowing us |
942 | * to resolve the isa_irq -> i8259 dependency after i8259 is initialized. |
943 | */ |
944 | isa_irq = qemu_irq_proxy(&s->i8259, 16); |
945 | |
946 | /* Northbridge */ |
947 | pci_bus = gt64120_register(isa_irq); |
948 | |
949 | /* Southbridge */ |
950 | ide_drive_get(hd, MAX_IDE_BUS2); |
951 | |
952 | piix4_devfn = piix4_init(pci_bus, &isa_bus, 80); |
953 | |
954 | /* Interrupt controller */ |
955 | /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */ |
956 | s->i8259 = i8259_init(isa_bus, env->irq[2]); |
957 | |
958 | isa_bus_irqs(isa_bus, s->i8259); |
959 | pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1); |
960 | pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci"); |
961 | smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, |
962 | isa_get_irq(NULL((void*)0), 9), NULL((void*)0), 0, NULL((void*)0)); |
963 | /* TODO: Populate SPD eeprom data. */ |
964 | smbus_eeprom_init(smbus, 8, NULL((void*)0), 0); |
965 | pit = pit_init(isa_bus, 0x40, 0, NULL((void*)0)); |
966 | cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL((void*)0), 1); |
967 | DMA_init(0, cpu_exit_irq); |
968 | |
969 | /* Super I/O */ |
970 | isa_create_simple(isa_bus, "i8042"); |
971 | |
972 | rtc_init(isa_bus, 2000, NULL((void*)0)); |
973 | serial_isa_init(isa_bus, 0, serial_hds[0]); |
974 | serial_isa_init(isa_bus, 1, serial_hds[1]); |
975 | if (parallel_hds[0]) |
976 | parallel_init(isa_bus, 0, parallel_hds[0]); |
977 | for(i = 0; i < MAX_FD2; i++) { |
978 | fd[i] = drive_get(IF_FLOPPY, 0, i); |
979 | } |
980 | fdctrl_init_isa(isa_bus, fd); |
981 | |
982 | /* Sound card */ |
983 | audio_init(isa_bus, pci_bus); |
984 | |
985 | /* Network card */ |
986 | network_init(); |
987 | |
988 | /* Optional PCI video card */ |
989 | if (cirrus_vga_enabled(vga_interface_type == VGA_CIRRUS)) { |
990 | pci_cirrus_vga_init(pci_bus); |
991 | } else if (vmsvga_enabled(vga_interface_type == VGA_VMWARE)) { |
992 | pci_vmsvga_init(pci_bus); |
993 | } else if (std_vga_enabled(vga_interface_type == VGA_STD)) { |
994 | pci_vga_init(pci_bus); |
995 | } |
996 | } |
997 | |
998 | static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev) |
999 | { |
1000 | return 0; |
1001 | } |
1002 | |
1003 | static void mips_malta_class_init(ObjectClass *klass, void *data) |
1004 | { |
1005 | SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass)((SysBusDeviceClass *)object_class_dynamic_cast_assert(((ObjectClass *)((klass))), ("sys-bus-device"))); |
1006 | |
1007 | k->init = mips_malta_sysbus_device_init; |
1008 | } |
1009 | |
1010 | static TypeInfo mips_malta_device = { |
1011 | .name = "mips-malta", |
1012 | .parent = TYPE_SYS_BUS_DEVICE"sys-bus-device", |
1013 | .instance_size = sizeof(MaltaState), |
1014 | .class_init = mips_malta_class_init, |
1015 | }; |
1016 | |
1017 | static QEMUMachine mips_malta_machine = { |
1018 | .name = "malta", |
1019 | .desc = "MIPS Malta Core LV", |
1020 | .init = mips_malta_init, |
1021 | .max_cpus = 16, |
1022 | .is_default = 1, |
1023 | }; |
1024 | |
1025 | static void mips_malta_register_types(void) |
1026 | { |
1027 | type_register_static(&mips_malta_device); |
1028 | } |
1029 | |
1030 | static void mips_malta_machine_init(void) |
1031 | { |
1032 | qemu_register_machine(&mips_malta_machine); |
1033 | } |
1034 | |
1035 | type_init(mips_malta_register_types)static void __attribute__((constructor)) do_qemu_init_mips_malta_register_types (void) { register_module_init(mips_malta_register_types, MODULE_INIT_QOM ); } |
1036 | machine_init(mips_malta_machine_init)static void __attribute__((constructor)) do_qemu_init_mips_malta_machine_init (void) { register_module_init(mips_malta_machine_init, MODULE_INIT_MACHINE ); }; |