| File: | hw/mips/../mips_malta.c | 
| Location: | line 879, column 5 | 
| Description: | Value stored to 'fl_idx' is never read | 
| 1 | /* | 
| 2 | * QEMU Malta board support | 
| 3 | * | 
| 4 | * Copyright (c) 2006 Aurelien Jarno | 
| 5 | * | 
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
| 7 | * of this software and associated documentation files (the "Software"), to deal | 
| 8 | * in the Software without restriction, including without limitation the rights | 
| 9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
| 10 | * copies of the Software, and to permit persons to whom the Software is | 
| 11 | * furnished to do so, subject to the following conditions: | 
| 12 | * | 
| 13 | * The above copyright notice and this permission notice shall be included in | 
| 14 | * all copies or substantial portions of the Software. | 
| 15 | * | 
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
| 19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
| 22 | * THE SOFTWARE. | 
| 23 | */ | 
| 24 | |
| 25 | #include "hw.h" | 
| 26 | #include "pc.h" | 
| 27 | #include "fdc.h" | 
| 28 | #include "net.h" | 
| 29 | #include "boards.h" | 
| 30 | #include "smbus.h" | 
| 31 | #include "block.h" | 
| 32 | #include "flash.h" | 
| 33 | #include "mips.h" | 
| 34 | #include "mips_cpudevs.h" | 
| 35 | #include "pci.h" | 
| 36 | #include "vmware_vga.h" | 
| 37 | #include "qemu-char.h" | 
| 38 | #include "sysemu.h" | 
| 39 | #include "arch_init.h" | 
| 40 | #include "boards.h" | 
| 41 | #include "qemu-log.h" | 
| 42 | #include "mips-bios.h" | 
| 43 | #include "ide.h" | 
| 44 | #include "loader.h" | 
| 45 | #include "elf.h" | 
| 46 | #include "mc146818rtc.h" | 
| 47 | #include "i8254.h" | 
| 48 | #include "blockdev.h" | 
| 49 | #include "exec-memory.h" | 
| 50 | #include "sysbus.h" /* SysBusDevice */ | 
| 51 | |
| 52 | //#define DEBUG_BOARD_INIT | 
| 53 | |
| 54 | #define ENVP_ADDR0x80002000l 0x80002000l | 
| 55 | #define ENVP_NB_ENTRIES16 16 | 
| 56 | #define ENVP_ENTRY_SIZE256 256 | 
| 57 | |
| 58 | /* Hardware addresses */ | 
| 59 | #define FLASH_ADDRESS0x1e000000ULL 0x1e000000ULL | 
| 60 | #define FPGA_ADDRESS0x1f000000ULL 0x1f000000ULL | 
| 61 | #define RESET_ADDRESS0x1fc00000ULL 0x1fc00000ULL | 
| 62 | |
| 63 | #define FLASH_SIZE0x400000 0x400000 | 
| 64 | |
| 65 | #define MAX_IDE_BUS2 2 | 
| 66 | |
| 67 | typedef struct { | 
| 68 | MemoryRegion iomem; | 
| 69 | MemoryRegion iomem_lo; /* 0 - 0x900 */ | 
| 70 | MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ | 
| 71 | uint32_t leds; | 
| 72 | uint32_t brk; | 
| 73 | uint32_t gpout; | 
| 74 | uint32_t i2cin; | 
| 75 | uint32_t i2coe; | 
| 76 | uint32_t i2cout; | 
| 77 | uint32_t i2csel; | 
| 78 | CharDriverState *display; | 
| 79 | char display_text[9]; | 
| 80 | SerialState *uart; | 
| 81 | } MaltaFPGAState; | 
| 82 | |
| 83 | typedef struct { | 
| 84 | SysBusDevice busdev; | 
| 85 | qemu_irq *i8259; | 
| 86 | } MaltaState; | 
| 87 | |
| 88 | static ISADevice *pit; | 
| 89 | |
| 90 | static struct _loaderparams { | 
| 91 | int ram_size; | 
| 92 | const char *kernel_filename; | 
| 93 | const char *kernel_cmdline; | 
| 94 | const char *initrd_filename; | 
| 95 | } loaderparams; | 
| 96 | |
| 97 | /* Malta FPGA */ | 
| 98 | static void malta_fpga_update_display(void *opaque) | 
| 99 | { | 
| 100 | char leds_text[9]; | 
| 101 | int i; | 
| 102 | MaltaFPGAState *s = opaque; | 
| 103 | |
| 104 | for (i = 7 ; i >= 0 ; i--) { | 
| 105 | if (s->leds & (1 << i)) | 
| 106 | leds_text[i] = '#'; | 
| 107 | else | 
| 108 | leds_text[i] = ' '; | 
| 109 | } | 
| 110 | leds_text[8] = '\0'; | 
| 111 | |
| 112 | qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text); | 
| 113 | qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text); | 
| 114 | } | 
| 115 | |
| 116 | /* | 
| 117 | * EEPROM 24C01 / 24C02 emulation. | 
| 118 | * | 
| 119 | * Emulation for serial EEPROMs: | 
| 120 | * 24C01 - 1024 bit (128 x 8) | 
| 121 | * 24C02 - 2048 bit (256 x 8) | 
| 122 | * | 
| 123 | * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. | 
| 124 | */ | 
| 125 | |
| 126 | //~ #define DEBUG | 
| 127 | |
| 128 | #if defined(DEBUG) | 
| 129 | # define logout(fmt, ...)((void)0) fprintf(stderrstderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) | 
| 130 | #else | 
| 131 | # define logout(fmt, ...)((void)0) ((void)0) | 
| 132 | #endif | 
| 133 | |
| 134 | struct _eeprom24c0x_t { | 
| 135 | uint8_t tick; | 
| 136 | uint8_t address; | 
| 137 | uint8_t command; | 
| 138 | uint8_t ack; | 
| 139 | uint8_t scl; | 
| 140 | uint8_t sda; | 
| 141 | uint8_t data; | 
| 142 | //~ uint16_t size; | 
| 143 | uint8_t contents[256]; | 
| 144 | }; | 
| 145 | |
| 146 | typedef struct _eeprom24c0x_t eeprom24c0x_t; | 
| 147 | |
| 148 | static eeprom24c0x_t eeprom = { | 
| 149 | .contents = { | 
| 150 | /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00, | 
| 151 | /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01, | 
| 152 | /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00, | 
| 153 | /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40, | 
| 154 | /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00, | 
| 155 | /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 156 | /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 157 | /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0, | 
| 158 | /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 159 | /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 160 | /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 161 | /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 162 | /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 163 | /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 164 | /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | 
| 165 | /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4, | 
| 166 | }, | 
| 167 | }; | 
| 168 | |
| 169 | static uint8_t eeprom24c0x_read(void) | 
| 170 | { | 
| 171 | logout("%u: scl = %u, sda = %u, data = 0x%02x\n",((void)0) | 
| 172 | eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data)((void)0); | 
| 173 | return eeprom.sda; | 
| 174 | } | 
| 175 | |
| 176 | static void eeprom24c0x_write(int scl, int sda) | 
| 177 | { | 
| 178 | if (eeprom.scl && scl && (eeprom.sda != sda)) { | 
| 179 | logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",((void)0) | 
| 180 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start")((void)0); | 
| 181 | if (!sda) { | 
| 182 | eeprom.tick = 1; | 
| 183 | eeprom.command = 0; | 
| 184 | } | 
| 185 | } else if (eeprom.tick == 0 && !eeprom.ack) { | 
| 186 | /* Waiting for start. */ | 
| 187 | logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",((void)0) | 
| 188 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); | 
| 189 | } else if (!eeprom.scl && scl) { | 
| 190 | logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",((void)0) | 
| 191 | eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); | 
| 192 | if (eeprom.ack) { | 
| 193 | logout("\ti2c ack bit = 0\n")((void)0); | 
| 194 | sda = 0; | 
| 195 | eeprom.ack = 0; | 
| 196 | } else if (eeprom.sda == sda) { | 
| 197 | uint8_t bit = (sda != 0); | 
| 198 | logout("\ti2c bit = %d\n", bit)((void)0); | 
| 199 | if (eeprom.tick < 9) { | 
| 200 | eeprom.command <<= 1; | 
| 201 | eeprom.command += bit; | 
| 202 | eeprom.tick++; | 
| 203 | if (eeprom.tick == 9) { | 
| 204 | logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write")((void)0); | 
| 205 | eeprom.ack = 1; | 
| 206 | } | 
| 207 | } else if (eeprom.tick < 17) { | 
| 208 | if (eeprom.command & 1) { | 
| 209 | sda = ((eeprom.data & 0x80) != 0); | 
| 210 | } | 
| 211 | eeprom.address <<= 1; | 
| 212 | eeprom.address += bit; | 
| 213 | eeprom.tick++; | 
| 214 | eeprom.data <<= 1; | 
| 215 | if (eeprom.tick == 17) { | 
| 216 | eeprom.data = eeprom.contents[eeprom.address]; | 
| 217 | logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data)((void)0); | 
| 218 | eeprom.ack = 1; | 
| 219 | eeprom.tick = 0; | 
| 220 | } | 
| 221 | } else if (eeprom.tick >= 17) { | 
| 222 | sda = 0; | 
| 223 | } | 
| 224 | } else { | 
| 225 | logout("\tsda changed with raising scl\n")((void)0); | 
| 226 | } | 
| 227 | } else { | 
| 228 | logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda)((void)0); | 
| 229 | } | 
| 230 | eeprom.scl = scl; | 
| 231 | eeprom.sda = sda; | 
| 232 | } | 
| 233 | |
| 234 | static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr, | 
| 235 | unsigned size) | 
| 236 | { | 
| 237 | MaltaFPGAState *s = opaque; | 
| 238 | uint32_t val = 0; | 
| 239 | uint32_t saddr; | 
| 240 | |
| 241 | saddr = (addr & 0xfffff); | 
| 242 | |
| 243 | switch (saddr) { | 
| 244 | |
| 245 | /* SWITCH Register */ | 
| 246 | case 0x00200: | 
| 247 | val = 0x00000000; /* All switches closed */ | 
| 248 | break; | 
| 249 | |
| 250 | /* STATUS Register */ | 
| 251 | case 0x00208: | 
| 252 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 253 | val = 0x00000012; | 
| 254 | #else | 
| 255 | val = 0x00000010; | 
| 256 | #endif | 
| 257 | break; | 
| 258 | |
| 259 | /* JMPRS Register */ | 
| 260 | case 0x00210: | 
| 261 | val = 0x00; | 
| 262 | break; | 
| 263 | |
| 264 | /* LEDBAR Register */ | 
| 265 | case 0x00408: | 
| 266 | val = s->leds; | 
| 267 | break; | 
| 268 | |
| 269 | /* BRKRES Register */ | 
| 270 | case 0x00508: | 
| 271 | val = s->brk; | 
| 272 | break; | 
| 273 | |
| 274 | /* UART Registers are handled directly by the serial device */ | 
| 275 | |
| 276 | /* GPOUT Register */ | 
| 277 | case 0x00a00: | 
| 278 | val = s->gpout; | 
| 279 | break; | 
| 280 | |
| 281 | /* XXX: implement a real I2C controller */ | 
| 282 | |
| 283 | /* GPINP Register */ | 
| 284 | case 0x00a08: | 
| 285 | /* IN = OUT until a real I2C control is implemented */ | 
| 286 | if (s->i2csel) | 
| 287 | val = s->i2cout; | 
| 288 | else | 
| 289 | val = 0x00; | 
| 290 | break; | 
| 291 | |
| 292 | /* I2CINP Register */ | 
| 293 | case 0x00b00: | 
| 294 | val = ((s->i2cin & ~1) | eeprom24c0x_read()); | 
| 295 | break; | 
| 296 | |
| 297 | /* I2COE Register */ | 
| 298 | case 0x00b08: | 
| 299 | val = s->i2coe; | 
| 300 | break; | 
| 301 | |
| 302 | /* I2COUT Register */ | 
| 303 | case 0x00b10: | 
| 304 | val = s->i2cout; | 
| 305 | break; | 
| 306 | |
| 307 | /* I2CSEL Register */ | 
| 308 | case 0x00b18: | 
| 309 | val = s->i2csel; | 
| 310 | break; | 
| 311 | |
| 312 | default: | 
| 313 | #if 0 | 
| 314 | printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx"%08x" "\n", | 
| 315 | addr); | 
| 316 | #endif | 
| 317 | break; | 
| 318 | } | 
| 319 | return val; | 
| 320 | } | 
| 321 | |
| 322 | static void malta_fpga_write(void *opaque, target_phys_addr_t addr, | 
| 323 | uint64_t val, unsigned size) | 
| 324 | { | 
| 325 | MaltaFPGAState *s = opaque; | 
| 326 | uint32_t saddr; | 
| 327 | |
| 328 | saddr = (addr & 0xfffff); | 
| 329 | |
| 330 | switch (saddr) { | 
| 331 | |
| 332 | /* SWITCH Register */ | 
| 333 | case 0x00200: | 
| 334 | break; | 
| 335 | |
| 336 | /* JMPRS Register */ | 
| 337 | case 0x00210: | 
| 338 | break; | 
| 339 | |
| 340 | /* LEDBAR Register */ | 
| 341 | case 0x00408: | 
| 342 | s->leds = val & 0xff; | 
| 343 | malta_fpga_update_display(s); | 
| 344 | break; | 
| 345 | |
| 346 | /* ASCIIWORD Register */ | 
| 347 | case 0x00410: | 
| 348 | snprintf(s->display_text, 9, "%08X", (uint32_t)val); | 
| 349 | malta_fpga_update_display(s); | 
| 350 | break; | 
| 351 | |
| 352 | /* ASCIIPOS0 to ASCIIPOS7 Registers */ | 
| 353 | case 0x00418: | 
| 354 | case 0x00420: | 
| 355 | case 0x00428: | 
| 356 | case 0x00430: | 
| 357 | case 0x00438: | 
| 358 | case 0x00440: | 
| 359 | case 0x00448: | 
| 360 | case 0x00450: | 
| 361 | s->display_text[(saddr - 0x00418) >> 3] = (char) val; | 
| 362 | malta_fpga_update_display(s); | 
| 363 | break; | 
| 364 | |
| 365 | /* SOFTRES Register */ | 
| 366 | case 0x00500: | 
| 367 | if (val == 0x42) | 
| 368 | qemu_system_reset_request (); | 
| 369 | break; | 
| 370 | |
| 371 | /* BRKRES Register */ | 
| 372 | case 0x00508: | 
| 373 | s->brk = val & 0xff; | 
| 374 | break; | 
| 375 | |
| 376 | /* UART Registers are handled directly by the serial device */ | 
| 377 | |
| 378 | /* GPOUT Register */ | 
| 379 | case 0x00a00: | 
| 380 | s->gpout = val & 0xff; | 
| 381 | break; | 
| 382 | |
| 383 | /* I2COE Register */ | 
| 384 | case 0x00b08: | 
| 385 | s->i2coe = val & 0x03; | 
| 386 | break; | 
| 387 | |
| 388 | /* I2COUT Register */ | 
| 389 | case 0x00b10: | 
| 390 | eeprom24c0x_write(val & 0x02, val & 0x01); | 
| 391 | s->i2cout = val; | 
| 392 | break; | 
| 393 | |
| 394 | /* I2CSEL Register */ | 
| 395 | case 0x00b18: | 
| 396 | s->i2csel = val & 0x01; | 
| 397 | break; | 
| 398 | |
| 399 | default: | 
| 400 | #if 0 | 
| 401 | printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx"%08x" "\n", | 
| 402 | addr); | 
| 403 | #endif | 
| 404 | break; | 
| 405 | } | 
| 406 | } | 
| 407 | |
| 408 | static const MemoryRegionOps malta_fpga_ops = { | 
| 409 | .read = malta_fpga_read, | 
| 410 | .write = malta_fpga_write, | 
| 411 | .endianness = DEVICE_NATIVE_ENDIAN, | 
| 412 | }; | 
| 413 | |
| 414 | static void malta_fpga_reset(void *opaque) | 
| 415 | { | 
| 416 | MaltaFPGAState *s = opaque; | 
| 417 | |
| 418 | s->leds = 0x00; | 
| 419 | s->brk = 0x0a; | 
| 420 | s->gpout = 0x00; | 
| 421 | s->i2cin = 0x3; | 
| 422 | s->i2coe = 0x0; | 
| 423 | s->i2cout = 0x3; | 
| 424 | s->i2csel = 0x1; | 
| 425 | |
| 426 | s->display_text[8] = '\0'; | 
| 427 | snprintf(s->display_text, 9, " "); | 
| 428 | } | 
| 429 | |
| 430 | static void malta_fpga_led_init(CharDriverState *chr) | 
| 431 | { | 
| 432 | qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n"); | 
| 433 | qemu_chr_fe_printf(chr, "+--------+\r\n"); | 
| 434 | qemu_chr_fe_printf(chr, "+ +\r\n"); | 
| 435 | qemu_chr_fe_printf(chr, "+--------+\r\n"); | 
| 436 | qemu_chr_fe_printf(chr, "\n"); | 
| 437 | qemu_chr_fe_printf(chr, "Malta ASCII\r\n"); | 
| 438 | qemu_chr_fe_printf(chr, "+--------+\r\n"); | 
| 439 | qemu_chr_fe_printf(chr, "+ +\r\n"); | 
| 440 | qemu_chr_fe_printf(chr, "+--------+\r\n"); | 
| 441 | } | 
| 442 | |
| 443 | static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, | 
| 444 | target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr) | 
| 445 | { | 
| 446 | MaltaFPGAState *s; | 
| 447 | |
| 448 | s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState)); | 
| 449 | |
| 450 | memory_region_init_io(&s->iomem, &malta_fpga_ops, s, | 
| 451 | "malta-fpga", 0x100000); | 
| 452 | memory_region_init_alias(&s->iomem_lo, "malta-fpga", | 
| 453 | &s->iomem, 0, 0x900); | 
| 454 | memory_region_init_alias(&s->iomem_hi, "malta-fpga", | 
| 455 | &s->iomem, 0xa00, 0x10000-0xa00); | 
| 456 | |
| 457 | memory_region_add_subregion(address_space, base, &s->iomem_lo); | 
| 458 | memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); | 
| 459 | |
| 460 | s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init); | 
| 461 | |
| 462 | s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, | 
| 463 | 230400, uart_chr, DEVICE_NATIVE_ENDIAN); | 
| 464 | |
| 465 | malta_fpga_reset(s); | 
| 466 | qemu_register_reset(malta_fpga_reset, s); | 
| 467 | |
| 468 | return s; | 
| 469 | } | 
| 470 | |
| 471 | /* Network support */ | 
| 472 | static void network_init(void) | 
| 473 | { | 
| 474 | int i; | 
| 475 | |
| 476 | for(i = 0; i < nb_nics; i++) { | 
| 477 | NICInfo *nd = &nd_table[i]; | 
| 478 | const char *default_devaddr = NULL((void*)0); | 
| 479 | |
| 480 | if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) | 
| 481 | /* The malta board has a PCNet card using PCI SLOT 11 */ | 
| 482 | default_devaddr = "0b"; | 
| 483 | |
| 484 | pci_nic_init_nofail(nd, "pcnet", default_devaddr); | 
| 485 | } | 
| 486 | } | 
| 487 | |
| 488 | /* ROM and pseudo bootloader | 
| 489 | |
| 490 | The following code implements a very very simple bootloader. It first | 
| 491 | loads the registers a0 to a3 to the values expected by the OS, and | 
| 492 | then jump at the kernel address. | 
| 493 | |
| 494 | The bootloader should pass the locations of the kernel arguments and | 
| 495 | environment variables tables. Those tables contain the 32-bit address | 
| 496 | of NULL terminated strings. The environment variables table should be | 
| 497 | terminated by a NULL address. | 
| 498 | |
| 499 | For a simpler implementation, the number of kernel arguments is fixed | 
| 500 | to two (the name of the kernel and the command line), and the two | 
| 501 | tables are actually the same one. | 
| 502 | |
| 503 | The registers a0 to a3 should contain the following values: | 
| 504 | a0 - number of kernel arguments | 
| 505 | a1 - 32-bit address of the kernel arguments table | 
| 506 | a2 - 32-bit address of the environment variables table | 
| 507 | a3 - RAM size in bytes | 
| 508 | */ | 
| 509 | |
| 510 | static void write_bootloader (CPUMIPSState *env, uint8_t *base, | 
| 511 | int64_t kernel_entry) | 
| 512 | { | 
| 513 | uint32_t *p; | 
| 514 | |
| 515 | /* Small bootloader */ | 
| 516 | p = (uint32_t *)base; | 
| 517 | stl_raw(p++, 0x0bf00160)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0bf00160); /* j 0x1fc00580 */ | 
| 518 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 519 | |
| 520 | /* YAMON service vector */ | 
| 521 | stl_raw(base + 0x500, 0xbfc00580)stl_le_p((uint8_t *)(intptr_t)((base + 0x500)), 0xbfc00580); /* start: */ | 
| 522 | stl_raw(base + 0x504, 0xbfc0083c)stl_le_p((uint8_t *)(intptr_t)((base + 0x504)), 0xbfc0083c); /* print_count: */ | 
| 523 | stl_raw(base + 0x520, 0xbfc00580)stl_le_p((uint8_t *)(intptr_t)((base + 0x520)), 0xbfc00580); /* start: */ | 
| 524 | stl_raw(base + 0x52c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x52c)), 0xbfc00800); /* flush_cache: */ | 
| 525 | stl_raw(base + 0x534, 0xbfc00808)stl_le_p((uint8_t *)(intptr_t)((base + 0x534)), 0xbfc00808); /* print: */ | 
| 526 | stl_raw(base + 0x538, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x538)), 0xbfc00800); /* reg_cpu_isr: */ | 
| 527 | stl_raw(base + 0x53c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x53c)), 0xbfc00800); /* unred_cpu_isr: */ | 
| 528 | stl_raw(base + 0x540, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x540)), 0xbfc00800); /* reg_ic_isr: */ | 
| 529 | stl_raw(base + 0x544, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x544)), 0xbfc00800); /* unred_ic_isr: */ | 
| 530 | stl_raw(base + 0x548, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x548)), 0xbfc00800); /* reg_esr: */ | 
| 531 | stl_raw(base + 0x54c, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x54c)), 0xbfc00800); /* unreg_esr: */ | 
| 532 | stl_raw(base + 0x550, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x550)), 0xbfc00800); /* getchar: */ | 
| 533 | stl_raw(base + 0x554, 0xbfc00800)stl_le_p((uint8_t *)(intptr_t)((base + 0x554)), 0xbfc00800); /* syscon_read: */ | 
| 534 | |
| 535 | |
| 536 | /* Second part of the bootloader */ | 
| 537 | p = (uint32_t *) (base + 0x580); | 
| 538 | stl_raw(p++, 0x24040002)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x24040002); /* addiu a0, zero, 2 */ | 
| 539 | stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c1d0000 | (((0x80002000l - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */ | 
| 540 | stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x37bd0000 | ((0x80002000l - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */ | 
| 541 | stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c050000 | ((0x80002000l >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */ | 
| 542 | stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34a50000 | (0x80002000l & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */ | 
| 543 | stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c060000 | (((0x80002000l + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */ | 
| 544 | stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34c60000 | ((0x80002000l + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */ | 
| 545 | stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c070000 | (loaderparams .ram_size >> 16)); /* lui a3, high(ram_size) */ | 
| 546 | stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34e70000 | (loaderparams .ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */ | 
| 547 | |
| 548 | /* Load BAR registers as done by YAMON */ | 
| 549 | stl_raw(p++, 0x3c09b400)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c09b400); /* lui t1, 0xb400 */ | 
| 550 | |
| 551 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 552 | stl_raw(p++, 0x3c08df00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08df00); /* lui t0, 0xdf00 */ | 
| 553 | #else | 
| 554 | stl_raw(p++, 0x340800df)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800df); /* ori t0, r0, 0x00df */ | 
| 555 | #endif | 
| 556 | stl_raw(p++, 0xad280068)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280068); /* sw t0, 0x0068(t1) */ | 
| 557 | |
| 558 | stl_raw(p++, 0x3c09bbe0)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c09bbe0); /* lui t1, 0xbbe0 */ | 
| 559 | |
| 560 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 561 | stl_raw(p++, 0x3c08c000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08c000); /* lui t0, 0xc000 */ | 
| 562 | #else | 
| 563 | stl_raw(p++, 0x340800c0)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800c0); /* ori t0, r0, 0x00c0 */ | 
| 564 | #endif | 
| 565 | stl_raw(p++, 0xad280048)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280048); /* sw t0, 0x0048(t1) */ | 
| 566 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 567 | stl_raw(p++, 0x3c084000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c084000); /* lui t0, 0x4000 */ | 
| 568 | #else | 
| 569 | stl_raw(p++, 0x34080040)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34080040); /* ori t0, r0, 0x0040 */ | 
| 570 | #endif | 
| 571 | stl_raw(p++, 0xad280050)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280050); /* sw t0, 0x0050(t1) */ | 
| 572 | |
| 573 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 574 | stl_raw(p++, 0x3c088000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c088000); /* lui t0, 0x8000 */ | 
| 575 | #else | 
| 576 | stl_raw(p++, 0x34080080)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x34080080); /* ori t0, r0, 0x0080 */ | 
| 577 | #endif | 
| 578 | stl_raw(p++, 0xad280058)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280058); /* sw t0, 0x0058(t1) */ | 
| 579 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 580 | stl_raw(p++, 0x3c083f00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c083f00); /* lui t0, 0x3f00 */ | 
| 581 | #else | 
| 582 | stl_raw(p++, 0x3408003f)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3408003f); /* ori t0, r0, 0x003f */ | 
| 583 | #endif | 
| 584 | stl_raw(p++, 0xad280060)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280060); /* sw t0, 0x0060(t1) */ | 
| 585 | |
| 586 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 587 | stl_raw(p++, 0x3c08c100)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08c100); /* lui t0, 0xc100 */ | 
| 588 | #else | 
| 589 | stl_raw(p++, 0x340800c1)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x340800c1); /* ori t0, r0, 0x00c1 */ | 
| 590 | #endif | 
| 591 | stl_raw(p++, 0xad280080)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280080); /* sw t0, 0x0080(t1) */ | 
| 592 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 593 | stl_raw(p++, 0x3c085e00)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c085e00); /* lui t0, 0x5e00 */ | 
| 594 | #else | 
| 595 | stl_raw(p++, 0x3408005e)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3408005e); /* ori t0, r0, 0x005e */ | 
| 596 | #endif | 
| 597 | stl_raw(p++, 0xad280088)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xad280088); /* sw t0, 0x0088(t1) */ | 
| 598 | |
| 599 | /* Jump to kernel code */ | 
| 600 | stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ | 
| 601 | stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff))stl_le_p((uint8_t *)(intptr_t)((p++)), 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ | 
| 602 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ | 
| 603 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 604 | |
| 605 | /* YAMON subroutines */ | 
| 606 | p = (uint32_t *) (base + 0x800); | 
| 607 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ | 
| 608 | stl_raw(p++, 0x24020000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x24020000); /* li v0,0 */ | 
| 609 | /* 808 YAMON print */ | 
| 610 | stl_raw(p++, 0x03e06821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e06821); /* move t5,ra */ | 
| 611 | stl_raw(p++, 0x00805821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00805821); /* move t3,a0 */ | 
| 612 | stl_raw(p++, 0x00a05021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00a05021); /* move t2,a1 */ | 
| 613 | stl_raw(p++, 0x91440000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91440000); /* lbu a0,0(t2) */ | 
| 614 | stl_raw(p++, 0x254a0001)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x254a0001); /* addiu t2,t2,1 */ | 
| 615 | stl_raw(p++, 0x10800005)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x10800005); /* beqz a0,834 */ | 
| 616 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 617 | stl_raw(p++, 0x0ff0021c)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0ff0021c); /* jal 870 */ | 
| 618 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 619 | stl_raw(p++, 0x08000205)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x08000205); /* j 814 */ | 
| 620 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 621 | stl_raw(p++, 0x01a00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01a00008); /* jr t5 */ | 
| 622 | stl_raw(p++, 0x01602021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01602021); /* move a0,t3 */ | 
| 623 | /* 0x83c YAMON print_count */ | 
| 624 | stl_raw(p++, 0x03e06821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e06821); /* move t5,ra */ | 
| 625 | stl_raw(p++, 0x00805821)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00805821); /* move t3,a0 */ | 
| 626 | stl_raw(p++, 0x00a05021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00a05021); /* move t2,a1 */ | 
| 627 | stl_raw(p++, 0x00c06021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00c06021); /* move t4,a2 */ | 
| 628 | stl_raw(p++, 0x91440000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91440000); /* lbu a0,0(t2) */ | 
| 629 | stl_raw(p++, 0x0ff0021c)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x0ff0021c); /* jal 870 */ | 
| 630 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 631 | stl_raw(p++, 0x254a0001)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x254a0001); /* addiu t2,t2,1 */ | 
| 632 | stl_raw(p++, 0x258cffff)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x258cffff); /* addiu t4,t4,-1 */ | 
| 633 | stl_raw(p++, 0x1580fffa)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x1580fffa); /* bnez t4,84c */ | 
| 634 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 635 | stl_raw(p++, 0x01a00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01a00008); /* jr t5 */ | 
| 636 | stl_raw(p++, 0x01602021)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x01602021); /* move a0,t3 */ | 
| 637 | /* 0x870 */ | 
| 638 | stl_raw(p++, 0x3c08b800)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x3c08b800); /* lui t0,0xb400 */ | 
| 639 | stl_raw(p++, 0x350803f8)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x350803f8); /* ori t0,t0,0x3f8 */ | 
| 640 | stl_raw(p++, 0x91090005)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x91090005); /* lbu t1,5(t0) */ | 
| 641 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 642 | stl_raw(p++, 0x31290040)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x31290040); /* andi t1,t1,0x40 */ | 
| 643 | stl_raw(p++, 0x1120fffc)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x1120fffc); /* beqz t1,878 <outch+0x8> */ | 
| 644 | stl_raw(p++, 0x00000000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x00000000); /* nop */ | 
| 645 | stl_raw(p++, 0x03e00008)stl_le_p((uint8_t *)(intptr_t)((p++)), 0x03e00008); /* jr ra */ | 
| 646 | stl_raw(p++, 0xa1040000)stl_le_p((uint8_t *)(intptr_t)((p++)), 0xa1040000); /* sb a0,0(t0) */ | 
| 647 | |
| 648 | } | 
| 649 | |
| 650 | static void GCC_FMT_ATTR(3, 4)__attribute__((format(printf, 3, 4))) prom_set(uint32_t* prom_buf, int index, | 
| 651 | const char *string, ...) | 
| 652 | { | 
| 653 | va_list ap; | 
| 654 | int32_t table_addr; | 
| 655 | |
| 656 | if (index >= ENVP_NB_ENTRIES16) | 
| 657 | return; | 
| 658 | |
| 659 | if (string == NULL((void*)0)) { | 
| 660 | prom_buf[index] = 0; | 
| 661 | return; | 
| 662 | } | 
| 663 | |
| 664 | table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES16 + index * ENVP_ENTRY_SIZE256; | 
| 665 | prom_buf[index] = tswap32(ENVP_ADDR0x80002000l + table_addr); | 
| 666 | |
| 667 | va_start(ap, string)__builtin_va_start(ap, string); | 
| 668 | vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE256, string, ap); | 
| 669 | va_end(ap)__builtin_va_end(ap); | 
| 670 | } | 
| 671 | |
| 672 | /* Kernel */ | 
| 673 | static int64_t load_kernel (void) | 
| 674 | { | 
| 675 | int64_t kernel_entry, kernel_high; | 
| 676 | long initrd_size; | 
| 677 | ram_addr_t initrd_offset; | 
| 678 | int big_endian; | 
| 679 | uint32_t *prom_buf; | 
| 680 | long prom_size; | 
| 681 | int prom_index = 0; | 
| 682 | |
| 683 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 684 | big_endian = 1; | 
| 685 | #else | 
| 686 | big_endian = 0; | 
| 687 | #endif | 
| 688 | |
| 689 | if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL((void*)0), | 
| 690 | (uint64_t *)&kernel_entry, NULL((void*)0), (uint64_t *)&kernel_high, | 
| 691 | big_endian, ELF_MACHINE8, 1) < 0) { | 
| 692 | fprintf(stderrstderr, "qemu: could not load kernel '%s'\n", | 
| 693 | loaderparams.kernel_filename); | 
| 694 | exit(1); | 
| 695 | } | 
| 696 | |
| 697 | /* load initrd */ | 
| 698 | initrd_size = 0; | 
| 699 | initrd_offset = 0; | 
| 700 | if (loaderparams.initrd_filename) { | 
| 701 | initrd_size = get_image_size (loaderparams.initrd_filename); | 
| 702 | if (initrd_size > 0) { | 
| 703 | initrd_offset = (kernel_high + ~TARGET_PAGE_MASK~((1 << 12) - 1)) & TARGET_PAGE_MASK~((1 << 12) - 1); | 
| 704 | if (initrd_offset + initrd_size > ram_size) { | 
| 705 | fprintf(stderrstderr, | 
| 706 | "qemu: memory too small for initial ram disk '%s'\n", | 
| 707 | loaderparams.initrd_filename); | 
| 708 | exit(1); | 
| 709 | } | 
| 710 | initrd_size = load_image_targphys(loaderparams.initrd_filename, | 
| 711 | initrd_offset, | 
| 712 | ram_size - initrd_offset); | 
| 713 | } | 
| 714 | if (initrd_size == (target_ulong) -1) { | 
| 715 | fprintf(stderrstderr, "qemu: could not load initial ram disk '%s'\n", | 
| 716 | loaderparams.initrd_filename); | 
| 717 | exit(1); | 
| 718 | } | 
| 719 | } | 
| 720 | |
| 721 | /* Setup prom parameters. */ | 
| 722 | prom_size = ENVP_NB_ENTRIES16 * (sizeof(int32_t) + ENVP_ENTRY_SIZE256); | 
| 723 | prom_buf = g_malloc(prom_size); | 
| 724 | |
| 725 | prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); | 
| 726 | if (initrd_size > 0) { | 
| 727 | prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64"l" "x" " rd_size=%li %s", | 
| 728 | cpu_mips_phys_to_kseg0(NULL((void*)0), initrd_offset), initrd_size, | 
| 729 | loaderparams.kernel_cmdline); | 
| 730 | } else { | 
| 731 | prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); | 
| 732 | } | 
| 733 | |
| 734 | prom_set(prom_buf, prom_index++, "memsize"); | 
| 735 | prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size); | 
| 736 | prom_set(prom_buf, prom_index++, "modetty0"); | 
| 737 | prom_set(prom_buf, prom_index++, "38400n8r"); | 
| 738 | prom_set(prom_buf, prom_index++, NULL((void*)0)); | 
| 739 | |
| 740 | rom_add_blob_fixed("prom", prom_buf, prom_size,rom_add_blob("prom", prom_buf, prom_size, cpu_mips_kseg0_to_phys (((void*)0), 0x80002000l)) | 
| 741 | cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR))rom_add_blob("prom", prom_buf, prom_size, cpu_mips_kseg0_to_phys (((void*)0), 0x80002000l)); | 
| 742 | |
| 743 | return kernel_entry; | 
| 744 | } | 
| 745 | |
| 746 | static void malta_mips_config(CPUMIPSState *env) | 
| 747 | { | 
| 748 | env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE10) | | 
| 749 | ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC0); | 
| 750 | } | 
| 751 | |
| 752 | static void main_cpu_reset(void *opaque) | 
| 753 | { | 
| 754 | MIPSCPU *cpu = opaque; | 
| 755 | CPUMIPSState *env = &cpu->env; | 
| 756 | |
| 757 | cpu_reset(CPU(cpu)((CPUState *)object_dynamic_cast_assert(((Object *)((cpu))), ( "cpu")))); | 
| 758 | |
| 759 | /* The bootloader does not need to be rewritten as it is located in a | 
| 760 | read only location. The kernel location and the arguments table | 
| 761 | location does not change. */ | 
| 762 | if (loaderparams.kernel_filename) { | 
| 763 | env->CP0_Status &= ~((1 << CP0St_BEV22) | (1 << CP0St_ERL2)); | 
| 764 | } | 
| 765 | |
| 766 | malta_mips_config(env); | 
| 767 | } | 
| 768 | |
| 769 | static void cpu_request_exit(void *opaque, int irq, int level) | 
| 770 | { | 
| 771 | CPUMIPSState *env = cpu_single_envtls__cpu_single_env; | 
| 772 | |
| 773 | if (env && level) { | 
| 774 | cpu_exit(env); | 
| 775 | } | 
| 776 | } | 
| 777 | |
| 778 | static | 
| 779 | void mips_malta_init (ram_addr_t ram_size, | 
| 780 | const char *boot_device, | 
| 781 | const char *kernel_filename, const char *kernel_cmdline, | 
| 782 | const char *initrd_filename, const char *cpu_model) | 
| 783 | { | 
| 784 | char *filename; | 
| 785 | pflash_t *fl; | 
| 786 | MemoryRegion *system_memory = get_system_memory(); | 
| 787 | MemoryRegion *ram = g_new(MemoryRegion, 1)((MemoryRegion *) g_malloc_n ((1), sizeof (MemoryRegion))); | 
| 788 | MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1)((MemoryRegion *) g_malloc_n ((1), sizeof (MemoryRegion))); | 
| 789 | target_long bios_size = FLASH_SIZE0x400000; | 
| 790 | int64_t kernel_entry; | 
| 791 | PCIBus *pci_bus; | 
| 792 | ISABus *isa_bus; | 
| 793 | MIPSCPU *cpu; | 
| 794 | CPUMIPSState *env; | 
| 795 | qemu_irq *isa_irq; | 
| 796 | qemu_irq *cpu_exit_irq; | 
| 797 | int piix4_devfn; | 
| 798 | i2c_bus *smbus; | 
| 799 | int i; | 
| 800 | DriveInfo *dinfo; | 
| 801 | DriveInfo *hd[MAX_IDE_BUS2 * MAX_IDE_DEVS2]; | 
| 802 | DriveInfo *fd[MAX_FD2]; | 
| 803 | int fl_idx = 0; | 
| 804 | int fl_sectors = bios_size >> 16; | 
| 805 | int be; | 
| 806 | |
| 807 | DeviceState *dev = qdev_create(NULL((void*)0), "mips-malta"); | 
| 808 | MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev)( __extension__ ( { char __attribute__((unused)) offset_must_be_zero [ -__builtin_offsetof(MaltaState, busdev.qdev)]; ({ const typeof (((MaltaState *) 0)->busdev.qdev) *__mptr = (dev); (MaltaState *) ((char *) __mptr - __builtin_offsetof(MaltaState, busdev. qdev));});})); | 
| 809 | |
| 810 | qdev_init_nofail(dev); | 
| 811 | |
| 812 | /* Make sure the first 3 serial ports are associated with a device. */ | 
| 813 | for(i = 0; i < 3; i++) { | 
| 814 | if (!serial_hds[i]) { | 
| 815 | char label[32]; | 
| 816 | snprintf(label, sizeof(label), "serial%d", i); | 
| 817 | serial_hds[i] = qemu_chr_new(label, "null", NULL((void*)0)); | 
| 818 | } | 
| 819 | } | 
| 820 | |
| 821 | /* init CPUs */ | 
| 822 | if (cpu_model == NULL((void*)0)) { | 
| 823 | #ifdef TARGET_MIPS64 | 
| 824 | cpu_model = "20Kc"; | 
| 825 | #else | 
| 826 | cpu_model = "24Kf"; | 
| 827 | #endif | 
| 828 | } | 
| 829 | |
| 830 | for (i = 0; i < smp_cpus; i++) { | 
| 831 | cpu = cpu_mips_init(cpu_model); | 
| 832 | if (cpu == NULL((void*)0)) { | 
| 833 | fprintf(stderrstderr, "Unable to find CPU definition\n"); | 
| 834 | exit(1); | 
| 835 | } | 
| 836 | env = &cpu->env; | 
| 837 | |
| 838 | /* Init internal devices */ | 
| 839 | cpu_mips_irq_init_cpu(env); | 
| 840 | cpu_mips_clock_init(env); | 
| 841 | qemu_register_reset(main_cpu_reset, cpu); | 
| 842 | } | 
| 843 | env = first_cpu; | 
| 844 | |
| 845 | /* allocate RAM */ | 
| 846 | if (ram_size > (256 << 20)) { | 
| 847 | fprintf(stderrstderr, | 
| 848 | "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n", | 
| 849 | ((unsigned int)ram_size / (1 << 20))); | 
| 850 | exit(1); | 
| 851 | } | 
| 852 | memory_region_init_ram(ram, "mips_malta.ram", ram_size); | 
| 853 | vmstate_register_ram_global(ram); | 
| 854 | memory_region_add_subregion(system_memory, 0, ram); | 
| 855 | |
| 856 | #ifdef TARGET_WORDS_BIGENDIAN | 
| 857 | be = 1; | 
| 858 | #else | 
| 859 | be = 0; | 
| 860 | #endif | 
| 861 | /* FPGA */ | 
| 862 | malta_fpga_init(system_memory, FPGA_ADDRESS0x1f000000ULL, env->irq[2], serial_hds[2]); | 
| 863 | |
| 864 | /* Load firmware in flash / BIOS. */ | 
| 865 | dinfo = drive_get(IF_PFLASH, 0, fl_idx); | 
| 866 | #ifdef DEBUG_BOARD_INIT | 
| 867 | if (dinfo) { | 
| 868 | printf("Register parallel flash %d size " TARGET_FMT_lx"%08x" " at " | 
| 869 | "addr %08llx '%s' %x\n", | 
| 870 | fl_idx, bios_size, FLASH_ADDRESS0x1e000000ULL, | 
| 871 | bdrv_get_device_name(dinfo->bdrv), fl_sectors); | 
| 872 | } | 
| 873 | #endif | 
| 874 | fl = pflash_cfi01_register(FLASH_ADDRESS0x1e000000ULL, NULL((void*)0), "mips_malta.bios", | 
| 875 | BIOS_SIZE(4 * 1024 * 1024), dinfo ? dinfo->bdrv : NULL((void*)0), | 
| 876 | 65536, fl_sectors, | 
| 877 | 4, 0x0000, 0x0000, 0x0000, 0x0000, be); | 
| 878 | bios = pflash_cfi01_get_memory(fl); | 
| 879 | fl_idx++; | 
| Value stored to 'fl_idx' is never read | |
| 880 | if (kernel_filename) { | 
| 881 | /* Write a small bootloader to the flash location. */ | 
| 882 | loaderparams.ram_size = ram_size; | 
| 883 | loaderparams.kernel_filename = kernel_filename; | 
| 884 | loaderparams.kernel_cmdline = kernel_cmdline; | 
| 885 | loaderparams.initrd_filename = initrd_filename; | 
| 886 | kernel_entry = load_kernel(); | 
| 887 | write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry); | 
| 888 | } else { | 
| 889 | /* Load firmware from flash. */ | 
| 890 | if (!dinfo) { | 
| 891 | /* Load a BIOS image. */ | 
| 892 | if (bios_name == NULL((void*)0)) { | 
| 893 | bios_name = BIOS_FILENAME"mipsel_bios.bin"; | 
| 894 | } | 
| 895 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS0, bios_name); | 
| 896 | if (filename) { | 
| 897 | bios_size = load_image_targphys(filename, FLASH_ADDRESS0x1e000000ULL, | 
| 898 | BIOS_SIZE(4 * 1024 * 1024)); | 
| 899 | g_free(filename); | 
| 900 | } else { | 
| 901 | bios_size = -1; | 
| 902 | } | 
| 903 | if ((bios_size < 0 || bios_size > BIOS_SIZE(4 * 1024 * 1024)) && !kernel_filename) { | 
| 904 | fprintf(stderrstderr, | 
| 905 | "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n", | 
| 906 | bios_name); | 
| 907 | exit(1); | 
| 908 | } | 
| 909 | } | 
| 910 | /* In little endian mode the 32bit words in the bios are swapped, | 
| 911 | a neat trick which allows bi-endian firmware. */ | 
| 912 | #ifndef TARGET_WORDS_BIGENDIAN | 
| 913 | { | 
| 914 | uint32_t *addr = memory_region_get_ram_ptr(bios); | 
| 915 | uint32_t *end = addr + bios_size; | 
| 916 | while (addr < end) { | 
| 917 | bswap32s(addr); | 
| 918 | addr++; | 
| 919 | } | 
| 920 | } | 
| 921 | #endif | 
| 922 | } | 
| 923 | |
| 924 | /* Map the BIOS at a 2nd physical location, as on the real board. */ | 
| 925 | memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE(4 * 1024 * 1024)); | 
| 926 | memory_region_add_subregion(system_memory, RESET_ADDRESS0x1fc00000ULL, bios_alias); | 
| 927 | |
| 928 | /* Board ID = 0x420 (Malta Board with CoreLV) | 
| 929 | XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should | 
| 930 | map to the board ID. */ | 
| 931 | stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420)stl_le_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420); | 
| 932 | |
| 933 | /* Init internal devices */ | 
| 934 | cpu_mips_irq_init_cpu(env); | 
| 935 | cpu_mips_clock_init(env); | 
| 936 | |
| 937 | /* | 
| 938 | * We have a circular dependency problem: pci_bus depends on isa_irq, | 
| 939 | * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends | 
| 940 | * on piix4, and piix4 depends on pci_bus. To stop the cycle we have | 
| 941 | * qemu_irq_proxy() adds an extra bit of indirection, allowing us | 
| 942 | * to resolve the isa_irq -> i8259 dependency after i8259 is initialized. | 
| 943 | */ | 
| 944 | isa_irq = qemu_irq_proxy(&s->i8259, 16); | 
| 945 | |
| 946 | /* Northbridge */ | 
| 947 | pci_bus = gt64120_register(isa_irq); | 
| 948 | |
| 949 | /* Southbridge */ | 
| 950 | ide_drive_get(hd, MAX_IDE_BUS2); | 
| 951 | |
| 952 | piix4_devfn = piix4_init(pci_bus, &isa_bus, 80); | 
| 953 | |
| 954 | /* Interrupt controller */ | 
| 955 | /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */ | 
| 956 | s->i8259 = i8259_init(isa_bus, env->irq[2]); | 
| 957 | |
| 958 | isa_bus_irqs(isa_bus, s->i8259); | 
| 959 | pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1); | 
| 960 | pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci"); | 
| 961 | smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, | 
| 962 | isa_get_irq(NULL((void*)0), 9), NULL((void*)0), 0, NULL((void*)0)); | 
| 963 | /* TODO: Populate SPD eeprom data. */ | 
| 964 | smbus_eeprom_init(smbus, 8, NULL((void*)0), 0); | 
| 965 | pit = pit_init(isa_bus, 0x40, 0, NULL((void*)0)); | 
| 966 | cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL((void*)0), 1); | 
| 967 | DMA_init(0, cpu_exit_irq); | 
| 968 | |
| 969 | /* Super I/O */ | 
| 970 | isa_create_simple(isa_bus, "i8042"); | 
| 971 | |
| 972 | rtc_init(isa_bus, 2000, NULL((void*)0)); | 
| 973 | serial_isa_init(isa_bus, 0, serial_hds[0]); | 
| 974 | serial_isa_init(isa_bus, 1, serial_hds[1]); | 
| 975 | if (parallel_hds[0]) | 
| 976 | parallel_init(isa_bus, 0, parallel_hds[0]); | 
| 977 | for(i = 0; i < MAX_FD2; i++) { | 
| 978 | fd[i] = drive_get(IF_FLOPPY, 0, i); | 
| 979 | } | 
| 980 | fdctrl_init_isa(isa_bus, fd); | 
| 981 | |
| 982 | /* Sound card */ | 
| 983 | audio_init(isa_bus, pci_bus); | 
| 984 | |
| 985 | /* Network card */ | 
| 986 | network_init(); | 
| 987 | |
| 988 | /* Optional PCI video card */ | 
| 989 | if (cirrus_vga_enabled(vga_interface_type == VGA_CIRRUS)) { | 
| 990 | pci_cirrus_vga_init(pci_bus); | 
| 991 | } else if (vmsvga_enabled(vga_interface_type == VGA_VMWARE)) { | 
| 992 | pci_vmsvga_init(pci_bus); | 
| 993 | } else if (std_vga_enabled(vga_interface_type == VGA_STD)) { | 
| 994 | pci_vga_init(pci_bus); | 
| 995 | } | 
| 996 | } | 
| 997 | |
| 998 | static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev) | 
| 999 | { | 
| 1000 | return 0; | 
| 1001 | } | 
| 1002 | |
| 1003 | static void mips_malta_class_init(ObjectClass *klass, void *data) | 
| 1004 | { | 
| 1005 | SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass)((SysBusDeviceClass *)object_class_dynamic_cast_assert(((ObjectClass *)((klass))), ("sys-bus-device"))); | 
| 1006 | |
| 1007 | k->init = mips_malta_sysbus_device_init; | 
| 1008 | } | 
| 1009 | |
| 1010 | static TypeInfo mips_malta_device = { | 
| 1011 | .name = "mips-malta", | 
| 1012 | .parent = TYPE_SYS_BUS_DEVICE"sys-bus-device", | 
| 1013 | .instance_size = sizeof(MaltaState), | 
| 1014 | .class_init = mips_malta_class_init, | 
| 1015 | }; | 
| 1016 | |
| 1017 | static QEMUMachine mips_malta_machine = { | 
| 1018 | .name = "malta", | 
| 1019 | .desc = "MIPS Malta Core LV", | 
| 1020 | .init = mips_malta_init, | 
| 1021 | .max_cpus = 16, | 
| 1022 | .is_default = 1, | 
| 1023 | }; | 
| 1024 | |
| 1025 | static void mips_malta_register_types(void) | 
| 1026 | { | 
| 1027 | type_register_static(&mips_malta_device); | 
| 1028 | } | 
| 1029 | |
| 1030 | static void mips_malta_machine_init(void) | 
| 1031 | { | 
| 1032 | qemu_register_machine(&mips_malta_machine); | 
| 1033 | } | 
| 1034 | |
| 1035 | type_init(mips_malta_register_types)static void __attribute__((constructor)) do_qemu_init_mips_malta_register_types (void) { register_module_init(mips_malta_register_types, MODULE_INIT_QOM ); } | 
| 1036 | machine_init(mips_malta_machine_init)static void __attribute__((constructor)) do_qemu_init_mips_malta_machine_init (void) { register_module_init(mips_malta_machine_init, MODULE_INIT_MACHINE ); }; |