| File: | target-i386/kvm.c |
| Location: | line 268, column 9 |
| Description: | Pass-by-value argument in function call is undefined |
| 1 | /* | ||
| 2 | * QEMU KVM support | ||
| 3 | * | ||
| 4 | * Copyright (C) 2006-2008 Qumranet Technologies | ||
| 5 | * Copyright IBM, Corp. 2008 | ||
| 6 | * | ||
| 7 | * Authors: | ||
| 8 | * Anthony Liguori <aliguori@us.ibm.com> | ||
| 9 | * | ||
| 10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | ||
| 11 | * See the COPYING file in the top-level directory. | ||
| 12 | * | ||
| 13 | */ | ||
| 14 | |||
| 15 | #include <sys/types.h> | ||
| 16 | #include <sys/ioctl.h> | ||
| 17 | #include <sys/mman.h> | ||
| 18 | #include <sys/utsname.h> | ||
| 19 | |||
| 20 | #include <linux1/kvm.h> | ||
| 21 | #include <linux1/kvm_para.h> | ||
| 22 | |||
| 23 | #include "qemu-common.h" | ||
| 24 | #include "sysemu.h" | ||
| 25 | #include "kvm.h" | ||
| 26 | #include "cpu.h" | ||
| 27 | #include "gdbstub.h" | ||
| 28 | #include "host-utils.h" | ||
| 29 | #include "hw/pc.h" | ||
| 30 | #include "hw/apic.h" | ||
| 31 | #include "ioport.h" | ||
| 32 | #include "hyperv.h" | ||
| 33 | |||
| 34 | //#define DEBUG_KVM | ||
| 35 | |||
| 36 | #ifdef DEBUG_KVM | ||
| 37 | #define DPRINTF(fmt, ...)do { } while (0) \ | ||
| 38 | do { fprintf(stderrstderr, fmt, ## __VA_ARGS__); } while (0) | ||
| 39 | #else | ||
| 40 | #define DPRINTF(fmt, ...)do { } while (0) \ | ||
| 41 | do { } while (0) | ||
| 42 | #endif | ||
| 43 | |||
| 44 | #define MSR_KVM_WALL_CLOCK0x11 0x11 | ||
| 45 | #define MSR_KVM_SYSTEM_TIME0x12 0x12 | ||
| 46 | |||
| 47 | #ifndef BUS_MCEERR_AR4 | ||
| 48 | #define BUS_MCEERR_AR4 4 | ||
| 49 | #endif | ||
| 50 | #ifndef BUS_MCEERR_AO5 | ||
| 51 | #define BUS_MCEERR_AO5 5 | ||
| 52 | #endif | ||
| 53 | |||
| 54 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | ||
| 55 | KVM_CAP_INFO(SET_TSS_ADDR){ "KVM_CAP_" "SET_TSS_ADDR", 4 }, | ||
| 56 | KVM_CAP_INFO(EXT_CPUID){ "KVM_CAP_" "EXT_CPUID", 7 }, | ||
| 57 | KVM_CAP_INFO(MP_STATE){ "KVM_CAP_" "MP_STATE", 14 }, | ||
| 58 | KVM_CAP_LAST_INFO{ ((void *)0), 0 } | ||
| 59 | }; | ||
| 60 | |||
| 61 | static bool_Bool has_msr_star; | ||
| 62 | static bool_Bool has_msr_hsave_pa; | ||
| 63 | static bool_Bool has_msr_tsc_deadline; | ||
| 64 | static bool_Bool has_msr_async_pf_en; | ||
| 65 | static bool_Bool has_msr_misc_enable; | ||
| 66 | static int lm_capable_kernel; | ||
| 67 | |||
| 68 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | ||
| 69 | { | ||
| 70 | struct kvm_cpuid2 *cpuid; | ||
| 71 | int r, size; | ||
| 72 | |||
| 73 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | ||
| 74 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); | ||
| 75 | cpuid->nent = max; | ||
| 76 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x05)) << 0) | ((((sizeof(struct kvm_cpuid2))) ) << ((0 +8)+8))), cpuid); | ||
| 77 | if (r == 0 && cpuid->nent >= max) { | ||
| 78 | r = -E2BIG7; | ||
| 79 | } | ||
| 80 | if (r < 0) { | ||
| 81 | if (r == -E2BIG7) { | ||
| 82 | g_free(cpuid); | ||
| 83 | return NULL((void *)0); | ||
| 84 | } else { | ||
| 85 | fprintf(stderrstderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | ||
| 86 | strerror(-r)); | ||
| 87 | exit(1); | ||
| 88 | } | ||
| 89 | } | ||
| 90 | return cpuid; | ||
| 91 | } | ||
| 92 | |||
| 93 | struct kvm_para_features { | ||
| 94 | int cap; | ||
| 95 | int feature; | ||
| 96 | } para_features[] = { | ||
| 97 | { KVM_CAP_CLOCKSOURCE8, KVM_FEATURE_CLOCKSOURCE0 }, | ||
| 98 | { KVM_CAP_NOP_IO_DELAY12, KVM_FEATURE_NOP_IO_DELAY1 }, | ||
| 99 | { KVM_CAP_PV_MMU13, KVM_FEATURE_MMU_OP2 }, | ||
| 100 | { KVM_CAP_ASYNC_PF59, KVM_FEATURE_ASYNC_PF4 }, | ||
| 101 | { -1, -1 } | ||
| 102 | }; | ||
| 103 | |||
| 104 | static int get_para_features(KVMState *s) | ||
| 105 | { | ||
| 106 | int i, features = 0; | ||
| 107 | |||
| 108 | for (i = 0; i < ARRAY_SIZE(para_features)(sizeof(para_features) / sizeof((para_features)[0])) - 1; i++) { | ||
| 109 | if (kvm_check_extension(s, para_features[i].cap)) { | ||
| 110 | features |= (1 << para_features[i].feature); | ||
| 111 | } | ||
| 112 | } | ||
| 113 | |||
| 114 | return features; | ||
| 115 | } | ||
| 116 | |||
| 117 | |||
| 118 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, | ||
| 119 | uint32_t index, int reg) | ||
| 120 | { | ||
| 121 | struct kvm_cpuid2 *cpuid; | ||
| 122 | int i, max; | ||
| 123 | uint32_t ret = 0; | ||
| 124 | uint32_t cpuid_1_edx; | ||
| 125 | int has_kvm_features = 0; | ||
| 126 | |||
| 127 | max = 1; | ||
| 128 | while ((cpuid = try_get_cpuid(s, max)) == NULL((void *)0)) { | ||
| 129 | max *= 2; | ||
| 130 | } | ||
| 131 | |||
| 132 | for (i = 0; i < cpuid->nent; ++i) { | ||
| 133 | if (cpuid->entries[i].function == function && | ||
| 134 | cpuid->entries[i].index == index) { | ||
| 135 | if (cpuid->entries[i].function == KVM_CPUID_FEATURES0x40000001) { | ||
| 136 | has_kvm_features = 1; | ||
| 137 | } | ||
| 138 | switch (reg) { | ||
| 139 | case R_EAX0: | ||
| 140 | ret = cpuid->entries[i].eax; | ||
| 141 | break; | ||
| 142 | case R_EBX3: | ||
| 143 | ret = cpuid->entries[i].ebx; | ||
| 144 | break; | ||
| 145 | case R_ECX1: | ||
| 146 | ret = cpuid->entries[i].ecx; | ||
| 147 | break; | ||
| 148 | case R_EDX2: | ||
| 149 | ret = cpuid->entries[i].edx; | ||
| 150 | switch (function) { | ||
| 151 | case 1: | ||
| 152 | /* KVM before 2.6.30 misreports the following features */ | ||
| 153 | ret |= CPUID_MTRR(1 << 12) | CPUID_PAT(1 << 16) | CPUID_MCE(1 << 7) | CPUID_MCA(1 << 14); | ||
| 154 | break; | ||
| 155 | case 0x80000001: | ||
| 156 | /* On Intel, kvm returns cpuid according to the Intel spec, | ||
| 157 | * so add missing bits according to the AMD spec: | ||
| 158 | */ | ||
| 159 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX2); | ||
| 160 | ret |= cpuid_1_edx & 0x183f7ff; | ||
| 161 | break; | ||
| 162 | } | ||
| 163 | break; | ||
| 164 | } | ||
| 165 | } | ||
| 166 | } | ||
| 167 | |||
| 168 | g_free(cpuid); | ||
| 169 | |||
| 170 | /* fallback for older kernels */ | ||
| 171 | if (!has_kvm_features && (function == KVM_CPUID_FEATURES0x40000001)) { | ||
| 172 | ret = get_para_features(s); | ||
| 173 | } | ||
| 174 | |||
| 175 | return ret; | ||
| 176 | } | ||
| 177 | |||
| 178 | typedef struct HWPoisonPage { | ||
| 179 | ram_addr_t ram_addr; | ||
| 180 | QLIST_ENTRY(HWPoisonPage)struct { struct HWPoisonPage *le_next; struct HWPoisonPage ** le_prev; } list; | ||
| 181 | } HWPoisonPage; | ||
| 182 | |||
| 183 | static QLIST_HEAD(, HWPoisonPage)struct { struct HWPoisonPage *lh_first; } hwpoison_page_list = | ||
| 184 | QLIST_HEAD_INITIALIZER(hwpoison_page_list){ ((void *)0) }; | ||
| 185 | |||
| 186 | static void kvm_unpoison_all(void *param) | ||
| 187 | { | ||
| 188 | HWPoisonPage *page, *next_page; | ||
| 189 | |||
| 190 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page)for ((page) = ((&hwpoison_page_list)->lh_first); (page ) && ((next_page) = ((page)->list.le_next), 1); (page ) = (next_page)) { | ||
| 191 | QLIST_REMOVE(page, list)do { if ((page)->list.le_next != ((void *)0)) (page)->list .le_next->list.le_prev = (page)->list.le_prev; *(page)-> list.le_prev = (page)->list.le_next; } while ( 0); | ||
| 192 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE(1 << 12)); | ||
| 193 | g_free(page); | ||
| 194 | } | ||
| 195 | } | ||
| 196 | |||
| 197 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | ||
| 198 | { | ||
| 199 | HWPoisonPage *page; | ||
| 200 | |||
| 201 | QLIST_FOREACH(page, &hwpoison_page_list, list)for ((page) = ((&hwpoison_page_list)->lh_first); (page ); (page) = ((page)->list.le_next)) { | ||
| 202 | if (page->ram_addr == ram_addr) { | ||
| 203 | return; | ||
| 204 | } | ||
| 205 | } | ||
| 206 | page = g_malloc(sizeof(HWPoisonPage)); | ||
| 207 | page->ram_addr = ram_addr; | ||
| 208 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list)do { if (((page)->list.le_next = (&hwpoison_page_list) ->lh_first) != ((void *)0)) (&hwpoison_page_list)-> lh_first->list.le_prev = &(page)->list.le_next; (& hwpoison_page_list)->lh_first = (page); (page)->list.le_prev = &(&hwpoison_page_list)->lh_first; } while ( 0); | ||
| 209 | } | ||
| 210 | |||
| 211 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | ||
| 212 | int *max_banks) | ||
| 213 | { | ||
| 214 | int r; | ||
| 215 | |||
| 216 | r = kvm_check_extension(s, KVM_CAP_MCE31); | ||
| 217 | if (r > 0) { | ||
| 218 | *max_banks = r; | ||
| 219 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9d)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), mce_cap); | ||
| 220 | } | ||
| 221 | return -ENOSYS38; | ||
| 222 | } | ||
| 223 | |||
| 224 | static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code) | ||
| 225 | { | ||
| 226 | uint64_t status = MCI_STATUS_VAL(1ULL<<63) | MCI_STATUS_UC(1ULL<<61) | MCI_STATUS_EN(1ULL<<60) | | ||
| 227 | MCI_STATUS_MISCV(1ULL<<59) | MCI_STATUS_ADDRV(1ULL<<58) | MCI_STATUS_S(1ULL<<56); | ||
| 228 | uint64_t mcg_status = MCG_STATUS_MCIP(1ULL<<2); | ||
| 229 | |||
| 230 | if (code == BUS_MCEERR_AR4) { | ||
| 231 | status |= MCI_STATUS_AR(1ULL<<55) | 0x134; | ||
| 232 | mcg_status |= MCG_STATUS_EIPV(1ULL<<1); | ||
| 233 | } else { | ||
| 234 | status |= 0xc0; | ||
| 235 | mcg_status |= MCG_STATUS_RIPV(1ULL<<0); | ||
| 236 | } | ||
| 237 | cpu_x86_inject_mce(NULL((void *)0), env, 9, status, mcg_status, paddr, | ||
| 238 | (MCM_ADDR_PHYS2 << 6) | 0xc, | ||
| 239 | cpu_x86_support_mca_broadcast(env) ? | ||
| 240 | MCE_INJECT_BROADCAST1 : 0); | ||
| 241 | } | ||
| 242 | |||
| 243 | static void hardware_memory_error(void) | ||
| 244 | { | ||
| 245 | fprintf(stderrstderr, "Hardware memory error!\n"); | ||
| 246 | exit(1); | ||
| 247 | } | ||
| 248 | |||
| 249 | int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr) | ||
| 250 | { | ||
| 251 | ram_addr_t ram_addr; | ||
| 252 | target_phys_addr_t paddr; | ||
| |||
| 253 | |||
| 254 | if ((env->mcg_cap & MCG_SER_P(1ULL<<24)) && addr | ||
| |||
| 255 | && (code == BUS_MCEERR_AR4 || code == BUS_MCEERR_AO5)) { | ||
| 256 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | ||
| |||
| 257 | !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) { | ||
| 258 | fprintf(stderrstderr, "Hardware memory error for memory used by " | ||
| 259 | "QEMU itself instead of guest system!\n"); | ||
| 260 | /* Hope we are lucky for AO MCE */ | ||
| 261 | if (code == BUS_MCEERR_AO5) { | ||
| |||
| 262 | return 0; | ||
| 263 | } else { | ||
| 264 | hardware_memory_error(); | ||
| 265 | } | ||
| 266 | } | ||
| 267 | kvm_hwpoison_page_add(ram_addr); | ||
| 268 | kvm_mce_inject(env, paddr, code); | ||
| |||
| 269 | } else { | ||
| 270 | if (code == BUS_MCEERR_AO5) { | ||
| 271 | return 0; | ||
| 272 | } else if (code == BUS_MCEERR_AR4) { | ||
| 273 | hardware_memory_error(); | ||
| 274 | } else { | ||
| 275 | return 1; | ||
| 276 | } | ||
| 277 | } | ||
| 278 | return 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | int kvm_arch_on_sigbus(int code, void *addr) | ||
| 282 | { | ||
| 283 | if ((first_cpu->mcg_cap & MCG_SER_P(1ULL<<24)) && addr && code == BUS_MCEERR_AO5) { | ||
| 284 | ram_addr_t ram_addr; | ||
| 285 | target_phys_addr_t paddr; | ||
| 286 | |||
| 287 | /* Hope we are lucky for AO MCE */ | ||
| 288 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | ||
| 289 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, | ||
| 290 | &paddr)) { | ||
| 291 | fprintf(stderrstderr, "Hardware memory error for memory used by " | ||
| 292 | "QEMU itself instead of guest system!: %p\n", addr); | ||
| 293 | return 0; | ||
| 294 | } | ||
| 295 | kvm_hwpoison_page_add(ram_addr); | ||
| 296 | kvm_mce_inject(first_cpu, paddr, code); | ||
| 297 | } else { | ||
| 298 | if (code == BUS_MCEERR_AO5) { | ||
| 299 | return 0; | ||
| 300 | } else if (code == BUS_MCEERR_AR4) { | ||
| 301 | hardware_memory_error(); | ||
| 302 | } else { | ||
| 303 | return 1; | ||
| 304 | } | ||
| 305 | } | ||
| 306 | return 0; | ||
| 307 | } | ||
| 308 | |||
| 309 | static int kvm_inject_mce_oldstyle(CPUX86State *env) | ||
| 310 | { | ||
| 311 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK18) { | ||
| 312 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | ||
| 313 | struct kvm_x86_mce mce; | ||
| 314 | |||
| 315 | env->exception_injected = -1; | ||
| 316 | |||
| 317 | /* | ||
| 318 | * There must be at least one bank in use if an MCE is pending. | ||
| 319 | * Find it and use its values for the event injection. | ||
| 320 | */ | ||
| 321 | for (bank = 0; bank < bank_num; bank++) { | ||
| 322 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL(1ULL<<63)) { | ||
| 323 | break; | ||
| 324 | } | ||
| 325 | } | ||
| 326 | assert(bank < bank_num)((bank < bank_num) ? (void) (0) : __assert_fail ("bank < bank_num" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 326 , __PRETTY_FUNCTION__)); | ||
| 327 | |||
| 328 | mce.bank = bank; | ||
| 329 | mce.status = env->mce_banks[bank * 4 + 1]; | ||
| 330 | mce.mcg_status = env->mcg_status; | ||
| 331 | mce.addr = env->mce_banks[bank * 4 + 2]; | ||
| 332 | mce.misc = env->mce_banks[bank * 4 + 3]; | ||
| 333 | |||
| 334 | return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9e)) << 0) | ((((sizeof(struct kvm_x86_mce)))) << ((0 +8)+8))), &mce); | ||
| 335 | } | ||
| 336 | return 0; | ||
| 337 | } | ||
| 338 | |||
| 339 | static void cpu_update_state(void *opaque, int running, RunState state) | ||
| 340 | { | ||
| 341 | CPUX86State *env = opaque; | ||
| 342 | |||
| 343 | if (running) { | ||
| 344 | env->tsc_valid = false0; | ||
| 345 | } | ||
| 346 | } | ||
| 347 | |||
| 348 | int kvm_arch_init_vcpu(CPUX86State *env) | ||
| 349 | { | ||
| 350 | struct { | ||
| 351 | struct kvm_cpuid2 cpuid; | ||
| 352 | struct kvm_cpuid_entry2 entries[100]; | ||
| 353 | } QEMU_PACKED__attribute__((packed)) cpuid_data; | ||
| 354 | KVMState *s = env->kvm_state; | ||
| 355 | uint32_t limit, i, j, cpuid_i; | ||
| 356 | uint32_t unused; | ||
| 357 | struct kvm_cpuid_entry2 *c; | ||
| 358 | uint32_t signature[3]; | ||
| 359 | int r; | ||
| 360 | |||
| 361 | env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX2); | ||
| 362 | |||
| 363 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR(1 << 31); | ||
| 364 | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX1); | ||
| 365 | env->cpuid_ext_features |= i; | ||
| 366 | |||
| 367 | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | ||
| 368 | 0, R_EDX2); | ||
| 369 | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | ||
| 370 | 0, R_ECX1); | ||
| 371 | env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A, | ||
| 372 | 0, R_EDX2); | ||
| 373 | |||
| 374 | cpuid_i = 0; | ||
| 375 | |||
| 376 | /* Paravirtualization CPUIDs */ | ||
| 377 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 378 | memset(c, 0, sizeof(*c)); | ||
| 379 | c->function = KVM_CPUID_SIGNATURE0x40000000; | ||
| 380 | if (!hyperv_enabled()) { | ||
| 381 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | ||
| 382 | c->eax = 0; | ||
| 383 | } else { | ||
| 384 | memcpy(signature, "Microsoft Hv", 12); | ||
| 385 | c->eax = HYPERV_CPUID_MIN0x40000005; | ||
| 386 | } | ||
| 387 | c->ebx = signature[0]; | ||
| 388 | c->ecx = signature[1]; | ||
| 389 | c->edx = signature[2]; | ||
| 390 | |||
| 391 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 392 | memset(c, 0, sizeof(*c)); | ||
| 393 | c->function = KVM_CPUID_FEATURES0x40000001; | ||
| 394 | c->eax = env->cpuid_kvm_features & | ||
| 395 | kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES0x40000001, 0, R_EAX0); | ||
| 396 | |||
| 397 | if (hyperv_enabled()) { | ||
| 398 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | ||
| 399 | c->eax = signature[0]; | ||
| 400 | |||
| 401 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 402 | memset(c, 0, sizeof(*c)); | ||
| 403 | c->function = HYPERV_CPUID_VERSION0x40000002; | ||
| 404 | c->eax = 0x00001bbc; | ||
| 405 | c->ebx = 0x00060001; | ||
| 406 | |||
| 407 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 408 | memset(c, 0, sizeof(*c)); | ||
| 409 | c->function = HYPERV_CPUID_FEATURES0x40000003; | ||
| 410 | if (hyperv_relaxed_timing_enabled()) { | ||
| 411 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE(1 << 5); | ||
| 412 | } | ||
| 413 | if (hyperv_vapic_recommended()) { | ||
| 414 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE(1 << 5); | ||
| 415 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE(1 << 4); | ||
| 416 | } | ||
| 417 | |||
| 418 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 419 | memset(c, 0, sizeof(*c)); | ||
| 420 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO0x40000004; | ||
| 421 | if (hyperv_relaxed_timing_enabled()) { | ||
| 422 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED(1 << 5); | ||
| 423 | } | ||
| 424 | if (hyperv_vapic_recommended()) { | ||
| 425 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED(1 << 3); | ||
| 426 | } | ||
| 427 | c->ebx = hyperv_get_spinlock_retries(); | ||
| 428 | |||
| 429 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 430 | memset(c, 0, sizeof(*c)); | ||
| 431 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS0x40000005; | ||
| 432 | c->eax = 0x40; | ||
| 433 | c->ebx = 0x40; | ||
| 434 | |||
| 435 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 436 | memset(c, 0, sizeof(*c)); | ||
| 437 | c->function = KVM_CPUID_SIGNATURE_NEXT0x40000100; | ||
| 438 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | ||
| 439 | c->eax = 0; | ||
| 440 | c->ebx = signature[0]; | ||
| 441 | c->ecx = signature[1]; | ||
| 442 | c->edx = signature[2]; | ||
| 443 | } | ||
| 444 | |||
| 445 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF4); | ||
| 446 | |||
| 447 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | ||
| 448 | |||
| 449 | for (i = 0; i <= limit; i++) { | ||
| 450 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 451 | |||
| 452 | switch (i) { | ||
| 453 | case 2: { | ||
| 454 | /* Keep reading function 2 till all the input is received */ | ||
| 455 | int times; | ||
| 456 | |||
| 457 | c->function = i; | ||
| 458 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC2 | | ||
| 459 | KVM_CPUID_FLAG_STATE_READ_NEXT4; | ||
| 460 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 461 | times = c->eax & 0xff; | ||
| 462 | |||
| 463 | for (j = 1; j < times; ++j) { | ||
| 464 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 465 | c->function = i; | ||
| 466 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC2; | ||
| 467 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 468 | } | ||
| 469 | break; | ||
| 470 | } | ||
| 471 | case 4: | ||
| 472 | case 0xb: | ||
| 473 | case 0xd: | ||
| 474 | for (j = 0; ; j++) { | ||
| 475 | if (i == 0xd && j == 64) { | ||
| 476 | break; | ||
| 477 | } | ||
| 478 | c->function = i; | ||
| 479 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX1; | ||
| 480 | c->index = j; | ||
| 481 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 482 | |||
| 483 | if (i == 4 && c->eax == 0) { | ||
| 484 | break; | ||
| 485 | } | ||
| 486 | if (i == 0xb && !(c->ecx & 0xff00)) { | ||
| 487 | break; | ||
| 488 | } | ||
| 489 | if (i == 0xd && c->eax == 0) { | ||
| 490 | continue; | ||
| 491 | } | ||
| 492 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 493 | } | ||
| 494 | break; | ||
| 495 | default: | ||
| 496 | c->function = i; | ||
| 497 | c->flags = 0; | ||
| 498 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 499 | break; | ||
| 500 | } | ||
| 501 | } | ||
| 502 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | ||
| 503 | |||
| 504 | for (i = 0x80000000; i <= limit; i++) { | ||
| 505 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 506 | |||
| 507 | c->function = i; | ||
| 508 | c->flags = 0; | ||
| 509 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 510 | } | ||
| 511 | |||
| 512 | /* Call Centaur's CPUID instructions they are supported. */ | ||
| 513 | if (env->cpuid_xlevel2 > 0) { | ||
| 514 | env->cpuid_ext4_features &= | ||
| 515 | kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX2); | ||
| 516 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); | ||
| 517 | |||
| 518 | for (i = 0xC0000000; i <= limit; i++) { | ||
| 519 | c = &cpuid_data.entries[cpuid_i++]; | ||
| 520 | |||
| 521 | c->function = i; | ||
| 522 | c->flags = 0; | ||
| 523 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
| 524 | } | ||
| 525 | } | ||
| 526 | |||
| 527 | cpuid_data.cpuid.nent = cpuid_i; | ||
| 528 | |||
| 529 | if (((env->cpuid_version >> 8)&0xF) >= 6 | ||
| 530 | && (env->cpuid_features&(CPUID_MCE(1 << 7)|CPUID_MCA(1 << 14))) == (CPUID_MCE(1 << 7)|CPUID_MCA(1 << 14)) | ||
| 531 | && kvm_check_extension(env->kvm_state, KVM_CAP_MCE31) > 0) { | ||
| 532 | uint64_t mcg_cap; | ||
| 533 | int banks; | ||
| 534 | int ret; | ||
| 535 | |||
| 536 | ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); | ||
| 537 | if (ret < 0) { | ||
| 538 | fprintf(stderrstderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | ||
| 539 | return ret; | ||
| 540 | } | ||
| 541 | |||
| 542 | if (banks > MCE_BANKS_DEF10) { | ||
| 543 | banks = MCE_BANKS_DEF10; | ||
| 544 | } | ||
| 545 | mcg_cap &= MCE_CAP_DEF((1ULL<<8)|(1ULL<<24)); | ||
| 546 | mcg_cap |= banks; | ||
| 547 | ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9c)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), &mcg_cap); | ||
| 548 | if (ret < 0) { | ||
| 549 | fprintf(stderrstderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | ||
| 550 | return ret; | ||
| 551 | } | ||
| 552 | |||
| 553 | env->mcg_cap = mcg_cap; | ||
| 554 | } | ||
| 555 | |||
| 556 | qemu_add_vm_change_state_handler(cpu_update_state, env); | ||
| 557 | |||
| 558 | cpuid_data.cpuid.padding = 0; | ||
| 559 | r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x90)) << 0) | ((((sizeof(struct kvm_cpuid2)))) << ((0 +8)+8))), &cpuid_data); | ||
| 560 | if (r) { | ||
| 561 | return r; | ||
| 562 | } | ||
| 563 | |||
| 564 | r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL60); | ||
| 565 | if (r && env->tsc_khz) { | ||
| 566 | r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa2)) << 0) | ((0) << ((0 +8)+8))), env->tsc_khz); | ||
| 567 | if (r < 0) { | ||
| 568 | fprintf(stderrstderr, "KVM_SET_TSC_KHZ failed\n"); | ||
| 569 | return r; | ||
| 570 | } | ||
| 571 | } | ||
| 572 | |||
| 573 | if (kvm_has_xsave()) { | ||
| 574 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | ||
| 575 | } | ||
| 576 | |||
| 577 | return 0; | ||
| 578 | } | ||
| 579 | |||
| 580 | void kvm_arch_reset_vcpu(CPUX86State *env) | ||
| 581 | { | ||
| 582 | env->exception_injected = -1; | ||
| 583 | env->interrupt_injected = -1; | ||
| 584 | env->xcr0 = 1; | ||
| 585 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 586 | env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE0 : | ||
| 587 | KVM_MP_STATE_UNINITIALIZED1; | ||
| 588 | } else { | ||
| 589 | env->mp_state = KVM_MP_STATE_RUNNABLE0; | ||
| 590 | } | ||
| 591 | } | ||
| 592 | |||
| 593 | static int kvm_get_supported_msrs(KVMState *s) | ||
| 594 | { | ||
| 595 | static int kvm_supported_msrs; | ||
| 596 | int ret = 0; | ||
| 597 | |||
| 598 | /* first time */ | ||
| 599 | if (kvm_supported_msrs == 0) { | ||
| 600 | struct kvm_msr_list msr_list, *kvm_msr_list; | ||
| 601 | |||
| 602 | kvm_supported_msrs = -1; | ||
| 603 | |||
| 604 | /* Obtain MSR list from KVM. These are the MSRs that we must | ||
| 605 | * save/restore */ | ||
| 606 | msr_list.nmsrs = 0; | ||
| 607 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x02)) << 0) | ((((sizeof(struct kvm_msr_list) ))) << ((0 +8)+8))), &msr_list); | ||
| 608 | if (ret < 0 && ret != -E2BIG7) { | ||
| 609 | return ret; | ||
| 610 | } | ||
| 611 | /* Old kernel modules had a bug and could write beyond the provided | ||
| 612 | memory. Allocate at least a safe amount of 1K. */ | ||
| 613 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))) | ||
| 614 | msr_list.nmsrs *(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))) | ||
| 615 | sizeof(msr_list.indices[0]))(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0])))); | ||
| 616 | |||
| 617 | kvm_msr_list->nmsrs = msr_list.nmsrs; | ||
| 618 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x02)) << 0) | ((((sizeof(struct kvm_msr_list) ))) << ((0 +8)+8))), kvm_msr_list); | ||
| 619 | if (ret >= 0) { | ||
| 620 | int i; | ||
| 621 | |||
| 622 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | ||
| 623 | if (kvm_msr_list->indices[i] == MSR_STAR0xc0000081) { | ||
| 624 | has_msr_star = true1; | ||
| 625 | continue; | ||
| 626 | } | ||
| 627 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA0xc0010117) { | ||
| 628 | has_msr_hsave_pa = true1; | ||
| 629 | continue; | ||
| 630 | } | ||
| 631 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE0x6e0) { | ||
| 632 | has_msr_tsc_deadline = true1; | ||
| 633 | continue; | ||
| 634 | } | ||
| 635 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE0x1a0) { | ||
| 636 | has_msr_misc_enable = true1; | ||
| 637 | continue; | ||
| 638 | } | ||
| 639 | } | ||
| 640 | } | ||
| 641 | |||
| 642 | g_free(kvm_msr_list); | ||
| 643 | } | ||
| 644 | |||
| 645 | return ret; | ||
| 646 | } | ||
| 647 | |||
| 648 | int kvm_arch_init(KVMState *s) | ||
| 649 | { | ||
| 650 | QemuOptsList *list = qemu_find_opts("machine"); | ||
| 651 | uint64_t identity_base = 0xfffbc000; | ||
| 652 | uint64_t shadow_mem; | ||
| 653 | int ret; | ||
| 654 | struct utsname utsname; | ||
| 655 | |||
| 656 | ret = kvm_get_supported_msrs(s); | ||
| 657 | if (ret < 0) { | ||
| 658 | return ret; | ||
| 659 | } | ||
| 660 | |||
| 661 | uname(&utsname); | ||
| 662 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | ||
| 663 | |||
| 664 | /* | ||
| 665 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | ||
| 666 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | ||
| 667 | * Since these must be part of guest physical memory, we need to allocate | ||
| 668 | * them, both by setting their start addresses in the kernel and by | ||
| 669 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | ||
| 670 | * | ||
| 671 | * Older KVM versions may not support setting the identity map base. In | ||
| 672 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | ||
| 673 | * size. | ||
| 674 | */ | ||
| 675 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR37)) { | ||
| 676 | /* Allows up to 16M BIOSes. */ | ||
| 677 | identity_base = 0xfeffc000; | ||
| 678 | |||
| 679 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x48)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), &identity_base); | ||
| 680 | if (ret < 0) { | ||
| 681 | return ret; | ||
| 682 | } | ||
| 683 | } | ||
| 684 | |||
| 685 | /* Set TSS base one page after EPT identity map. */ | ||
| 686 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x47)) << 0) | ((0) << ((0 +8)+8))), identity_base + 0x1000); | ||
| 687 | if (ret < 0) { | ||
| 688 | return ret; | ||
| 689 | } | ||
| 690 | |||
| 691 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ | ||
| 692 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED2); | ||
| 693 | if (ret < 0) { | ||
| 694 | fprintf(stderrstderr, "e820_add_entry() table is full\n"); | ||
| 695 | return ret; | ||
| 696 | } | ||
| 697 | qemu_register_reset(kvm_unpoison_all, NULL((void *)0)); | ||
| 698 | |||
| 699 | if (!QTAILQ_EMPTY(&list->head)((&list->head)->tqh_first == ((void *)0))) { | ||
| 700 | shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head)((&list->head)->tqh_first), | ||
| 701 | "kvm_shadow_mem", -1); | ||
| 702 | if (shadow_mem != -1) { | ||
| 703 | shadow_mem /= 4096; | ||
| 704 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x44)) << 0) | ((0) << ((0 +8)+8))), shadow_mem); | ||
| 705 | if (ret < 0) { | ||
| 706 | return ret; | ||
| 707 | } | ||
| 708 | } | ||
| 709 | } | ||
| 710 | return 0; | ||
| 711 | } | ||
| 712 | |||
| 713 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | ||
| 714 | { | ||
| 715 | lhs->selector = rhs->selector; | ||
| 716 | lhs->base = rhs->base; | ||
| 717 | lhs->limit = rhs->limit; | ||
| 718 | lhs->type = 3; | ||
| 719 | lhs->present = 1; | ||
| 720 | lhs->dpl = 3; | ||
| 721 | lhs->db = 0; | ||
| 722 | lhs->s = 1; | ||
| 723 | lhs->l = 0; | ||
| 724 | lhs->g = 0; | ||
| 725 | lhs->avl = 0; | ||
| 726 | lhs->unusable = 0; | ||
| 727 | } | ||
| 728 | |||
| 729 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | ||
| 730 | { | ||
| 731 | unsigned flags = rhs->flags; | ||
| 732 | lhs->selector = rhs->selector; | ||
| 733 | lhs->base = rhs->base; | ||
| 734 | lhs->limit = rhs->limit; | ||
| 735 | lhs->type = (flags >> DESC_TYPE_SHIFT8) & 15; | ||
| 736 | lhs->present = (flags & DESC_P_MASK(1 << 15)) != 0; | ||
| 737 | lhs->dpl = (flags >> DESC_DPL_SHIFT13) & 3; | ||
| 738 | lhs->db = (flags >> DESC_B_SHIFT22) & 1; | ||
| 739 | lhs->s = (flags & DESC_S_MASK(1 << 12)) != 0; | ||
| 740 | lhs->l = (flags >> DESC_L_SHIFT21) & 1; | ||
| 741 | lhs->g = (flags & DESC_G_MASK(1 << 23)) != 0; | ||
| 742 | lhs->avl = (flags & DESC_AVL_MASK(1 << 20)) != 0; | ||
| 743 | lhs->unusable = 0; | ||
| 744 | lhs->padding = 0; | ||
| 745 | } | ||
| 746 | |||
| 747 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | ||
| 748 | { | ||
| 749 | lhs->selector = rhs->selector; | ||
| 750 | lhs->base = rhs->base; | ||
| 751 | lhs->limit = rhs->limit; | ||
| 752 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT8) | | ||
| 753 | (rhs->present * DESC_P_MASK(1 << 15)) | | ||
| 754 | (rhs->dpl << DESC_DPL_SHIFT13) | | ||
| 755 | (rhs->db << DESC_B_SHIFT22) | | ||
| 756 | (rhs->s * DESC_S_MASK(1 << 12)) | | ||
| 757 | (rhs->l << DESC_L_SHIFT21) | | ||
| 758 | (rhs->g * DESC_G_MASK(1 << 23)) | | ||
| 759 | (rhs->avl * DESC_AVL_MASK(1 << 20)); | ||
| 760 | } | ||
| 761 | |||
| 762 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | ||
| 763 | { | ||
| 764 | if (set) { | ||
| 765 | *kvm_reg = *qemu_reg; | ||
| 766 | } else { | ||
| 767 | *qemu_reg = *kvm_reg; | ||
| 768 | } | ||
| 769 | } | ||
| 770 | |||
| 771 | static int kvm_getput_regs(CPUX86State *env, int set) | ||
| 772 | { | ||
| 773 | struct kvm_regs regs; | ||
| 774 | int ret = 0; | ||
| 775 | |||
| 776 | if (!set) { | ||
| 777 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x81)) << 0) | ((((sizeof(struct kvm_regs)))) << ((0 +8)+8))), ®s); | ||
| 778 | if (ret < 0) { | ||
| 779 | return ret; | ||
| 780 | } | ||
| 781 | } | ||
| 782 | |||
| 783 | kvm_getput_reg(®s.rax, &env->regs[R_EAX0], set); | ||
| 784 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX3], set); | ||
| 785 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX1], set); | ||
| 786 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX2], set); | ||
| 787 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI6], set); | ||
| 788 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI7], set); | ||
| 789 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP4], set); | ||
| 790 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP5], set); | ||
| 791 | #ifdef TARGET_X86_641 | ||
| 792 | kvm_getput_reg(®s.r8, &env->regs[8], set); | ||
| 793 | kvm_getput_reg(®s.r9, &env->regs[9], set); | ||
| 794 | kvm_getput_reg(®s.r10, &env->regs[10], set); | ||
| 795 | kvm_getput_reg(®s.r11, &env->regs[11], set); | ||
| 796 | kvm_getput_reg(®s.r12, &env->regs[12], set); | ||
| 797 | kvm_getput_reg(®s.r13, &env->regs[13], set); | ||
| 798 | kvm_getput_reg(®s.r14, &env->regs[14], set); | ||
| 799 | kvm_getput_reg(®s.r15, &env->regs[15], set); | ||
| 800 | #endif | ||
| 801 | |||
| 802 | kvm_getput_reg(®s.rflags, &env->eflags, set); | ||
| 803 | kvm_getput_reg(®s.rip, &env->eip, set); | ||
| 804 | |||
| 805 | if (set) { | ||
| 806 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x82)) << 0) | ((((sizeof(struct kvm_regs)))) << ((0 +8)+8))), ®s); | ||
| 807 | } | ||
| 808 | |||
| 809 | return ret; | ||
| 810 | } | ||
| 811 | |||
| 812 | static int kvm_put_fpu(CPUX86State *env) | ||
| 813 | { | ||
| 814 | struct kvm_fpu fpu; | ||
| 815 | int i; | ||
| 816 | |||
| 817 | memset(&fpu, 0, sizeof fpu); | ||
| 818 | fpu.fsw = env->fpus & ~(7 << 11); | ||
| 819 | fpu.fsw |= (env->fpstt & 7) << 11; | ||
| 820 | fpu.fcw = env->fpuc; | ||
| 821 | fpu.last_opcode = env->fpop; | ||
| 822 | fpu.last_ip = env->fpip; | ||
| 823 | fpu.last_dp = env->fpdp; | ||
| 824 | for (i = 0; i < 8; ++i) { | ||
| 825 | fpu.ftwx |= (!env->fptags[i]) << i; | ||
| 826 | } | ||
| 827 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | ||
| 828 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | ||
| 829 | fpu.mxcsr = env->mxcsr; | ||
| 830 | |||
| 831 | return kvm_vcpu_ioctl(env, KVM_SET_FPU(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8d)) << 0) | ((((sizeof(struct kvm_fpu)))) << ((0 +8)+8))), &fpu); | ||
| 832 | } | ||
| 833 | |||
| 834 | #define XSAVE_FCW_FSW0 0 | ||
| 835 | #define XSAVE_FTW_FOP1 1 | ||
| 836 | #define XSAVE_CWD_RIP2 2 | ||
| 837 | #define XSAVE_CWD_RDP4 4 | ||
| 838 | #define XSAVE_MXCSR6 6 | ||
| 839 | #define XSAVE_ST_SPACE8 8 | ||
| 840 | #define XSAVE_XMM_SPACE40 40 | ||
| 841 | #define XSAVE_XSTATE_BV128 128 | ||
| 842 | #define XSAVE_YMMH_SPACE144 144 | ||
| 843 | |||
| 844 | static int kvm_put_xsave(CPUX86State *env) | ||
| 845 | { | ||
| 846 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | ||
| 847 | uint16_t cwd, swd, twd; | ||
| 848 | int i, r; | ||
| 849 | |||
| 850 | if (!kvm_has_xsave()) { | ||
| 851 | return kvm_put_fpu(env); | ||
| 852 | } | ||
| 853 | |||
| 854 | memset(xsave, 0, sizeof(struct kvm_xsave)); | ||
| 855 | twd = 0; | ||
| 856 | swd = env->fpus & ~(7 << 11); | ||
| 857 | swd |= (env->fpstt & 7) << 11; | ||
| 858 | cwd = env->fpuc; | ||
| 859 | for (i = 0; i < 8; ++i) { | ||
| 860 | twd |= (!env->fptags[i]) << i; | ||
| 861 | } | ||
| 862 | xsave->region[XSAVE_FCW_FSW0] = (uint32_t)(swd << 16) + cwd; | ||
| 863 | xsave->region[XSAVE_FTW_FOP1] = (uint32_t)(env->fpop << 16) + twd; | ||
| 864 | memcpy(&xsave->region[XSAVE_CWD_RIP2], &env->fpip, sizeof(env->fpip)); | ||
| 865 | memcpy(&xsave->region[XSAVE_CWD_RDP4], &env->fpdp, sizeof(env->fpdp)); | ||
| 866 | memcpy(&xsave->region[XSAVE_ST_SPACE8], env->fpregs, | ||
| 867 | sizeof env->fpregs); | ||
| 868 | memcpy(&xsave->region[XSAVE_XMM_SPACE40], env->xmm_regs, | ||
| 869 | sizeof env->xmm_regs); | ||
| 870 | xsave->region[XSAVE_MXCSR6] = env->mxcsr; | ||
| 871 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV128] = env->xstate_bv; | ||
| 872 | memcpy(&xsave->region[XSAVE_YMMH_SPACE144], env->ymmh_regs, | ||
| 873 | sizeof env->ymmh_regs); | ||
| 874 | r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa5)) << 0) | ((((sizeof(struct kvm_xsave)))) << ((0 +8)+8))), xsave); | ||
| 875 | return r; | ||
| 876 | } | ||
| 877 | |||
| 878 | static int kvm_put_xcrs(CPUX86State *env) | ||
| 879 | { | ||
| 880 | struct kvm_xcrs xcrs; | ||
| 881 | |||
| 882 | if (!kvm_has_xcrs()) { | ||
| 883 | return 0; | ||
| 884 | } | ||
| 885 | |||
| 886 | xcrs.nr_xcrs = 1; | ||
| 887 | xcrs.flags = 0; | ||
| 888 | xcrs.xcrs[0].xcr = 0; | ||
| 889 | xcrs.xcrs[0].value = env->xcr0; | ||
| 890 | return kvm_vcpu_ioctl(env, KVM_SET_XCRS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa7)) << 0) | ((((sizeof(struct kvm_xcrs)))) << ((0 +8)+8))), &xcrs); | ||
| 891 | } | ||
| 892 | |||
| 893 | static int kvm_put_sregs(CPUX86State *env) | ||
| 894 | { | ||
| 895 | struct kvm_sregs sregs; | ||
| 896 | |||
| 897 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | ||
| 898 | if (env->interrupt_injected >= 0) { | ||
| 899 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | ||
| 900 | (uint64_t)1 << (env->interrupt_injected % 64); | ||
| 901 | } | ||
| 902 | |||
| 903 | if ((env->eflags & VM_MASK0x00020000)) { | ||
| 904 | set_v8086_seg(&sregs.cs, &env->segs[R_CS1]); | ||
| 905 | set_v8086_seg(&sregs.ds, &env->segs[R_DS3]); | ||
| 906 | set_v8086_seg(&sregs.es, &env->segs[R_ES0]); | ||
| 907 | set_v8086_seg(&sregs.fs, &env->segs[R_FS4]); | ||
| 908 | set_v8086_seg(&sregs.gs, &env->segs[R_GS5]); | ||
| 909 | set_v8086_seg(&sregs.ss, &env->segs[R_SS2]); | ||
| 910 | } else { | ||
| 911 | set_seg(&sregs.cs, &env->segs[R_CS1]); | ||
| 912 | set_seg(&sregs.ds, &env->segs[R_DS3]); | ||
| 913 | set_seg(&sregs.es, &env->segs[R_ES0]); | ||
| 914 | set_seg(&sregs.fs, &env->segs[R_FS4]); | ||
| 915 | set_seg(&sregs.gs, &env->segs[R_GS5]); | ||
| 916 | set_seg(&sregs.ss, &env->segs[R_SS2]); | ||
| 917 | } | ||
| 918 | |||
| 919 | set_seg(&sregs.tr, &env->tr); | ||
| 920 | set_seg(&sregs.ldt, &env->ldt); | ||
| 921 | |||
| 922 | sregs.idt.limit = env->idt.limit; | ||
| 923 | sregs.idt.base = env->idt.base; | ||
| 924 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); | ||
| 925 | sregs.gdt.limit = env->gdt.limit; | ||
| 926 | sregs.gdt.base = env->gdt.base; | ||
| 927 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); | ||
| 928 | |||
| 929 | sregs.cr0 = env->cr[0]; | ||
| 930 | sregs.cr2 = env->cr[2]; | ||
| 931 | sregs.cr3 = env->cr[3]; | ||
| 932 | sregs.cr4 = env->cr[4]; | ||
| 933 | |||
| 934 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); | ||
| 935 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | ||
| 936 | |||
| 937 | sregs.efer = env->efer; | ||
| 938 | |||
| 939 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x84)) << 0) | ((((sizeof(struct kvm_sregs)))) << ((0 +8)+8))), &sregs); | ||
| 940 | } | ||
| 941 | |||
| 942 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | ||
| 943 | uint32_t index, uint64_t value) | ||
| 944 | { | ||
| 945 | entry->index = index; | ||
| 946 | entry->data = value; | ||
| 947 | } | ||
| 948 | |||
| 949 | static int kvm_put_msrs(CPUX86State *env, int level) | ||
| 950 | { | ||
| 951 | struct { | ||
| 952 | struct kvm_msrs info; | ||
| 953 | struct kvm_msr_entry entries[100]; | ||
| 954 | } msr_data; | ||
| 955 | struct kvm_msr_entry *msrs = msr_data.entries; | ||
| 956 | int n = 0; | ||
| 957 | |||
| 958 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS0x174, env->sysenter_cs); | ||
| 959 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP0x175, env->sysenter_esp); | ||
| 960 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP0x176, env->sysenter_eip); | ||
| 961 | kvm_msr_entry_set(&msrs[n++], MSR_PAT0x277, env->pat); | ||
| 962 | if (has_msr_star) { | ||
| 963 | kvm_msr_entry_set(&msrs[n++], MSR_STAR0xc0000081, env->star); | ||
| 964 | } | ||
| 965 | if (has_msr_hsave_pa) { | ||
| 966 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA0xc0010117, env->vm_hsave); | ||
| 967 | } | ||
| 968 | if (has_msr_tsc_deadline) { | ||
| 969 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE0x6e0, env->tsc_deadline); | ||
| 970 | } | ||
| 971 | if (has_msr_misc_enable) { | ||
| 972 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE0x1a0, | ||
| 973 | env->msr_ia32_misc_enable); | ||
| 974 | } | ||
| 975 | #ifdef TARGET_X86_641 | ||
| 976 | if (lm_capable_kernel) { | ||
| 977 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR0xc0000083, env->cstar); | ||
| 978 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE0xc0000102, env->kernelgsbase); | ||
| 979 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK0xc0000084, env->fmask); | ||
| 980 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR0xc0000082, env->lstar); | ||
| 981 | } | ||
| 982 | #endif | ||
| 983 | if (level == KVM_PUT_FULL_STATE3) { | ||
| 984 | /* | ||
| 985 | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | ||
| 986 | * writeback. Until this is fixed, we only write the offset to SMP | ||
| 987 | * guests after migration, desynchronizing the VCPUs, but avoiding | ||
| 988 | * huge jump-backs that would occur without any writeback at all. | ||
| 989 | */ | ||
| 990 | if (smp_cpus == 1 || env->tsc != 0) { | ||
| 991 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC0x10, env->tsc); | ||
| 992 | } | ||
| 993 | } | ||
| 994 | /* | ||
| 995 | * The following paravirtual MSRs have side effects on the guest or are | ||
| 996 | * too heavy for normal writeback. Limit them to reset or full state | ||
| 997 | * updates. | ||
| 998 | */ | ||
| 999 | if (level >= KVM_PUT_RESET_STATE2) { | ||
| 1000 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME0x12, | ||
| 1001 | env->system_time_msr); | ||
| 1002 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK0x11, env->wall_clock_msr); | ||
| 1003 | if (has_msr_async_pf_en) { | ||
| 1004 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN0x4b564d02, | ||
| 1005 | env->async_pf_en_msr); | ||
| 1006 | } | ||
| 1007 | if (hyperv_hypercall_available()) { | ||
| 1008 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID0x40000000, 0); | ||
| 1009 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL0x40000001, 0); | ||
| 1010 | } | ||
| 1011 | if (hyperv_vapic_recommended()) { | ||
| 1012 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE0x40000073, 0); | ||
| 1013 | } | ||
| 1014 | } | ||
| 1015 | if (env->mcg_cap) { | ||
| 1016 | int i; | ||
| 1017 | |||
| 1018 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS0x17a, env->mcg_status); | ||
| 1019 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL0x17b, env->mcg_ctl); | ||
| 1020 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | ||
| 1021 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL0x400 + i, env->mce_banks[i]); | ||
| 1022 | } | ||
| 1023 | } | ||
| 1024 | |||
| 1025 | msr_data.info.nmsrs = n; | ||
| 1026 | |||
| 1027 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x89)) << 0) | ((((sizeof(struct kvm_msrs)))) << ((0 +8)+8))), &msr_data); | ||
| 1028 | |||
| 1029 | } | ||
| 1030 | |||
| 1031 | |||
| 1032 | static int kvm_get_fpu(CPUX86State *env) | ||
| 1033 | { | ||
| 1034 | struct kvm_fpu fpu; | ||
| 1035 | int i, ret; | ||
| 1036 | |||
| 1037 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8c)) << 0) | ((((sizeof(struct kvm_fpu)))) << ((0 +8)+8))), &fpu); | ||
| 1038 | if (ret < 0) { | ||
| 1039 | return ret; | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | env->fpstt = (fpu.fsw >> 11) & 7; | ||
| 1043 | env->fpus = fpu.fsw; | ||
| 1044 | env->fpuc = fpu.fcw; | ||
| 1045 | env->fpop = fpu.last_opcode; | ||
| 1046 | env->fpip = fpu.last_ip; | ||
| 1047 | env->fpdp = fpu.last_dp; | ||
| 1048 | for (i = 0; i < 8; ++i) { | ||
| 1049 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | ||
| 1050 | } | ||
| 1051 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | ||
| 1052 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | ||
| 1053 | env->mxcsr = fpu.mxcsr; | ||
| 1054 | |||
| 1055 | return 0; | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | static int kvm_get_xsave(CPUX86State *env) | ||
| 1059 | { | ||
| 1060 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | ||
| 1061 | int ret, i; | ||
| 1062 | uint16_t cwd, swd, twd; | ||
| 1063 | |||
| 1064 | if (!kvm_has_xsave()) { | ||
| 1065 | return kvm_get_fpu(env); | ||
| 1066 | } | ||
| 1067 | |||
| 1068 | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa4)) << 0) | ((((sizeof(struct kvm_xsave)))) << ((0 +8)+8))), xsave); | ||
| 1069 | if (ret < 0) { | ||
| 1070 | return ret; | ||
| 1071 | } | ||
| 1072 | |||
| 1073 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW0]; | ||
| 1074 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW0] >> 16); | ||
| 1075 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP1]; | ||
| 1076 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP1] >> 16); | ||
| 1077 | env->fpstt = (swd >> 11) & 7; | ||
| 1078 | env->fpus = swd; | ||
| 1079 | env->fpuc = cwd; | ||
| 1080 | for (i = 0; i < 8; ++i) { | ||
| 1081 | env->fptags[i] = !((twd >> i) & 1); | ||
| 1082 | } | ||
| 1083 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP2], sizeof(env->fpip)); | ||
| 1084 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP4], sizeof(env->fpdp)); | ||
| 1085 | env->mxcsr = xsave->region[XSAVE_MXCSR6]; | ||
| 1086 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE8], | ||
| 1087 | sizeof env->fpregs); | ||
| 1088 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE40], | ||
| 1089 | sizeof env->xmm_regs); | ||
| 1090 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV128]; | ||
| 1091 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE144], | ||
| 1092 | sizeof env->ymmh_regs); | ||
| 1093 | return 0; | ||
| 1094 | } | ||
| 1095 | |||
| 1096 | static int kvm_get_xcrs(CPUX86State *env) | ||
| 1097 | { | ||
| 1098 | int i, ret; | ||
| 1099 | struct kvm_xcrs xcrs; | ||
| 1100 | |||
| 1101 | if (!kvm_has_xcrs()) { | ||
| 1102 | return 0; | ||
| 1103 | } | ||
| 1104 | |||
| 1105 | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa6)) << 0) | ((((sizeof(struct kvm_xcrs)))) << ((0 +8)+8))), &xcrs); | ||
| 1106 | if (ret < 0) { | ||
| 1107 | return ret; | ||
| 1108 | } | ||
| 1109 | |||
| 1110 | for (i = 0; i < xcrs.nr_xcrs; i++) { | ||
| 1111 | /* Only support xcr0 now */ | ||
| 1112 | if (xcrs.xcrs[0].xcr == 0) { | ||
| 1113 | env->xcr0 = xcrs.xcrs[0].value; | ||
| 1114 | break; | ||
| 1115 | } | ||
| 1116 | } | ||
| 1117 | return 0; | ||
| 1118 | } | ||
| 1119 | |||
| 1120 | static int kvm_get_sregs(CPUX86State *env) | ||
| 1121 | { | ||
| 1122 | struct kvm_sregs sregs; | ||
| 1123 | uint32_t hflags; | ||
| 1124 | int bit, i, ret; | ||
| 1125 | |||
| 1126 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x83)) << 0) | ((((sizeof(struct kvm_sregs)))) << ((0 +8)+8))), &sregs); | ||
| 1127 | if (ret < 0) { | ||
| 1128 | return ret; | ||
| 1129 | } | ||
| 1130 | |||
| 1131 | /* There can only be one pending IRQ set in the bitmap at a time, so try | ||
| 1132 | to find it and save its number instead (-1 for none). */ | ||
| 1133 | env->interrupt_injected = -1; | ||
| 1134 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap)(sizeof(sregs.interrupt_bitmap) / sizeof((sregs.interrupt_bitmap )[0])); i++) { | ||
| 1135 | if (sregs.interrupt_bitmap[i]) { | ||
| 1136 | bit = ctz64(sregs.interrupt_bitmap[i]); | ||
| 1137 | env->interrupt_injected = i * 64 + bit; | ||
| 1138 | break; | ||
| 1139 | } | ||
| 1140 | } | ||
| 1141 | |||
| 1142 | get_seg(&env->segs[R_CS1], &sregs.cs); | ||
| 1143 | get_seg(&env->segs[R_DS3], &sregs.ds); | ||
| 1144 | get_seg(&env->segs[R_ES0], &sregs.es); | ||
| 1145 | get_seg(&env->segs[R_FS4], &sregs.fs); | ||
| 1146 | get_seg(&env->segs[R_GS5], &sregs.gs); | ||
| 1147 | get_seg(&env->segs[R_SS2], &sregs.ss); | ||
| 1148 | |||
| 1149 | get_seg(&env->tr, &sregs.tr); | ||
| 1150 | get_seg(&env->ldt, &sregs.ldt); | ||
| 1151 | |||
| 1152 | env->idt.limit = sregs.idt.limit; | ||
| 1153 | env->idt.base = sregs.idt.base; | ||
| 1154 | env->gdt.limit = sregs.gdt.limit; | ||
| 1155 | env->gdt.base = sregs.gdt.base; | ||
| 1156 | |||
| 1157 | env->cr[0] = sregs.cr0; | ||
| 1158 | env->cr[2] = sregs.cr2; | ||
| 1159 | env->cr[3] = sregs.cr3; | ||
| 1160 | env->cr[4] = sregs.cr4; | ||
| 1161 | |||
| 1162 | env->efer = sregs.efer; | ||
| 1163 | |||
| 1164 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | ||
| 1165 | |||
| 1166 | #define HFLAG_COPY_MASK~( (3 << 0) | (1 << 7) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 8) | (1 << 17) | ( 3 << 12) | (1 << 22) | (1 << 14) | (1 << 4) | (1 << 5) | (1 << 15) | (1 << 6)) \ | ||
| 1167 | ~( HF_CPL_MASK(3 << 0) | HF_PE_MASK(1 << 7) | HF_MP_MASK(1 << 9) | HF_EM_MASK(1 << 10) | \ | ||
| 1168 | HF_TS_MASK(1 << 11) | HF_TF_MASK(1 << 8) | HF_VM_MASK(1 << 17) | HF_IOPL_MASK(3 << 12) | \ | ||
| 1169 | HF_OSFXSR_MASK(1 << 22) | HF_LMA_MASK(1 << 14) | HF_CS32_MASK(1 << 4) | \ | ||
| 1170 | HF_SS32_MASK(1 << 5) | HF_CS64_MASK(1 << 15) | HF_ADDSEG_MASK(1 << 6)) | ||
| 1171 | |||
| 1172 | hflags = (env->segs[R_CS1].flags >> DESC_DPL_SHIFT13) & HF_CPL_MASK(3 << 0); | ||
| 1173 | hflags |= (env->cr[0] & CR0_PE_MASK(1 << 0)) << (HF_PE_SHIFT7 - CR0_PE_SHIFT0); | ||
| 1174 | hflags |= (env->cr[0] << (HF_MP_SHIFT9 - CR0_MP_SHIFT1)) & | ||
| 1175 | (HF_MP_MASK(1 << 9) | HF_EM_MASK(1 << 10) | HF_TS_MASK(1 << 11)); | ||
| 1176 | hflags |= (env->eflags & (HF_TF_MASK(1 << 8) | HF_VM_MASK(1 << 17) | HF_IOPL_MASK(3 << 12))); | ||
| 1177 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK(1 << 9)) << | ||
| 1178 | (HF_OSFXSR_SHIFT22 - CR4_OSFXSR_SHIFT9); | ||
| 1179 | |||
| 1180 | if (env->efer & MSR_EFER_LMA(1 << 10)) { | ||
| 1181 | hflags |= HF_LMA_MASK(1 << 14); | ||
| 1182 | } | ||
| 1183 | |||
| 1184 | if ((hflags & HF_LMA_MASK(1 << 14)) && (env->segs[R_CS1].flags & DESC_L_MASK(1 << 21))) { | ||
| 1185 | hflags |= HF_CS32_MASK(1 << 4) | HF_SS32_MASK(1 << 5) | HF_CS64_MASK(1 << 15); | ||
| 1186 | } else { | ||
| 1187 | hflags |= (env->segs[R_CS1].flags & DESC_B_MASK(1 << 22)) >> | ||
| 1188 | (DESC_B_SHIFT22 - HF_CS32_SHIFT4); | ||
| 1189 | hflags |= (env->segs[R_SS2].flags & DESC_B_MASK(1 << 22)) >> | ||
| 1190 | (DESC_B_SHIFT22 - HF_SS32_SHIFT5); | ||
| 1191 | if (!(env->cr[0] & CR0_PE_MASK(1 << 0)) || (env->eflags & VM_MASK0x00020000) || | ||
| 1192 | !(hflags & HF_CS32_MASK(1 << 4))) { | ||
| 1193 | hflags |= HF_ADDSEG_MASK(1 << 6); | ||
| 1194 | } else { | ||
| 1195 | hflags |= ((env->segs[R_DS3].base | env->segs[R_ES0].base | | ||
| 1196 | env->segs[R_SS2].base) != 0) << HF_ADDSEG_SHIFT6; | ||
| 1197 | } | ||
| 1198 | } | ||
| 1199 | env->hflags = (env->hflags & HFLAG_COPY_MASK~( (3 << 0) | (1 << 7) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 8) | (1 << 17) | ( 3 << 12) | (1 << 22) | (1 << 14) | (1 << 4) | (1 << 5) | (1 << 15) | (1 << 6))) | hflags; | ||
| 1200 | |||
| 1201 | return 0; | ||
| 1202 | } | ||
| 1203 | |||
| 1204 | static int kvm_get_msrs(CPUX86State *env) | ||
| 1205 | { | ||
| 1206 | struct { | ||
| 1207 | struct kvm_msrs info; | ||
| 1208 | struct kvm_msr_entry entries[100]; | ||
| 1209 | } msr_data; | ||
| 1210 | struct kvm_msr_entry *msrs = msr_data.entries; | ||
| 1211 | int ret, i, n; | ||
| 1212 | |||
| 1213 | n = 0; | ||
| 1214 | msrs[n++].index = MSR_IA32_SYSENTER_CS0x174; | ||
| 1215 | msrs[n++].index = MSR_IA32_SYSENTER_ESP0x175; | ||
| 1216 | msrs[n++].index = MSR_IA32_SYSENTER_EIP0x176; | ||
| 1217 | msrs[n++].index = MSR_PAT0x277; | ||
| 1218 | if (has_msr_star) { | ||
| 1219 | msrs[n++].index = MSR_STAR0xc0000081; | ||
| 1220 | } | ||
| 1221 | if (has_msr_hsave_pa) { | ||
| 1222 | msrs[n++].index = MSR_VM_HSAVE_PA0xc0010117; | ||
| 1223 | } | ||
| 1224 | if (has_msr_tsc_deadline) { | ||
| 1225 | msrs[n++].index = MSR_IA32_TSCDEADLINE0x6e0; | ||
| 1226 | } | ||
| 1227 | if (has_msr_misc_enable) { | ||
| 1228 | msrs[n++].index = MSR_IA32_MISC_ENABLE0x1a0; | ||
| 1229 | } | ||
| 1230 | |||
| 1231 | if (!env->tsc_valid) { | ||
| 1232 | msrs[n++].index = MSR_IA32_TSC0x10; | ||
| 1233 | env->tsc_valid = !runstate_is_running(); | ||
| 1234 | } | ||
| 1235 | |||
| 1236 | #ifdef TARGET_X86_641 | ||
| 1237 | if (lm_capable_kernel) { | ||
| 1238 | msrs[n++].index = MSR_CSTAR0xc0000083; | ||
| 1239 | msrs[n++].index = MSR_KERNELGSBASE0xc0000102; | ||
| 1240 | msrs[n++].index = MSR_FMASK0xc0000084; | ||
| 1241 | msrs[n++].index = MSR_LSTAR0xc0000082; | ||
| 1242 | } | ||
| 1243 | #endif | ||
| 1244 | msrs[n++].index = MSR_KVM_SYSTEM_TIME0x12; | ||
| 1245 | msrs[n++].index = MSR_KVM_WALL_CLOCK0x11; | ||
| 1246 | if (has_msr_async_pf_en) { | ||
| 1247 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN0x4b564d02; | ||
| 1248 | } | ||
| 1249 | |||
| 1250 | if (env->mcg_cap) { | ||
| 1251 | msrs[n++].index = MSR_MCG_STATUS0x17a; | ||
| 1252 | msrs[n++].index = MSR_MCG_CTL0x17b; | ||
| 1253 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | ||
| 1254 | msrs[n++].index = MSR_MC0_CTL0x400 + i; | ||
| 1255 | } | ||
| 1256 | } | ||
| 1257 | |||
| 1258 | msr_data.info.nmsrs = n; | ||
| 1259 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x88)) << 0) | ((((sizeof(struct kvm_msrs)))) << ((0 +8)+8))), &msr_data); | ||
| 1260 | if (ret < 0) { | ||
| 1261 | return ret; | ||
| 1262 | } | ||
| 1263 | |||
| 1264 | for (i = 0; i < ret; i++) { | ||
| 1265 | switch (msrs[i].index) { | ||
| 1266 | case MSR_IA32_SYSENTER_CS0x174: | ||
| 1267 | env->sysenter_cs = msrs[i].data; | ||
| 1268 | break; | ||
| 1269 | case MSR_IA32_SYSENTER_ESP0x175: | ||
| 1270 | env->sysenter_esp = msrs[i].data; | ||
| 1271 | break; | ||
| 1272 | case MSR_IA32_SYSENTER_EIP0x176: | ||
| 1273 | env->sysenter_eip = msrs[i].data; | ||
| 1274 | break; | ||
| 1275 | case MSR_PAT0x277: | ||
| 1276 | env->pat = msrs[i].data; | ||
| 1277 | break; | ||
| 1278 | case MSR_STAR0xc0000081: | ||
| 1279 | env->star = msrs[i].data; | ||
| 1280 | break; | ||
| 1281 | #ifdef TARGET_X86_641 | ||
| 1282 | case MSR_CSTAR0xc0000083: | ||
| 1283 | env->cstar = msrs[i].data; | ||
| 1284 | break; | ||
| 1285 | case MSR_KERNELGSBASE0xc0000102: | ||
| 1286 | env->kernelgsbase = msrs[i].data; | ||
| 1287 | break; | ||
| 1288 | case MSR_FMASK0xc0000084: | ||
| 1289 | env->fmask = msrs[i].data; | ||
| 1290 | break; | ||
| 1291 | case MSR_LSTAR0xc0000082: | ||
| 1292 | env->lstar = msrs[i].data; | ||
| 1293 | break; | ||
| 1294 | #endif | ||
| 1295 | case MSR_IA32_TSC0x10: | ||
| 1296 | env->tsc = msrs[i].data; | ||
| 1297 | break; | ||
| 1298 | case MSR_IA32_TSCDEADLINE0x6e0: | ||
| 1299 | env->tsc_deadline = msrs[i].data; | ||
| 1300 | break; | ||
| 1301 | case MSR_VM_HSAVE_PA0xc0010117: | ||
| 1302 | env->vm_hsave = msrs[i].data; | ||
| 1303 | break; | ||
| 1304 | case MSR_KVM_SYSTEM_TIME0x12: | ||
| 1305 | env->system_time_msr = msrs[i].data; | ||
| 1306 | break; | ||
| 1307 | case MSR_KVM_WALL_CLOCK0x11: | ||
| 1308 | env->wall_clock_msr = msrs[i].data; | ||
| 1309 | break; | ||
| 1310 | case MSR_MCG_STATUS0x17a: | ||
| 1311 | env->mcg_status = msrs[i].data; | ||
| 1312 | break; | ||
| 1313 | case MSR_MCG_CTL0x17b: | ||
| 1314 | env->mcg_ctl = msrs[i].data; | ||
| 1315 | break; | ||
| 1316 | case MSR_IA32_MISC_ENABLE0x1a0: | ||
| 1317 | env->msr_ia32_misc_enable = msrs[i].data; | ||
| 1318 | break; | ||
| 1319 | default: | ||
| 1320 | if (msrs[i].index >= MSR_MC0_CTL0x400 && | ||
| 1321 | msrs[i].index < MSR_MC0_CTL0x400 + (env->mcg_cap & 0xff) * 4) { | ||
| 1322 | env->mce_banks[msrs[i].index - MSR_MC0_CTL0x400] = msrs[i].data; | ||
| 1323 | } | ||
| 1324 | break; | ||
| 1325 | case MSR_KVM_ASYNC_PF_EN0x4b564d02: | ||
| 1326 | env->async_pf_en_msr = msrs[i].data; | ||
| 1327 | break; | ||
| 1328 | } | ||
| 1329 | } | ||
| 1330 | |||
| 1331 | return 0; | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | static int kvm_put_mp_state(CPUX86State *env) | ||
| 1335 | { | ||
| 1336 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | ||
| 1337 | |||
| 1338 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x99)) << 0) | ((((sizeof(struct kvm_mp_state)))) << ((0 +8)+8))), &mp_state); | ||
| 1339 | } | ||
| 1340 | |||
| 1341 | static int kvm_get_mp_state(CPUX86State *env) | ||
| 1342 | { | ||
| 1343 | struct kvm_mp_state mp_state; | ||
| 1344 | int ret; | ||
| 1345 | |||
| 1346 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x98)) << 0) | ((((sizeof(struct kvm_mp_state)))) << ((0 +8)+8))), &mp_state); | ||
| 1347 | if (ret < 0) { | ||
| 1348 | return ret; | ||
| 1349 | } | ||
| 1350 | env->mp_state = mp_state.mp_state; | ||
| 1351 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 1352 | env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED3); | ||
| 1353 | } | ||
| 1354 | return 0; | ||
| 1355 | } | ||
| 1356 | |||
| 1357 | static int kvm_get_apic(CPUX86State *env) | ||
| 1358 | { | ||
| 1359 | DeviceState *apic = env->apic_state; | ||
| 1360 | struct kvm_lapic_state kapic; | ||
| 1361 | int ret; | ||
| 1362 | |||
| 1363 | if (apic && kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 1364 | ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8e)) << 0) | ((((sizeof(struct kvm_lapic_state) ))) << ((0 +8)+8))), &kapic); | ||
| 1365 | if (ret < 0) { | ||
| 1366 | return ret; | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | kvm_get_apic_state(apic, &kapic); | ||
| 1370 | } | ||
| 1371 | return 0; | ||
| 1372 | } | ||
| 1373 | |||
| 1374 | static int kvm_put_apic(CPUX86State *env) | ||
| 1375 | { | ||
| 1376 | DeviceState *apic = env->apic_state; | ||
| 1377 | struct kvm_lapic_state kapic; | ||
| 1378 | |||
| 1379 | if (apic && kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 1380 | kvm_put_apic_state(apic, &kapic); | ||
| 1381 | |||
| 1382 | return kvm_vcpu_ioctl(env, KVM_SET_LAPIC(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8f)) << 0) | ((((sizeof(struct kvm_lapic_state) ))) << ((0 +8)+8))), &kapic); | ||
| 1383 | } | ||
| 1384 | return 0; | ||
| 1385 | } | ||
| 1386 | |||
| 1387 | static int kvm_put_vcpu_events(CPUX86State *env, int level) | ||
| 1388 | { | ||
| 1389 | struct kvm_vcpu_events events; | ||
| 1390 | |||
| 1391 | if (!kvm_has_vcpu_events()) { | ||
| 1392 | return 0; | ||
| 1393 | } | ||
| 1394 | |||
| 1395 | events.exception.injected = (env->exception_injected >= 0); | ||
| 1396 | events.exception.nr = env->exception_injected; | ||
| 1397 | events.exception.has_error_code = env->has_error_code; | ||
| 1398 | events.exception.error_code = env->error_code; | ||
| 1399 | events.exception.pad = 0; | ||
| 1400 | |||
| 1401 | events.interrupt.injected = (env->interrupt_injected >= 0); | ||
| 1402 | events.interrupt.nr = env->interrupt_injected; | ||
| 1403 | events.interrupt.soft = env->soft_interrupt; | ||
| 1404 | |||
| 1405 | events.nmi.injected = env->nmi_injected; | ||
| 1406 | events.nmi.pending = env->nmi_pending; | ||
| 1407 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK(1 << 2)); | ||
| 1408 | events.nmi.pad = 0; | ||
| 1409 | |||
| 1410 | events.sipi_vector = env->sipi_vector; | ||
| 1411 | |||
| 1412 | events.flags = 0; | ||
| 1413 | if (level >= KVM_PUT_RESET_STATE2) { | ||
| 1414 | events.flags |= | ||
| 1415 | KVM_VCPUEVENT_VALID_NMI_PENDING0x00000001 | KVM_VCPUEVENT_VALID_SIPI_VECTOR0x00000002; | ||
| 1416 | } | ||
| 1417 | |||
| 1418 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa0)) << 0) | ((((sizeof(struct kvm_vcpu_events) ))) << ((0 +8)+8))), &events); | ||
| 1419 | } | ||
| 1420 | |||
| 1421 | static int kvm_get_vcpu_events(CPUX86State *env) | ||
| 1422 | { | ||
| 1423 | struct kvm_vcpu_events events; | ||
| 1424 | int ret; | ||
| 1425 | |||
| 1426 | if (!kvm_has_vcpu_events()) { | ||
| 1427 | return 0; | ||
| 1428 | } | ||
| 1429 | |||
| 1430 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9f)) << 0) | ((((sizeof(struct kvm_vcpu_events) ))) << ((0 +8)+8))), &events); | ||
| 1431 | if (ret < 0) { | ||
| 1432 | return ret; | ||
| 1433 | } | ||
| 1434 | env->exception_injected = | ||
| 1435 | events.exception.injected ? events.exception.nr : -1; | ||
| 1436 | env->has_error_code = events.exception.has_error_code; | ||
| 1437 | env->error_code = events.exception.error_code; | ||
| 1438 | |||
| 1439 | env->interrupt_injected = | ||
| 1440 | events.interrupt.injected ? events.interrupt.nr : -1; | ||
| 1441 | env->soft_interrupt = events.interrupt.soft; | ||
| 1442 | |||
| 1443 | env->nmi_injected = events.nmi.injected; | ||
| 1444 | env->nmi_pending = events.nmi.pending; | ||
| 1445 | if (events.nmi.masked) { | ||
| 1446 | env->hflags2 |= HF2_NMI_MASK(1 << 2); | ||
| 1447 | } else { | ||
| 1448 | env->hflags2 &= ~HF2_NMI_MASK(1 << 2); | ||
| 1449 | } | ||
| 1450 | |||
| 1451 | env->sipi_vector = events.sipi_vector; | ||
| 1452 | |||
| 1453 | return 0; | ||
| 1454 | } | ||
| 1455 | |||
| 1456 | static int kvm_guest_debug_workarounds(CPUX86State *env) | ||
| 1457 | { | ||
| 1458 | int ret = 0; | ||
| 1459 | unsigned long reinject_trap = 0; | ||
| 1460 | |||
| 1461 | if (!kvm_has_vcpu_events()) { | ||
| 1462 | if (env->exception_injected == 1) { | ||
| 1463 | reinject_trap = KVM_GUESTDBG_INJECT_DB0x00040000; | ||
| 1464 | } else if (env->exception_injected == 3) { | ||
| 1465 | reinject_trap = KVM_GUESTDBG_INJECT_BP0x00080000; | ||
| 1466 | } | ||
| 1467 | env->exception_injected = -1; | ||
| 1468 | } | ||
| 1469 | |||
| 1470 | /* | ||
| 1471 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | ||
| 1472 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | ||
| 1473 | * by updating the debug state once again if single-stepping is on. | ||
| 1474 | * Another reason to call kvm_update_guest_debug here is a pending debug | ||
| 1475 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | ||
| 1476 | * reinject them via SET_GUEST_DEBUG. | ||
| 1477 | */ | ||
| 1478 | if (reinject_trap || | ||
| 1479 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | ||
| 1480 | ret = kvm_update_guest_debug(env, reinject_trap); | ||
| 1481 | } | ||
| 1482 | return ret; | ||
| 1483 | } | ||
| 1484 | |||
| 1485 | static int kvm_put_debugregs(CPUX86State *env) | ||
| 1486 | { | ||
| 1487 | struct kvm_debugregs dbgregs; | ||
| 1488 | int i; | ||
| 1489 | |||
| 1490 | if (!kvm_has_debugregs()) { | ||
| 1491 | return 0; | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | for (i = 0; i < 4; i++) { | ||
| 1495 | dbgregs.db[i] = env->dr[i]; | ||
| 1496 | } | ||
| 1497 | dbgregs.dr6 = env->dr[6]; | ||
| 1498 | dbgregs.dr7 = env->dr[7]; | ||
| 1499 | dbgregs.flags = 0; | ||
| 1500 | |||
| 1501 | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa2)) << 0) | ((((sizeof(struct kvm_debugregs))) ) << ((0 +8)+8))), &dbgregs); | ||
| 1502 | } | ||
| 1503 | |||
| 1504 | static int kvm_get_debugregs(CPUX86State *env) | ||
| 1505 | { | ||
| 1506 | struct kvm_debugregs dbgregs; | ||
| 1507 | int i, ret; | ||
| 1508 | |||
| 1509 | if (!kvm_has_debugregs()) { | ||
| 1510 | return 0; | ||
| 1511 | } | ||
| 1512 | |||
| 1513 | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa1)) << 0) | ((((sizeof(struct kvm_debugregs))) ) << ((0 +8)+8))), &dbgregs); | ||
| 1514 | if (ret < 0) { | ||
| 1515 | return ret; | ||
| 1516 | } | ||
| 1517 | for (i = 0; i < 4; i++) { | ||
| 1518 | env->dr[i] = dbgregs.db[i]; | ||
| 1519 | } | ||
| 1520 | env->dr[4] = env->dr[6] = dbgregs.dr6; | ||
| 1521 | env->dr[5] = env->dr[7] = dbgregs.dr7; | ||
| 1522 | |||
| 1523 | return 0; | ||
| 1524 | } | ||
| 1525 | |||
| 1526 | int kvm_arch_put_registers(CPUX86State *env, int level) | ||
| 1527 | { | ||
| 1528 | int ret; | ||
| 1529 | |||
| 1530 | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env))((cpu_is_stopped(env) || qemu_cpu_is_self(env)) ? (void) (0) : __assert_fail ("cpu_is_stopped(env) || qemu_cpu_is_self(env)" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1530 , __PRETTY_FUNCTION__)); | ||
| 1531 | |||
| 1532 | ret = kvm_getput_regs(env, 1); | ||
| 1533 | if (ret < 0) { | ||
| 1534 | return ret; | ||
| 1535 | } | ||
| 1536 | ret = kvm_put_xsave(env); | ||
| 1537 | if (ret < 0) { | ||
| 1538 | return ret; | ||
| 1539 | } | ||
| 1540 | ret = kvm_put_xcrs(env); | ||
| 1541 | if (ret < 0) { | ||
| 1542 | return ret; | ||
| 1543 | } | ||
| 1544 | ret = kvm_put_sregs(env); | ||
| 1545 | if (ret < 0) { | ||
| 1546 | return ret; | ||
| 1547 | } | ||
| 1548 | /* must be before kvm_put_msrs */ | ||
| 1549 | ret = kvm_inject_mce_oldstyle(env); | ||
| 1550 | if (ret < 0) { | ||
| 1551 | return ret; | ||
| 1552 | } | ||
| 1553 | ret = kvm_put_msrs(env, level); | ||
| 1554 | if (ret < 0) { | ||
| 1555 | return ret; | ||
| 1556 | } | ||
| 1557 | if (level >= KVM_PUT_RESET_STATE2) { | ||
| 1558 | ret = kvm_put_mp_state(env); | ||
| 1559 | if (ret < 0) { | ||
| 1560 | return ret; | ||
| 1561 | } | ||
| 1562 | ret = kvm_put_apic(env); | ||
| 1563 | if (ret < 0) { | ||
| 1564 | return ret; | ||
| 1565 | } | ||
| 1566 | } | ||
| 1567 | ret = kvm_put_vcpu_events(env, level); | ||
| 1568 | if (ret < 0) { | ||
| 1569 | return ret; | ||
| 1570 | } | ||
| 1571 | ret = kvm_put_debugregs(env); | ||
| 1572 | if (ret < 0) { | ||
| 1573 | return ret; | ||
| 1574 | } | ||
| 1575 | /* must be last */ | ||
| 1576 | ret = kvm_guest_debug_workarounds(env); | ||
| 1577 | if (ret < 0) { | ||
| 1578 | return ret; | ||
| 1579 | } | ||
| 1580 | return 0; | ||
| 1581 | } | ||
| 1582 | |||
| 1583 | int kvm_arch_get_registers(CPUX86State *env) | ||
| 1584 | { | ||
| 1585 | int ret; | ||
| 1586 | |||
| 1587 | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env))((cpu_is_stopped(env) || qemu_cpu_is_self(env)) ? (void) (0) : __assert_fail ("cpu_is_stopped(env) || qemu_cpu_is_self(env)" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1587 , __PRETTY_FUNCTION__)); | ||
| 1588 | |||
| 1589 | ret = kvm_getput_regs(env, 0); | ||
| 1590 | if (ret < 0) { | ||
| 1591 | return ret; | ||
| 1592 | } | ||
| 1593 | ret = kvm_get_xsave(env); | ||
| 1594 | if (ret < 0) { | ||
| 1595 | return ret; | ||
| 1596 | } | ||
| 1597 | ret = kvm_get_xcrs(env); | ||
| 1598 | if (ret < 0) { | ||
| 1599 | return ret; | ||
| 1600 | } | ||
| 1601 | ret = kvm_get_sregs(env); | ||
| 1602 | if (ret < 0) { | ||
| 1603 | return ret; | ||
| 1604 | } | ||
| 1605 | ret = kvm_get_msrs(env); | ||
| 1606 | if (ret < 0) { | ||
| 1607 | return ret; | ||
| 1608 | } | ||
| 1609 | ret = kvm_get_mp_state(env); | ||
| 1610 | if (ret < 0) { | ||
| 1611 | return ret; | ||
| 1612 | } | ||
| 1613 | ret = kvm_get_apic(env); | ||
| 1614 | if (ret < 0) { | ||
| 1615 | return ret; | ||
| 1616 | } | ||
| 1617 | ret = kvm_get_vcpu_events(env); | ||
| 1618 | if (ret < 0) { | ||
| 1619 | return ret; | ||
| 1620 | } | ||
| 1621 | ret = kvm_get_debugregs(env); | ||
| 1622 | if (ret < 0) { | ||
| 1623 | return ret; | ||
| 1624 | } | ||
| 1625 | return 0; | ||
| 1626 | } | ||
| 1627 | |||
| 1628 | void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run) | ||
| 1629 | { | ||
| 1630 | int ret; | ||
| 1631 | |||
| 1632 | /* Inject NMI */ | ||
| 1633 | if (env->interrupt_request & CPU_INTERRUPT_NMI0x0200) { | ||
| 1634 | env->interrupt_request &= ~CPU_INTERRUPT_NMI0x0200; | ||
| 1635 | DPRINTF("injected NMI\n")do { } while (0); | ||
| 1636 | ret = kvm_vcpu_ioctl(env, KVM_NMI(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9a)) << 0) | ((0) << ((0 +8)+8)))); | ||
| 1637 | if (ret < 0) { | ||
| 1638 | fprintf(stderrstderr, "KVM: injection failed, NMI lost (%s)\n", | ||
| 1639 | strerror(-ret)); | ||
| 1640 | } | ||
| 1641 | } | ||
| 1642 | |||
| 1643 | if (!kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 1644 | /* Force the VCPU out of its inner loop to process any INIT requests | ||
| 1645 | * or pending TPR access reports. */ | ||
| 1646 | if (env->interrupt_request & | ||
| 1647 | (CPU_INTERRUPT_INIT0x0400 | CPU_INTERRUPT_TPR0x2000)) { | ||
| 1648 | env->exit_request = 1; | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | /* Try to inject an interrupt if the guest can accept it */ | ||
| 1652 | if (run->ready_for_interrupt_injection && | ||
| 1653 | (env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
| 1654 | (env->eflags & IF_MASK0x00000200)) { | ||
| 1655 | int irq; | ||
| 1656 | |||
| 1657 | env->interrupt_request &= ~CPU_INTERRUPT_HARD0x0002; | ||
| 1658 | irq = cpu_get_pic_interrupt(env); | ||
| 1659 | if (irq >= 0) { | ||
| 1660 | struct kvm_interrupt intr; | ||
| 1661 | |||
| 1662 | intr.irq = irq; | ||
| 1663 | DPRINTF("injected interrupt %d\n", irq)do { } while (0); | ||
| 1664 | ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x86)) << 0) | ((((sizeof(struct kvm_interrupt))) ) << ((0 +8)+8))), &intr); | ||
| 1665 | if (ret < 0) { | ||
| 1666 | fprintf(stderrstderr, | ||
| 1667 | "KVM: injection failed, interrupt lost (%s)\n", | ||
| 1668 | strerror(-ret)); | ||
| 1669 | } | ||
| 1670 | } | ||
| 1671 | } | ||
| 1672 | |||
| 1673 | /* If we have an interrupt but the guest is not ready to receive an | ||
| 1674 | * interrupt, request an interrupt window exit. This will | ||
| 1675 | * cause a return to userspace as soon as the guest is ready to | ||
| 1676 | * receive interrupts. */ | ||
| 1677 | if ((env->interrupt_request & CPU_INTERRUPT_HARD0x0002)) { | ||
| 1678 | run->request_interrupt_window = 1; | ||
| 1679 | } else { | ||
| 1680 | run->request_interrupt_window = 0; | ||
| 1681 | } | ||
| 1682 | |||
| 1683 | DPRINTF("setting tpr\n")do { } while (0); | ||
| 1684 | run->cr8 = cpu_get_apic_tpr(env->apic_state); | ||
| 1685 | } | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run) | ||
| 1689 | { | ||
| 1690 | if (run->if_flag) { | ||
| 1691 | env->eflags |= IF_MASK0x00000200; | ||
| 1692 | } else { | ||
| 1693 | env->eflags &= ~IF_MASK0x00000200; | ||
| 1694 | } | ||
| 1695 | cpu_set_apic_tpr(env->apic_state, run->cr8); | ||
| 1696 | cpu_set_apic_base(env->apic_state, run->apic_base); | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | int kvm_arch_process_async_events(CPUX86State *env) | ||
| 1700 | { | ||
| 1701 | X86CPU *cpu = x86_env_get_cpu(env); | ||
| 1702 | |||
| 1703 | if (env->interrupt_request & CPU_INTERRUPT_MCE0x1000) { | ||
| 1704 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | ||
| 1705 | assert(env->mcg_cap)((env->mcg_cap) ? (void) (0) : __assert_fail ("env->mcg_cap" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1705 , __PRETTY_FUNCTION__)); | ||
| 1706 | |||
| 1707 | env->interrupt_request &= ~CPU_INTERRUPT_MCE0x1000; | ||
| 1708 | |||
| 1709 | kvm_cpu_synchronize_state(env); | ||
| 1710 | |||
| 1711 | if (env->exception_injected == EXCP08_DBLE8) { | ||
| 1712 | /* this means triple fault */ | ||
| 1713 | qemu_system_reset_request(); | ||
| 1714 | env->exit_request = 1; | ||
| 1715 | return 0; | ||
| 1716 | } | ||
| 1717 | env->exception_injected = EXCP12_MCHK18; | ||
| 1718 | env->has_error_code = 0; | ||
| 1719 | |||
| 1720 | env->halted = 0; | ||
| 1721 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip) && env->mp_state == KVM_MP_STATE_HALTED3) { | ||
| 1722 | env->mp_state = KVM_MP_STATE_RUNNABLE0; | ||
| 1723 | } | ||
| 1724 | } | ||
| 1725 | |||
| 1726 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
| 1727 | return 0; | ||
| 1728 | } | ||
| 1729 | |||
| 1730 | if (((env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
| 1731 | (env->eflags & IF_MASK0x00000200)) || | ||
| 1732 | (env->interrupt_request & CPU_INTERRUPT_NMI0x0200)) { | ||
| 1733 | env->halted = 0; | ||
| 1734 | } | ||
| 1735 | if (env->interrupt_request & CPU_INTERRUPT_INIT0x0400) { | ||
| 1736 | kvm_cpu_synchronize_state(env); | ||
| 1737 | do_cpu_init(cpu); | ||
| 1738 | } | ||
| 1739 | if (env->interrupt_request & CPU_INTERRUPT_SIPI0x0800) { | ||
| 1740 | kvm_cpu_synchronize_state(env); | ||
| 1741 | do_cpu_sipi(cpu); | ||
| 1742 | } | ||
| 1743 | if (env->interrupt_request & CPU_INTERRUPT_TPR0x2000) { | ||
| 1744 | env->interrupt_request &= ~CPU_INTERRUPT_TPR0x2000; | ||
| 1745 | kvm_cpu_synchronize_state(env); | ||
| 1746 | apic_handle_tpr_access_report(env->apic_state, env->eip, | ||
| 1747 | env->tpr_access_type); | ||
| 1748 | } | ||
| 1749 | |||
| 1750 | return env->halted; | ||
| 1751 | } | ||
| 1752 | |||
| 1753 | static int kvm_handle_halt(CPUX86State *env) | ||
| 1754 | { | ||
| 1755 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
| 1756 | (env->eflags & IF_MASK0x00000200)) && | ||
| 1757 | !(env->interrupt_request & CPU_INTERRUPT_NMI0x0200)) { | ||
| 1758 | env->halted = 1; | ||
| 1759 | return EXCP_HLT0x10001; | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | return 0; | ||
| 1763 | } | ||
| 1764 | |||
| 1765 | static int kvm_handle_tpr_access(CPUX86State *env) | ||
| 1766 | { | ||
| 1767 | struct kvm_run *run = env->kvm_run; | ||
| 1768 | |||
| 1769 | apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | ||
| 1770 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | ||
| 1771 | : TPR_ACCESS_READ); | ||
| 1772 | return 1; | ||
| 1773 | } | ||
| 1774 | |||
| 1775 | int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | ||
| 1776 | { | ||
| 1777 | static const uint8_t int3 = 0xcc; | ||
| 1778 | |||
| 1779 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | ||
| 1780 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { | ||
| 1781 | return -EINVAL22; | ||
| 1782 | } | ||
| 1783 | return 0; | ||
| 1784 | } | ||
| 1785 | |||
| 1786 | int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | ||
| 1787 | { | ||
| 1788 | uint8_t int3; | ||
| 1789 | |||
| 1790 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | ||
| 1791 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | ||
| 1792 | return -EINVAL22; | ||
| 1793 | } | ||
| 1794 | return 0; | ||
| 1795 | } | ||
| 1796 | |||
| 1797 | static struct { | ||
| 1798 | target_ulong addr; | ||
| 1799 | int len; | ||
| 1800 | int type; | ||
| 1801 | } hw_breakpoint[4]; | ||
| 1802 | |||
| 1803 | static int nb_hw_breakpoint; | ||
| 1804 | |||
| 1805 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | ||
| 1806 | { | ||
| 1807 | int n; | ||
| 1808 | |||
| 1809 | for (n = 0; n < nb_hw_breakpoint; n++) { | ||
| 1810 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | ||
| 1811 | (hw_breakpoint[n].len == len || len == -1)) { | ||
| 1812 | return n; | ||
| 1813 | } | ||
| 1814 | } | ||
| 1815 | return -1; | ||
| 1816 | } | ||
| 1817 | |||
| 1818 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | ||
| 1819 | target_ulong len, int type) | ||
| 1820 | { | ||
| 1821 | switch (type) { | ||
| 1822 | case GDB_BREAKPOINT_HW1: | ||
| 1823 | len = 1; | ||
| 1824 | break; | ||
| 1825 | case GDB_WATCHPOINT_WRITE2: | ||
| 1826 | case GDB_WATCHPOINT_ACCESS4: | ||
| 1827 | switch (len) { | ||
| 1828 | case 1: | ||
| 1829 | break; | ||
| 1830 | case 2: | ||
| 1831 | case 4: | ||
| 1832 | case 8: | ||
| 1833 | if (addr & (len - 1)) { | ||
| 1834 | return -EINVAL22; | ||
| 1835 | } | ||
| 1836 | break; | ||
| 1837 | default: | ||
| 1838 | return -EINVAL22; | ||
| 1839 | } | ||
| 1840 | break; | ||
| 1841 | default: | ||
| 1842 | return -ENOSYS38; | ||
| 1843 | } | ||
| 1844 | |||
| 1845 | if (nb_hw_breakpoint == 4) { | ||
| 1846 | return -ENOBUFS105; | ||
| 1847 | } | ||
| 1848 | if (find_hw_breakpoint(addr, len, type) >= 0) { | ||
| 1849 | return -EEXIST17; | ||
| 1850 | } | ||
| 1851 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | ||
| 1852 | hw_breakpoint[nb_hw_breakpoint].len = len; | ||
| 1853 | hw_breakpoint[nb_hw_breakpoint].type = type; | ||
| 1854 | nb_hw_breakpoint++; | ||
| 1855 | |||
| 1856 | return 0; | ||
| 1857 | } | ||
| 1858 | |||
| 1859 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | ||
| 1860 | target_ulong len, int type) | ||
| 1861 | { | ||
| 1862 | int n; | ||
| 1863 | |||
| 1864 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW1) ? 1 : len, type); | ||
| 1865 | if (n < 0) { | ||
| 1866 | return -ENOENT2; | ||
| 1867 | } | ||
| 1868 | nb_hw_breakpoint--; | ||
| 1869 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | ||
| 1870 | |||
| 1871 | return 0; | ||
| 1872 | } | ||
| 1873 | |||
| 1874 | void kvm_arch_remove_all_hw_breakpoints(void) | ||
| 1875 | { | ||
| 1876 | nb_hw_breakpoint = 0; | ||
| 1877 | } | ||
| 1878 | |||
| 1879 | static CPUWatchpoint hw_watchpoint; | ||
| 1880 | |||
| 1881 | static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info) | ||
| 1882 | { | ||
| 1883 | int ret = 0; | ||
| 1884 | int n; | ||
| 1885 | |||
| 1886 | if (arch_info->exception == 1) { | ||
| 1887 | if (arch_info->dr6 & (1 << 14)) { | ||
| 1888 | if (cpu_single_envtls__cpu_single_env->singlestep_enabled) { | ||
| 1889 | ret = EXCP_DEBUG0x10002; | ||
| 1890 | } | ||
| 1891 | } else { | ||
| 1892 | for (n = 0; n < 4; n++) { | ||
| 1893 | if (arch_info->dr6 & (1 << n)) { | ||
| 1894 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | ||
| 1895 | case 0x0: | ||
| 1896 | ret = EXCP_DEBUG0x10002; | ||
| 1897 | break; | ||
| 1898 | case 0x1: | ||
| 1899 | ret = EXCP_DEBUG0x10002; | ||
| 1900 | cpu_single_envtls__cpu_single_env->watchpoint_hit = &hw_watchpoint; | ||
| 1901 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | ||
| 1902 | hw_watchpoint.flags = BP_MEM_WRITE0x02; | ||
| 1903 | break; | ||
| 1904 | case 0x3: | ||
| 1905 | ret = EXCP_DEBUG0x10002; | ||
| 1906 | cpu_single_envtls__cpu_single_env->watchpoint_hit = &hw_watchpoint; | ||
| 1907 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | ||
| 1908 | hw_watchpoint.flags = BP_MEM_ACCESS(0x01 | 0x02); | ||
| 1909 | break; | ||
| 1910 | } | ||
| 1911 | } | ||
| 1912 | } | ||
| 1913 | } | ||
| 1914 | } else if (kvm_find_sw_breakpoint(cpu_single_envtls__cpu_single_env, arch_info->pc)) { | ||
| 1915 | ret = EXCP_DEBUG0x10002; | ||
| 1916 | } | ||
| 1917 | if (ret == 0) { | ||
| 1918 | cpu_synchronize_state(cpu_single_envtls__cpu_single_env); | ||
| 1919 | assert(cpu_single_env->exception_injected == -1)((tls__cpu_single_env->exception_injected == -1) ? (void) ( 0) : __assert_fail ("tls__cpu_single_env->exception_injected == -1" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1919 , __PRETTY_FUNCTION__)); | ||
| 1920 | |||
| 1921 | /* pass to guest */ | ||
| 1922 | cpu_single_envtls__cpu_single_env->exception_injected = arch_info->exception; | ||
| 1923 | cpu_single_envtls__cpu_single_env->has_error_code = 0; | ||
| 1924 | } | ||
| 1925 | |||
| 1926 | return ret; | ||
| 1927 | } | ||
| 1928 | |||
| 1929 | void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg) | ||
| 1930 | { | ||
| 1931 | const uint8_t type_code[] = { | ||
| 1932 | [GDB_BREAKPOINT_HW1] = 0x0, | ||
| 1933 | [GDB_WATCHPOINT_WRITE2] = 0x1, | ||
| 1934 | [GDB_WATCHPOINT_ACCESS4] = 0x3 | ||
| 1935 | }; | ||
| 1936 | const uint8_t len_code[] = { | ||
| 1937 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | ||
| 1938 | }; | ||
| 1939 | int n; | ||
| 1940 | |||
| 1941 | if (kvm_sw_breakpoints_active(env)) { | ||
| 1942 | dbg->control |= KVM_GUESTDBG_ENABLE0x00000001 | KVM_GUESTDBG_USE_SW_BP0x00010000; | ||
| 1943 | } | ||
| 1944 | if (nb_hw_breakpoint > 0) { | ||
| 1945 | dbg->control |= KVM_GUESTDBG_ENABLE0x00000001 | KVM_GUESTDBG_USE_HW_BP0x00020000; | ||
| 1946 | dbg->arch.debugreg[7] = 0x0600; | ||
| 1947 | for (n = 0; n < nb_hw_breakpoint; n++) { | ||
| 1948 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | ||
| 1949 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | ||
| 1950 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | ||
| 1951 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | ||
| 1952 | } | ||
| 1953 | } | ||
| 1954 | } | ||
| 1955 | |||
| 1956 | static bool_Bool host_supports_vmx(void) | ||
| 1957 | { | ||
| 1958 | uint32_t ecx, unused; | ||
| 1959 | |||
| 1960 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | ||
| 1961 | return ecx & CPUID_EXT_VMX(1 << 5); | ||
| 1962 | } | ||
| 1963 | |||
| 1964 | #define VMX_INVALID_GUEST_STATE0x80000021 0x80000021 | ||
| 1965 | |||
| 1966 | int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run) | ||
| 1967 | { | ||
| 1968 | uint64_t code; | ||
| 1969 | int ret; | ||
| 1970 | |||
| 1971 | switch (run->exit_reason) { | ||
| 1972 | case KVM_EXIT_HLT5: | ||
| 1973 | DPRINTF("handle_hlt\n")do { } while (0); | ||
| 1974 | ret = kvm_handle_halt(env); | ||
| 1975 | break; | ||
| 1976 | case KVM_EXIT_SET_TPR11: | ||
| 1977 | ret = 0; | ||
| 1978 | break; | ||
| 1979 | case KVM_EXIT_TPR_ACCESS12: | ||
| 1980 | ret = kvm_handle_tpr_access(env); | ||
| 1981 | break; | ||
| 1982 | case KVM_EXIT_FAIL_ENTRY9: | ||
| 1983 | code = run->fail_entry.hardware_entry_failure_reason; | ||
| 1984 | fprintf(stderrstderr, "KVM: entry failed, hardware error 0x%" PRIx64"l" "x" "\n", | ||
| 1985 | code); | ||
| 1986 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE0x80000021) { | ||
| 1987 | fprintf(stderrstderr, | ||
| 1988 | "\nIf you're running a guest on an Intel machine without " | ||
| 1989 | "unrestricted mode\n" | ||
| 1990 | "support, the failure can be most likely due to the guest " | ||
| 1991 | "entering an invalid\n" | ||
| 1992 | "state for Intel VT. For example, the guest maybe running " | ||
| 1993 | "in big real mode\n" | ||
| 1994 | "which is not supported on less recent Intel processors." | ||
| 1995 | "\n\n"); | ||
| 1996 | } | ||
| 1997 | ret = -1; | ||
| 1998 | break; | ||
| 1999 | case KVM_EXIT_EXCEPTION1: | ||
| 2000 | fprintf(stderrstderr, "KVM: exception %d exit (error code 0x%x)\n", | ||
| 2001 | run->ex.exception, run->ex.error_code); | ||
| 2002 | ret = -1; | ||
| 2003 | break; | ||
| 2004 | case KVM_EXIT_DEBUG4: | ||
| 2005 | DPRINTF("kvm_exit_debug\n")do { } while (0); | ||
| 2006 | ret = kvm_handle_debug(&run->debug.arch); | ||
| 2007 | break; | ||
| 2008 | default: | ||
| 2009 | fprintf(stderrstderr, "KVM: unknown exit reason %d\n", run->exit_reason); | ||
| 2010 | ret = -1; | ||
| 2011 | break; | ||
| 2012 | } | ||
| 2013 | |||
| 2014 | return ret; | ||
| 2015 | } | ||
| 2016 | |||
| 2017 | bool_Bool kvm_arch_stop_on_emulation_error(CPUX86State *env) | ||
| 2018 | { | ||
| 2019 | kvm_cpu_synchronize_state(env); | ||
| 2020 | return !(env->cr[0] & CR0_PE_MASK(1 << 0)) || | ||
| 2021 | ((env->segs[R_CS1].selector & 3) != 3); | ||
| 2022 | } | ||
| 2023 | |||
| 2024 | void kvm_arch_init_irq_routing(KVMState *s) | ||
| 2025 | { | ||
| 2026 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING25)) { | ||
| 2027 | /* If kernel can't do irq routing, interrupt source | ||
| 2028 | * override 0->2 cannot be set up as required by HPET. | ||
| 2029 | * So we have to disable it. | ||
| 2030 | */ | ||
| 2031 | no_hpet = 1; | ||
| 2032 | } | ||
| 2033 | } |