File: | cpus.c |
Location: | line 823, column 12 |
Description: | Dereference of null pointer |
1 | /* | ||
2 | * QEMU System Emulator | ||
3 | * | ||
4 | * Copyright (c) 2003-2008 Fabrice Bellard | ||
5 | * | ||
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | ||
7 | * of this software and associated documentation files (the "Software"), to deal | ||
8 | * in the Software without restriction, including without limitation the rights | ||
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
10 | * copies of the Software, and to permit persons to whom the Software is | ||
11 | * furnished to do so, subject to the following conditions: | ||
12 | * | ||
13 | * The above copyright notice and this permission notice shall be included in | ||
14 | * all copies or substantial portions of the Software. | ||
15 | * | ||
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
22 | * THE SOFTWARE. | ||
23 | */ | ||
24 | |||
25 | /* Needed early for CONFIG_BSD etc. */ | ||
26 | #include "config-host.h" | ||
27 | |||
28 | #include "monitor.h" | ||
29 | #include "sysemu.h" | ||
30 | #include "gdbstub.h" | ||
31 | #include "dma.h" | ||
32 | #include "kvm.h" | ||
33 | #include "qmp-commands.h" | ||
34 | |||
35 | #include "qemu-thread.h" | ||
36 | #include "cpus.h" | ||
37 | #include "qtest.h" | ||
38 | #include "main-loop.h" | ||
39 | |||
40 | #ifndef _WIN32 | ||
41 | #include "compatfd.h" | ||
42 | #endif | ||
43 | |||
44 | #ifdef CONFIG_LINUX1 | ||
45 | |||
46 | #include <sys/prctl.h> | ||
47 | |||
48 | #ifndef PR_MCE_KILL33 | ||
49 | #define PR_MCE_KILL33 33 | ||
50 | #endif | ||
51 | |||
52 | #ifndef PR_MCE_KILL_SET1 | ||
53 | #define PR_MCE_KILL_SET1 1 | ||
54 | #endif | ||
55 | |||
56 | #ifndef PR_MCE_KILL_EARLY1 | ||
57 | #define PR_MCE_KILL_EARLY1 1 | ||
58 | #endif | ||
59 | |||
60 | #endif /* CONFIG_LINUX */ | ||
61 | |||
62 | static CPUArchStatestruct CPUM68KState *next_cpu; | ||
63 | |||
64 | /***********************************************************/ | ||
65 | /* guest cycle counter */ | ||
66 | |||
67 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | ||
68 | static int icount_time_shift; | ||
69 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | ||
70 | #define MAX_ICOUNT_SHIFT10 10 | ||
71 | /* Compensate for varying guest execution speed. */ | ||
72 | static int64_t qemu_icount_bias; | ||
73 | static QEMUTimer *icount_rt_timer; | ||
74 | static QEMUTimer *icount_vm_timer; | ||
75 | static QEMUTimer *icount_warp_timer; | ||
76 | static int64_t vm_clock_warp_start; | ||
77 | static int64_t qemu_icount; | ||
78 | |||
79 | typedef struct TimersState { | ||
80 | int64_t cpu_ticks_prev; | ||
81 | int64_t cpu_ticks_offset; | ||
82 | int64_t cpu_clock_offset; | ||
83 | int32_t cpu_ticks_enabled; | ||
84 | int64_t dummy; | ||
85 | } TimersState; | ||
86 | |||
87 | TimersState timers_state; | ||
88 | |||
89 | /* Return the virtual CPU time, based on the instruction counter. */ | ||
90 | int64_t cpu_get_icount(void) | ||
91 | { | ||
92 | int64_t icount; | ||
93 | CPUArchStatestruct CPUM68KState *env = cpu_single_envtls__cpu_single_env; | ||
94 | |||
95 | icount = qemu_icount; | ||
96 | if (env) { | ||
97 | if (!can_do_io(env)) { | ||
98 | fprintf(stderrstderr, "Bad clock read\n"); | ||
99 | } | ||
100 | icount -= (env->icount_decr.u16.low + env->icount_extra); | ||
101 | } | ||
102 | return qemu_icount_bias + (icount << icount_time_shift); | ||
103 | } | ||
104 | |||
105 | /* return the host CPU cycle counter and handle stop/restart */ | ||
106 | int64_t cpu_get_ticks(void) | ||
107 | { | ||
108 | if (use_icount) { | ||
109 | return cpu_get_icount(); | ||
110 | } | ||
111 | if (!timers_state.cpu_ticks_enabled) { | ||
112 | return timers_state.cpu_ticks_offset; | ||
113 | } else { | ||
114 | int64_t ticks; | ||
115 | ticks = cpu_get_real_ticks(); | ||
116 | if (timers_state.cpu_ticks_prev > ticks) { | ||
117 | /* Note: non increasing ticks may happen if the host uses | ||
118 | software suspend */ | ||
119 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | ||
120 | } | ||
121 | timers_state.cpu_ticks_prev = ticks; | ||
122 | return ticks + timers_state.cpu_ticks_offset; | ||
123 | } | ||
124 | } | ||
125 | |||
126 | /* return the host CPU monotonic timer and handle stop/restart */ | ||
127 | int64_t cpu_get_clock(void) | ||
128 | { | ||
129 | int64_t ti; | ||
130 | if (!timers_state.cpu_ticks_enabled) { | ||
131 | return timers_state.cpu_clock_offset; | ||
132 | } else { | ||
133 | ti = get_clock(); | ||
134 | return ti + timers_state.cpu_clock_offset; | ||
135 | } | ||
136 | } | ||
137 | |||
138 | /* enable cpu_get_ticks() */ | ||
139 | void cpu_enable_ticks(void) | ||
140 | { | ||
141 | if (!timers_state.cpu_ticks_enabled) { | ||
142 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | ||
143 | timers_state.cpu_clock_offset -= get_clock(); | ||
144 | timers_state.cpu_ticks_enabled = 1; | ||
145 | } | ||
146 | } | ||
147 | |||
148 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | ||
149 | cpu_get_ticks() after that. */ | ||
150 | void cpu_disable_ticks(void) | ||
151 | { | ||
152 | if (timers_state.cpu_ticks_enabled) { | ||
153 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | ||
154 | timers_state.cpu_clock_offset = cpu_get_clock(); | ||
155 | timers_state.cpu_ticks_enabled = 0; | ||
156 | } | ||
157 | } | ||
158 | |||
159 | /* Correlation between real and virtual time is always going to be | ||
160 | fairly approximate, so ignore small variation. | ||
161 | When the guest is idle real and virtual time will be aligned in | ||
162 | the IO wait loop. */ | ||
163 | #define ICOUNT_WOBBLE(get_ticks_per_sec() / 10) (get_ticks_per_sec() / 10) | ||
164 | |||
165 | static void icount_adjust(void) | ||
166 | { | ||
167 | int64_t cur_time; | ||
168 | int64_t cur_icount; | ||
169 | int64_t delta; | ||
170 | static int64_t last_delta; | ||
171 | /* If the VM is not running, then do nothing. */ | ||
172 | if (!runstate_is_running()) { | ||
173 | return; | ||
174 | } | ||
175 | cur_time = cpu_get_clock(); | ||
176 | cur_icount = qemu_get_clock_ns(vm_clock); | ||
177 | delta = cur_icount - cur_time; | ||
178 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | ||
179 | if (delta > 0 | ||
180 | && last_delta + ICOUNT_WOBBLE(get_ticks_per_sec() / 10) < delta * 2 | ||
181 | && icount_time_shift > 0) { | ||
182 | /* The guest is getting too far ahead. Slow time down. */ | ||
183 | icount_time_shift--; | ||
184 | } | ||
185 | if (delta < 0 | ||
186 | && last_delta - ICOUNT_WOBBLE(get_ticks_per_sec() / 10) > delta * 2 | ||
187 | && icount_time_shift < MAX_ICOUNT_SHIFT10) { | ||
188 | /* The guest is getting too far behind. Speed time up. */ | ||
189 | icount_time_shift++; | ||
190 | } | ||
191 | last_delta = delta; | ||
192 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | ||
193 | } | ||
194 | |||
195 | static void icount_adjust_rt(void *opaque) | ||
196 | { | ||
197 | qemu_mod_timer(icount_rt_timer, | ||
198 | qemu_get_clock_ms(rt_clock) + 1000); | ||
199 | icount_adjust(); | ||
200 | } | ||
201 | |||
202 | static void icount_adjust_vm(void *opaque) | ||
203 | { | ||
204 | qemu_mod_timer(icount_vm_timer, | ||
205 | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | ||
206 | icount_adjust(); | ||
207 | } | ||
208 | |||
209 | static int64_t qemu_icount_round(int64_t count) | ||
210 | { | ||
211 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | ||
212 | } | ||
213 | |||
214 | static void icount_warp_rt(void *opaque) | ||
215 | { | ||
216 | if (vm_clock_warp_start == -1) { | ||
217 | return; | ||
218 | } | ||
219 | |||
220 | if (runstate_is_running()) { | ||
221 | int64_t clock = qemu_get_clock_ns(rt_clock); | ||
222 | int64_t warp_delta = clock - vm_clock_warp_start; | ||
223 | if (use_icount == 1) { | ||
224 | qemu_icount_bias += warp_delta; | ||
225 | } else { | ||
226 | /* | ||
227 | * In adaptive mode, do not let the vm_clock run too | ||
228 | * far ahead of real time. | ||
229 | */ | ||
230 | int64_t cur_time = cpu_get_clock(); | ||
231 | int64_t cur_icount = qemu_get_clock_ns(vm_clock); | ||
232 | int64_t delta = cur_time - cur_icount; | ||
233 | qemu_icount_bias += MIN(warp_delta, delta)(((warp_delta) < (delta)) ? (warp_delta) : (delta)); | ||
234 | } | ||
235 | if (qemu_clock_expired(vm_clock)) { | ||
236 | qemu_notify_event(); | ||
237 | } | ||
238 | } | ||
239 | vm_clock_warp_start = -1; | ||
240 | } | ||
241 | |||
242 | void qtest_clock_warp(int64_t dest) | ||
243 | { | ||
244 | int64_t clock = qemu_get_clock_ns(vm_clock); | ||
245 | assert(qtest_enabled())((qtest_enabled()) ? (void) (0) : __assert_fail ("qtest_enabled()" , "/home/stefan/src/qemu/qemu.org/qemu/cpus.c", 245, __PRETTY_FUNCTION__ )); | ||
246 | while (clock < dest) { | ||
247 | int64_t deadline = qemu_clock_deadline(vm_clock); | ||
248 | int64_t warp = MIN(dest - clock, deadline)(((dest - clock) < (deadline)) ? (dest - clock) : (deadline )); | ||
249 | qemu_icount_bias += warp; | ||
250 | qemu_run_timers(vm_clock); | ||
251 | clock = qemu_get_clock_ns(vm_clock); | ||
252 | } | ||
253 | qemu_notify_event(); | ||
254 | } | ||
255 | |||
256 | void qemu_clock_warp(QEMUClock *clock) | ||
257 | { | ||
258 | int64_t deadline; | ||
259 | |||
260 | /* | ||
261 | * There are too many global variables to make the "warp" behavior | ||
262 | * applicable to other clocks. But a clock argument removes the | ||
263 | * need for if statements all over the place. | ||
264 | */ | ||
265 | if (clock != vm_clock || !use_icount) { | ||
266 | return; | ||
267 | } | ||
268 | |||
269 | /* | ||
270 | * If the CPUs have been sleeping, advance the vm_clock timer now. This | ||
271 | * ensures that the deadline for the timer is computed correctly below. | ||
272 | * This also makes sure that the insn counter is synchronized before the | ||
273 | * CPU starts running, in case the CPU is woken by an event other than | ||
274 | * the earliest vm_clock timer. | ||
275 | */ | ||
276 | icount_warp_rt(NULL((void*)0)); | ||
277 | if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) { | ||
278 | qemu_del_timer(icount_warp_timer); | ||
279 | return; | ||
280 | } | ||
281 | |||
282 | if (qtest_enabled()) { | ||
283 | /* When testing, qtest commands advance icount. */ | ||
284 | return; | ||
285 | } | ||
286 | |||
287 | vm_clock_warp_start = qemu_get_clock_ns(rt_clock); | ||
288 | deadline = qemu_clock_deadline(vm_clock); | ||
289 | if (deadline > 0) { | ||
290 | /* | ||
291 | * Ensure the vm_clock proceeds even when the virtual CPU goes to | ||
292 | * sleep. Otherwise, the CPU might be waiting for a future timer | ||
293 | * interrupt to wake it up, but the interrupt never comes because | ||
294 | * the vCPU isn't running any insns and thus doesn't advance the | ||
295 | * vm_clock. | ||
296 | * | ||
297 | * An extreme solution for this problem would be to never let VCPUs | ||
298 | * sleep in icount mode if there is a pending vm_clock timer; rather | ||
299 | * time could just advance to the next vm_clock event. Instead, we | ||
300 | * do stop VCPUs and only advance vm_clock after some "real" time, | ||
301 | * (related to the time left until the next event) has passed. This | ||
302 | * rt_clock timer will do this. This avoids that the warps are too | ||
303 | * visible externally---for example, you will not be sending network | ||
304 | * packets continuously instead of every 100ms. | ||
305 | */ | ||
306 | qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline); | ||
307 | } else { | ||
308 | qemu_notify_event(); | ||
309 | } | ||
310 | } | ||
311 | |||
312 | static const VMStateDescription vmstate_timers = { | ||
313 | .name = "timer", | ||
314 | .version_id = 2, | ||
315 | .minimum_version_id = 1, | ||
316 | .minimum_version_id_old = 1, | ||
317 | .fields = (VMStateField[]) { | ||
318 | VMSTATE_INT64(cpu_ticks_offset, TimersState){ .name = ("cpu_ticks_offset"), .version_id = (0), .field_exists = (((void*)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64 ), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState , cpu_ticks_offset) + ((int64_t*)0 - (typeof(((TimersState *) 0)->cpu_ticks_offset)*)0)), }, | ||
319 | VMSTATE_INT64(dummy, TimersState){ .name = ("dummy"), .version_id = (0), .field_exists = (((void *)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64 ), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState , dummy) + ((int64_t*)0 - (typeof(((TimersState *)0)->dummy )*)0)), }, | ||
320 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2){ .name = ("cpu_clock_offset"), .version_id = (2), .field_exists = (((void*)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64 ), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState , cpu_clock_offset) + ((int64_t*)0 - (typeof(((TimersState *) 0)->cpu_clock_offset)*)0)), }, | ||
321 | VMSTATE_END_OF_LIST(){} | ||
322 | } | ||
323 | }; | ||
324 | |||
325 | void configure_icount(const char *option) | ||
326 | { | ||
327 | vmstate_register(NULL((void*)0), 0, &vmstate_timers, &timers_state); | ||
328 | if (!option) { | ||
329 | return; | ||
330 | } | ||
331 | |||
332 | icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL((void*)0)); | ||
333 | if (strcmp(option, "auto") != 0) { | ||
334 | icount_time_shift = strtol(option, NULL((void*)0), 0); | ||
335 | use_icount = 1; | ||
336 | return; | ||
337 | } | ||
338 | |||
339 | use_icount = 2; | ||
340 | |||
341 | /* 125MIPS seems a reasonable initial guess at the guest speed. | ||
342 | It will be corrected fairly quickly anyway. */ | ||
343 | icount_time_shift = 3; | ||
344 | |||
345 | /* Have both realtime and virtual time triggers for speed adjustment. | ||
346 | The realtime trigger catches emulated time passing too slowly, | ||
347 | the virtual time trigger catches emulated time passing too fast. | ||
348 | Realtime triggers occur even when idle, so use them less frequently | ||
349 | than VM triggers. */ | ||
350 | icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL((void*)0)); | ||
351 | qemu_mod_timer(icount_rt_timer, | ||
352 | qemu_get_clock_ms(rt_clock) + 1000); | ||
353 | icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL((void*)0)); | ||
354 | qemu_mod_timer(icount_vm_timer, | ||
355 | qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10); | ||
356 | } | ||
357 | |||
358 | /***********************************************************/ | ||
359 | void hw_error(const char *fmt, ...) | ||
360 | { | ||
361 | va_list ap; | ||
362 | CPUArchStatestruct CPUM68KState *env; | ||
363 | |||
364 | va_start(ap, fmt)__builtin_va_start(ap, fmt); | ||
365 | fprintf(stderrstderr, "qemu: hardware error: "); | ||
366 | vfprintf(stderrstderr, fmt, ap); | ||
367 | fprintf(stderrstderr, "\n"); | ||
368 | for(env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
369 | fprintf(stderrstderr, "CPU #%d:\n", env->cpu_index); | ||
370 | #ifdef TARGET_I386 | ||
371 | cpu_dump_state(env, stderrstderr, fprintf, X86_DUMP_FPU); | ||
372 | #else | ||
373 | cpu_dump_state(env, stderrstderr, fprintf, 0); | ||
374 | #endif | ||
375 | } | ||
376 | va_end(ap)__builtin_va_end(ap); | ||
377 | abort(); | ||
378 | } | ||
379 | |||
380 | void cpu_synchronize_all_states(void) | ||
381 | { | ||
382 | CPUArchStatestruct CPUM68KState *cpu; | ||
383 | |||
384 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | ||
385 | cpu_synchronize_state(cpu); | ||
386 | } | ||
387 | } | ||
388 | |||
389 | void cpu_synchronize_all_post_reset(void) | ||
390 | { | ||
391 | CPUArchStatestruct CPUM68KState *cpu; | ||
392 | |||
393 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | ||
394 | cpu_synchronize_post_reset(cpu); | ||
395 | } | ||
396 | } | ||
397 | |||
398 | void cpu_synchronize_all_post_init(void) | ||
399 | { | ||
400 | CPUArchStatestruct CPUM68KState *cpu; | ||
401 | |||
402 | for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { | ||
403 | cpu_synchronize_post_init(cpu); | ||
404 | } | ||
405 | } | ||
406 | |||
407 | int cpu_is_stopped(CPUArchStatestruct CPUM68KState *env) | ||
408 | { | ||
409 | return !runstate_is_running() || env->stopped; | ||
410 | } | ||
411 | |||
412 | static void do_vm_stop(RunState state) | ||
413 | { | ||
414 | if (runstate_is_running()) { | ||
415 | cpu_disable_ticks(); | ||
416 | pause_all_vcpus(); | ||
417 | runstate_set(state); | ||
418 | vm_state_notify(0, state); | ||
419 | bdrv_drain_all(); | ||
420 | bdrv_flush_all(); | ||
421 | monitor_protocol_event(QEVENT_STOP, NULL((void*)0)); | ||
422 | } | ||
423 | } | ||
424 | |||
425 | static int cpu_can_run(CPUArchStatestruct CPUM68KState *env) | ||
426 | { | ||
427 | if (env->stop) { | ||
428 | return 0; | ||
429 | } | ||
430 | if (env->stopped || !runstate_is_running()) { | ||
431 | return 0; | ||
432 | } | ||
433 | return 1; | ||
434 | } | ||
435 | |||
436 | static bool_Bool cpu_thread_is_idle(CPUArchStatestruct CPUM68KState *env) | ||
437 | { | ||
438 | if (env->stop || env->queued_work_first) { | ||
439 | return false0; | ||
440 | } | ||
441 | if (env->stopped || !runstate_is_running()) { | ||
442 | return true1; | ||
443 | } | ||
444 | if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()(0)) { | ||
445 | return false0; | ||
446 | } | ||
447 | return true1; | ||
448 | } | ||
449 | |||
450 | bool_Bool all_cpu_threads_idle(void) | ||
451 | { | ||
452 | CPUArchStatestruct CPUM68KState *env; | ||
453 | |||
454 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
455 | if (!cpu_thread_is_idle(env)) { | ||
456 | return false0; | ||
457 | } | ||
458 | } | ||
459 | return true1; | ||
460 | } | ||
461 | |||
462 | static void cpu_handle_guest_debug(CPUArchStatestruct CPUM68KState *env) | ||
463 | { | ||
464 | gdb_set_stop_cpu(env); | ||
465 | qemu_system_debug_request(); | ||
466 | env->stopped = 1; | ||
467 | } | ||
468 | |||
469 | static void cpu_signal(int sig) | ||
470 | { | ||
471 | if (cpu_single_envtls__cpu_single_env) { | ||
472 | cpu_exit(cpu_single_envtls__cpu_single_env); | ||
473 | } | ||
474 | exit_request = 1; | ||
475 | } | ||
476 | |||
477 | #ifdef CONFIG_LINUX1 | ||
478 | static void sigbus_reraise(void) | ||
479 | { | ||
480 | sigset_t set; | ||
481 | struct sigaction action; | ||
482 | |||
483 | memset(&action, 0, sizeof(action)); | ||
484 | action.sa_handler__sigaction_handler.sa_handler = SIG_DFL((__sighandler_t) 0); | ||
485 | if (!sigaction(SIGBUS7, &action, NULL((void*)0))) { | ||
486 | raise(SIGBUS7); | ||
487 | sigemptyset(&set); | ||
488 | sigaddset(&set, SIGBUS7); | ||
489 | sigprocmask(SIG_UNBLOCK1, &set, NULL((void*)0)); | ||
490 | } | ||
491 | perror("Failed to re-raise SIGBUS!\n"); | ||
492 | abort(); | ||
493 | } | ||
494 | |||
495 | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | ||
496 | void *ctx) | ||
497 | { | ||
498 | if (kvm_on_sigbus(siginfo->ssi_code, | ||
499 | (void *)(intptr_t)siginfo->ssi_addr)) { | ||
500 | sigbus_reraise(); | ||
501 | } | ||
502 | } | ||
503 | |||
504 | static void qemu_init_sigbus(void) | ||
505 | { | ||
506 | struct sigaction action; | ||
507 | |||
508 | memset(&action, 0, sizeof(action)); | ||
509 | action.sa_flags = SA_SIGINFO4; | ||
510 | action.sa_sigaction__sigaction_handler.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | ||
511 | sigaction(SIGBUS7, &action, NULL((void*)0)); | ||
512 | |||
513 | prctl(PR_MCE_KILL33, PR_MCE_KILL_SET1, PR_MCE_KILL_EARLY1, 0, 0); | ||
514 | } | ||
515 | |||
516 | static void qemu_kvm_eat_signals(CPUArchStatestruct CPUM68KState *env) | ||
517 | { | ||
518 | struct timespec ts = { 0, 0 }; | ||
519 | siginfo_t siginfo; | ||
520 | sigset_t waitset; | ||
521 | sigset_t chkset; | ||
522 | int r; | ||
523 | |||
524 | sigemptyset(&waitset); | ||
525 | sigaddset(&waitset, SIG_IPI10); | ||
526 | sigaddset(&waitset, SIGBUS7); | ||
527 | |||
528 | do { | ||
529 | r = sigtimedwait(&waitset, &siginfo, &ts); | ||
530 | if (r == -1 && !(errno(*__errno_location ()) == EAGAIN11 || errno(*__errno_location ()) == EINTR4)) { | ||
531 | perror("sigtimedwait"); | ||
532 | exit(1); | ||
533 | } | ||
534 | |||
535 | switch (r) { | ||
536 | case SIGBUS7: | ||
537 | if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr_sifields._sigfault.si_addr)) { | ||
538 | sigbus_reraise(); | ||
539 | } | ||
540 | break; | ||
541 | default: | ||
542 | break; | ||
543 | } | ||
544 | |||
545 | r = sigpending(&chkset); | ||
546 | if (r == -1) { | ||
547 | perror("sigpending"); | ||
548 | exit(1); | ||
549 | } | ||
550 | } while (sigismember(&chkset, SIG_IPI10) || sigismember(&chkset, SIGBUS7)); | ||
551 | } | ||
552 | |||
553 | #else /* !CONFIG_LINUX */ | ||
554 | |||
555 | static void qemu_init_sigbus(void) | ||
556 | { | ||
557 | } | ||
558 | |||
559 | static void qemu_kvm_eat_signals(CPUArchStatestruct CPUM68KState *env) | ||
560 | { | ||
561 | } | ||
562 | #endif /* !CONFIG_LINUX */ | ||
563 | |||
564 | #ifndef _WIN32 | ||
565 | static void dummy_signal(int sig) | ||
566 | { | ||
567 | } | ||
568 | |||
569 | static void qemu_kvm_init_cpu_signals(CPUArchStatestruct CPUM68KState *env) | ||
570 | { | ||
571 | int r; | ||
572 | sigset_t set; | ||
573 | struct sigaction sigact; | ||
574 | |||
575 | memset(&sigact, 0, sizeof(sigact)); | ||
576 | sigact.sa_handler__sigaction_handler.sa_handler = dummy_signal; | ||
577 | sigaction(SIG_IPI10, &sigact, NULL((void*)0)); | ||
578 | |||
579 | pthread_sigmask(SIG_BLOCK0, NULL((void*)0), &set); | ||
580 | sigdelset(&set, SIG_IPI10); | ||
581 | sigdelset(&set, SIGBUS7); | ||
582 | r = kvm_set_signal_mask(env, &set); | ||
583 | if (r) { | ||
584 | fprintf(stderrstderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | ||
585 | exit(1); | ||
586 | } | ||
587 | } | ||
588 | |||
589 | static void qemu_tcg_init_cpu_signals(void) | ||
590 | { | ||
591 | sigset_t set; | ||
592 | struct sigaction sigact; | ||
593 | |||
594 | memset(&sigact, 0, sizeof(sigact)); | ||
595 | sigact.sa_handler__sigaction_handler.sa_handler = cpu_signal; | ||
596 | sigaction(SIG_IPI10, &sigact, NULL((void*)0)); | ||
597 | |||
598 | sigemptyset(&set); | ||
599 | sigaddset(&set, SIG_IPI10); | ||
600 | pthread_sigmask(SIG_UNBLOCK1, &set, NULL((void*)0)); | ||
601 | } | ||
602 | |||
603 | #else /* _WIN32 */ | ||
604 | static void qemu_kvm_init_cpu_signals(CPUArchStatestruct CPUM68KState *env) | ||
605 | { | ||
606 | abort(); | ||
607 | } | ||
608 | |||
609 | static void qemu_tcg_init_cpu_signals(void) | ||
610 | { | ||
611 | } | ||
612 | #endif /* _WIN32 */ | ||
613 | |||
614 | QemuMutex qemu_global_mutex; | ||
615 | static QemuCond qemu_io_proceeded_cond; | ||
616 | static bool_Bool iothread_requesting_mutex; | ||
617 | |||
618 | static QemuThread io_thread; | ||
619 | |||
620 | static QemuThread *tcg_cpu_thread; | ||
621 | static QemuCond *tcg_halt_cond; | ||
622 | |||
623 | /* cpu creation */ | ||
624 | static QemuCond qemu_cpu_cond; | ||
625 | /* system init */ | ||
626 | static QemuCond qemu_pause_cond; | ||
627 | static QemuCond qemu_work_cond; | ||
628 | |||
629 | void qemu_init_cpu_loop(void) | ||
630 | { | ||
631 | qemu_init_sigbus(); | ||
632 | qemu_cond_init(&qemu_cpu_cond); | ||
633 | qemu_cond_init(&qemu_pause_cond); | ||
634 | qemu_cond_init(&qemu_work_cond); | ||
635 | qemu_cond_init(&qemu_io_proceeded_cond); | ||
636 | qemu_mutex_init(&qemu_global_mutex); | ||
637 | |||
638 | qemu_thread_get_self(&io_thread); | ||
639 | } | ||
640 | |||
641 | void run_on_cpu(CPUArchStatestruct CPUM68KState *env, void (*func)(void *data), void *data) | ||
642 | { | ||
643 | struct qemu_work_item wi; | ||
644 | |||
645 | if (qemu_cpu_is_self(env)) { | ||
646 | func(data); | ||
647 | return; | ||
648 | } | ||
649 | |||
650 | wi.func = func; | ||
651 | wi.data = data; | ||
652 | if (!env->queued_work_first) { | ||
653 | env->queued_work_first = &wi; | ||
654 | } else { | ||
655 | env->queued_work_last->next = &wi; | ||
656 | } | ||
657 | env->queued_work_last = &wi; | ||
658 | wi.next = NULL((void*)0); | ||
659 | wi.done = false0; | ||
660 | |||
661 | qemu_cpu_kick(env); | ||
662 | while (!wi.done) { | ||
663 | CPUArchStatestruct CPUM68KState *self_env = cpu_single_envtls__cpu_single_env; | ||
664 | |||
665 | qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); | ||
666 | cpu_single_envtls__cpu_single_env = self_env; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | static void flush_queued_work(CPUArchStatestruct CPUM68KState *env) | ||
671 | { | ||
672 | struct qemu_work_item *wi; | ||
673 | |||
674 | if (!env->queued_work_first) { | ||
675 | return; | ||
676 | } | ||
677 | |||
678 | while ((wi = env->queued_work_first)) { | ||
679 | env->queued_work_first = wi->next; | ||
680 | wi->func(wi->data); | ||
681 | wi->done = true1; | ||
682 | } | ||
683 | env->queued_work_last = NULL((void*)0); | ||
684 | qemu_cond_broadcast(&qemu_work_cond); | ||
685 | } | ||
686 | |||
687 | static void qemu_wait_io_event_common(CPUArchStatestruct CPUM68KState *env) | ||
688 | { | ||
689 | if (env->stop) { | ||
690 | env->stop = 0; | ||
691 | env->stopped = 1; | ||
692 | qemu_cond_signal(&qemu_pause_cond); | ||
693 | } | ||
694 | flush_queued_work(env); | ||
695 | env->thread_kicked = false0; | ||
696 | } | ||
697 | |||
698 | static void qemu_tcg_wait_io_event(void) | ||
699 | { | ||
700 | CPUArchStatestruct CPUM68KState *env; | ||
701 | |||
702 | while (all_cpu_threads_idle()) { | ||
703 | /* Start accounting real time to the virtual clock if the CPUs | ||
704 | are idle. */ | ||
705 | qemu_clock_warp(vm_clock); | ||
706 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | ||
707 | } | ||
708 | |||
709 | while (iothread_requesting_mutex) { | ||
710 | qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | ||
711 | } | ||
712 | |||
713 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
714 | qemu_wait_io_event_common(env); | ||
715 | } | ||
716 | } | ||
717 | |||
718 | static void qemu_kvm_wait_io_event(CPUArchStatestruct CPUM68KState *env) | ||
719 | { | ||
720 | while (cpu_thread_is_idle(env)) { | ||
721 | qemu_cond_wait(env->halt_cond, &qemu_global_mutex); | ||
722 | } | ||
723 | |||
724 | qemu_kvm_eat_signals(env); | ||
725 | qemu_wait_io_event_common(env); | ||
726 | } | ||
727 | |||
728 | static void *qemu_kvm_cpu_thread_fn(void *arg) | ||
729 | { | ||
730 | CPUArchStatestruct CPUM68KState *env = arg; | ||
731 | int r; | ||
732 | |||
733 | qemu_mutex_lock(&qemu_global_mutex); | ||
734 | qemu_thread_get_self(env->thread); | ||
735 | env->thread_id = qemu_get_thread_id(); | ||
736 | cpu_single_envtls__cpu_single_env = env; | ||
737 | |||
738 | r = kvm_init_vcpu(env); | ||
739 | if (r < 0) { | ||
740 | fprintf(stderrstderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | ||
741 | exit(1); | ||
742 | } | ||
743 | |||
744 | qemu_kvm_init_cpu_signals(env); | ||
745 | |||
746 | /* signal CPU creation */ | ||
747 | env->created = 1; | ||
748 | qemu_cond_signal(&qemu_cpu_cond); | ||
749 | |||
750 | while (1) { | ||
751 | if (cpu_can_run(env)) { | ||
752 | r = kvm_cpu_exec(env); | ||
753 | if (r == EXCP_DEBUG0x10002) { | ||
754 | cpu_handle_guest_debug(env); | ||
755 | } | ||
756 | } | ||
757 | qemu_kvm_wait_io_event(env); | ||
758 | } | ||
759 | |||
760 | return NULL((void*)0); | ||
761 | } | ||
762 | |||
763 | static void *qemu_dummy_cpu_thread_fn(void *arg) | ||
764 | { | ||
765 | #ifdef _WIN32 | ||
766 | fprintf(stderrstderr, "qtest is not supported under Windows\n"); | ||
767 | exit(1); | ||
768 | #else | ||
769 | CPUArchStatestruct CPUM68KState *env = arg; | ||
770 | sigset_t waitset; | ||
771 | int r; | ||
772 | |||
773 | qemu_mutex_lock_iothread(); | ||
774 | qemu_thread_get_self(env->thread); | ||
775 | env->thread_id = qemu_get_thread_id(); | ||
776 | |||
777 | sigemptyset(&waitset); | ||
778 | sigaddset(&waitset, SIG_IPI10); | ||
779 | |||
780 | /* signal CPU creation */ | ||
781 | env->created = 1; | ||
782 | qemu_cond_signal(&qemu_cpu_cond); | ||
783 | |||
784 | cpu_single_envtls__cpu_single_env = env; | ||
785 | while (1) { | ||
786 | cpu_single_envtls__cpu_single_env = NULL((void*)0); | ||
787 | qemu_mutex_unlock_iothread(); | ||
788 | do { | ||
789 | int sig; | ||
790 | r = sigwait(&waitset, &sig); | ||
791 | } while (r == -1 && (errno(*__errno_location ()) == EAGAIN11 || errno(*__errno_location ()) == EINTR4)); | ||
792 | if (r == -1) { | ||
793 | perror("sigwait"); | ||
794 | exit(1); | ||
795 | } | ||
796 | qemu_mutex_lock_iothread(); | ||
797 | cpu_single_envtls__cpu_single_env = env; | ||
798 | qemu_wait_io_event_common(env); | ||
799 | } | ||
800 | |||
801 | return NULL((void*)0); | ||
802 | #endif | ||
803 | } | ||
804 | |||
805 | static void tcg_exec_all(void); | ||
806 | |||
807 | static void *qemu_tcg_cpu_thread_fn(void *arg) | ||
808 | { | ||
809 | CPUArchStatestruct CPUM68KState *env = arg; | ||
810 | |||
811 | qemu_tcg_init_cpu_signals(); | ||
812 | qemu_thread_get_self(env->thread); | ||
813 | |||
814 | /* signal CPU creation */ | ||
815 | qemu_mutex_lock(&qemu_global_mutex); | ||
816 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
| |||
| |||
817 | env->thread_id = qemu_get_thread_id(); | ||
818 | env->created = 1; | ||
819 | } | ||
820 | qemu_cond_signal(&qemu_cpu_cond); | ||
821 | |||
822 | /* wait for initial kick-off after machine start */ | ||
823 | while (first_cpu->stopped) { | ||
| |||
824 | qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | ||
825 | |||
826 | /* process any pending work */ | ||
827 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
828 | qemu_wait_io_event_common(env); | ||
829 | } | ||
830 | } | ||
831 | |||
832 | while (1) { | ||
833 | tcg_exec_all(); | ||
834 | if (use_icount && qemu_clock_deadline(vm_clock) <= 0) { | ||
835 | qemu_notify_event(); | ||
836 | } | ||
837 | qemu_tcg_wait_io_event(); | ||
838 | } | ||
839 | |||
840 | return NULL((void*)0); | ||
841 | } | ||
842 | |||
843 | static void qemu_cpu_kick_thread(CPUArchStatestruct CPUM68KState *env) | ||
844 | { | ||
845 | #ifndef _WIN32 | ||
846 | int err; | ||
847 | |||
848 | err = pthread_kill(env->thread->thread, SIG_IPI10); | ||
849 | if (err) { | ||
850 | fprintf(stderrstderr, "qemu:%s: %s", __func__, strerror(err)); | ||
851 | exit(1); | ||
852 | } | ||
853 | #else /* _WIN32 */ | ||
854 | if (!qemu_cpu_is_self(env)) { | ||
855 | SuspendThread(env->hThread); | ||
856 | cpu_signal(0); | ||
857 | ResumeThread(env->hThread); | ||
858 | } | ||
859 | #endif | ||
860 | } | ||
861 | |||
862 | void qemu_cpu_kick(void *_env) | ||
863 | { | ||
864 | CPUArchStatestruct CPUM68KState *env = _env; | ||
865 | |||
866 | qemu_cond_broadcast(env->halt_cond); | ||
867 | if (!tcg_enabled() && !env->thread_kicked) { | ||
868 | qemu_cpu_kick_thread(env); | ||
869 | env->thread_kicked = true1; | ||
870 | } | ||
871 | } | ||
872 | |||
873 | void qemu_cpu_kick_self(void) | ||
874 | { | ||
875 | #ifndef _WIN32 | ||
876 | assert(cpu_single_env)((tls__cpu_single_env) ? (void) (0) : __assert_fail ("tls__cpu_single_env" , "/home/stefan/src/qemu/qemu.org/qemu/cpus.c", 876, __PRETTY_FUNCTION__ )); | ||
877 | |||
878 | if (!cpu_single_envtls__cpu_single_env->thread_kicked) { | ||
879 | qemu_cpu_kick_thread(cpu_single_envtls__cpu_single_env); | ||
880 | cpu_single_envtls__cpu_single_env->thread_kicked = true1; | ||
881 | } | ||
882 | #else | ||
883 | abort(); | ||
884 | #endif | ||
885 | } | ||
886 | |||
887 | int qemu_cpu_is_self(void *_env) | ||
888 | { | ||
889 | CPUArchStatestruct CPUM68KState *env = _env; | ||
890 | |||
891 | return qemu_thread_is_self(env->thread); | ||
892 | } | ||
893 | |||
894 | void qemu_mutex_lock_iothread(void) | ||
895 | { | ||
896 | if (!tcg_enabled()) { | ||
897 | qemu_mutex_lock(&qemu_global_mutex); | ||
898 | } else { | ||
899 | iothread_requesting_mutex = true1; | ||
900 | if (qemu_mutex_trylock(&qemu_global_mutex)) { | ||
901 | qemu_cpu_kick_thread(first_cpu); | ||
902 | qemu_mutex_lock(&qemu_global_mutex); | ||
903 | } | ||
904 | iothread_requesting_mutex = false0; | ||
905 | qemu_cond_broadcast(&qemu_io_proceeded_cond); | ||
906 | } | ||
907 | } | ||
908 | |||
909 | void qemu_mutex_unlock_iothread(void) | ||
910 | { | ||
911 | qemu_mutex_unlock(&qemu_global_mutex); | ||
912 | } | ||
913 | |||
914 | static int all_vcpus_paused(void) | ||
915 | { | ||
916 | CPUArchStatestruct CPUM68KState *penv = first_cpu; | ||
917 | |||
918 | while (penv) { | ||
919 | if (!penv->stopped) { | ||
920 | return 0; | ||
921 | } | ||
922 | penv = penv->next_cpu; | ||
923 | } | ||
924 | |||
925 | return 1; | ||
926 | } | ||
927 | |||
928 | void pause_all_vcpus(void) | ||
929 | { | ||
930 | CPUArchStatestruct CPUM68KState *penv = first_cpu; | ||
931 | |||
932 | qemu_clock_enable(vm_clock, false0); | ||
933 | while (penv) { | ||
934 | penv->stop = 1; | ||
935 | qemu_cpu_kick(penv); | ||
936 | penv = penv->next_cpu; | ||
937 | } | ||
938 | |||
939 | if (!qemu_thread_is_self(&io_thread)) { | ||
940 | cpu_stop_current(); | ||
941 | if (!kvm_enabled()(0)) { | ||
942 | while (penv) { | ||
943 | penv->stop = 0; | ||
944 | penv->stopped = 1; | ||
945 | penv = penv->next_cpu; | ||
946 | } | ||
947 | return; | ||
948 | } | ||
949 | } | ||
950 | |||
951 | while (!all_vcpus_paused()) { | ||
952 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | ||
953 | penv = first_cpu; | ||
954 | while (penv) { | ||
955 | qemu_cpu_kick(penv); | ||
956 | penv = penv->next_cpu; | ||
957 | } | ||
958 | } | ||
959 | } | ||
960 | |||
961 | void resume_all_vcpus(void) | ||
962 | { | ||
963 | CPUArchStatestruct CPUM68KState *penv = first_cpu; | ||
964 | |||
965 | qemu_clock_enable(vm_clock, true1); | ||
966 | while (penv) { | ||
967 | penv->stop = 0; | ||
968 | penv->stopped = 0; | ||
969 | qemu_cpu_kick(penv); | ||
970 | penv = penv->next_cpu; | ||
971 | } | ||
972 | } | ||
973 | |||
974 | static void qemu_tcg_init_vcpu(void *_env) | ||
975 | { | ||
976 | CPUArchStatestruct CPUM68KState *env = _env; | ||
977 | |||
978 | /* share a single thread for all cpus with TCG */ | ||
979 | if (!tcg_cpu_thread) { | ||
980 | env->thread = g_malloc0(sizeof(QemuThread)); | ||
981 | env->halt_cond = g_malloc0(sizeof(QemuCond)); | ||
982 | qemu_cond_init(env->halt_cond); | ||
983 | tcg_halt_cond = env->halt_cond; | ||
984 | qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env, | ||
985 | QEMU_THREAD_JOINABLE0); | ||
986 | #ifdef _WIN32 | ||
987 | env->hThread = qemu_thread_get_handle(env->thread); | ||
988 | #endif | ||
989 | while (env->created == 0) { | ||
990 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | ||
991 | } | ||
992 | tcg_cpu_thread = env->thread; | ||
993 | } else { | ||
994 | env->thread = tcg_cpu_thread; | ||
995 | env->halt_cond = tcg_halt_cond; | ||
996 | } | ||
997 | } | ||
998 | |||
999 | static void qemu_kvm_start_vcpu(CPUArchStatestruct CPUM68KState *env) | ||
1000 | { | ||
1001 | env->thread = g_malloc0(sizeof(QemuThread)); | ||
1002 | env->halt_cond = g_malloc0(sizeof(QemuCond)); | ||
1003 | qemu_cond_init(env->halt_cond); | ||
1004 | qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env, | ||
1005 | QEMU_THREAD_JOINABLE0); | ||
1006 | while (env->created == 0) { | ||
1007 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | ||
1008 | } | ||
1009 | } | ||
1010 | |||
1011 | static void qemu_dummy_start_vcpu(CPUArchStatestruct CPUM68KState *env) | ||
1012 | { | ||
1013 | env->thread = g_malloc0(sizeof(QemuThread)); | ||
1014 | env->halt_cond = g_malloc0(sizeof(QemuCond)); | ||
1015 | qemu_cond_init(env->halt_cond); | ||
1016 | qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env, | ||
1017 | QEMU_THREAD_JOINABLE0); | ||
1018 | while (env->created == 0) { | ||
1019 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | ||
1020 | } | ||
1021 | } | ||
1022 | |||
1023 | void qemu_init_vcpu(void *_env) | ||
1024 | { | ||
1025 | CPUArchStatestruct CPUM68KState *env = _env; | ||
1026 | |||
1027 | env->nr_cores = smp_cores; | ||
1028 | env->nr_threads = smp_threads; | ||
1029 | env->stopped = 1; | ||
1030 | if (kvm_enabled()(0)) { | ||
1031 | qemu_kvm_start_vcpu(env); | ||
1032 | } else if (tcg_enabled()) { | ||
1033 | qemu_tcg_init_vcpu(env); | ||
1034 | } else { | ||
1035 | qemu_dummy_start_vcpu(env); | ||
1036 | } | ||
1037 | } | ||
1038 | |||
1039 | void cpu_stop_current(void) | ||
1040 | { | ||
1041 | if (cpu_single_envtls__cpu_single_env) { | ||
1042 | cpu_single_envtls__cpu_single_env->stop = 0; | ||
1043 | cpu_single_envtls__cpu_single_env->stopped = 1; | ||
1044 | cpu_exit(cpu_single_envtls__cpu_single_env); | ||
1045 | qemu_cond_signal(&qemu_pause_cond); | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | void vm_stop(RunState state) | ||
1050 | { | ||
1051 | if (!qemu_thread_is_self(&io_thread)) { | ||
1052 | qemu_system_vmstop_request(state); | ||
1053 | /* | ||
1054 | * FIXME: should not return to device code in case | ||
1055 | * vm_stop() has been requested. | ||
1056 | */ | ||
1057 | cpu_stop_current(); | ||
1058 | return; | ||
1059 | } | ||
1060 | do_vm_stop(state); | ||
1061 | } | ||
1062 | |||
1063 | /* does a state transition even if the VM is already stopped, | ||
1064 | current state is forgotten forever */ | ||
1065 | void vm_stop_force_state(RunState state) | ||
1066 | { | ||
1067 | if (runstate_is_running()) { | ||
1068 | vm_stop(state); | ||
1069 | } else { | ||
1070 | runstate_set(state); | ||
1071 | } | ||
1072 | } | ||
1073 | |||
1074 | static int tcg_cpu_exec(CPUArchStatestruct CPUM68KState *env) | ||
1075 | { | ||
1076 | int ret; | ||
1077 | #ifdef CONFIG_PROFILER | ||
1078 | int64_t ti; | ||
1079 | #endif | ||
1080 | |||
1081 | #ifdef CONFIG_PROFILER | ||
1082 | ti = profile_getclock(); | ||
1083 | #endif | ||
1084 | if (use_icount) { | ||
1085 | int64_t count; | ||
1086 | int decr; | ||
1087 | qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); | ||
1088 | env->icount_decr.u16.low = 0; | ||
1089 | env->icount_extra = 0; | ||
1090 | count = qemu_icount_round(qemu_clock_deadline(vm_clock)); | ||
1091 | qemu_icount += count; | ||
1092 | decr = (count > 0xffff) ? 0xffff : count; | ||
1093 | count -= decr; | ||
1094 | env->icount_decr.u16.low = decr; | ||
1095 | env->icount_extra = count; | ||
1096 | } | ||
1097 | ret = cpu_execcpu_m68k_exec(env); | ||
1098 | #ifdef CONFIG_PROFILER | ||
1099 | qemu_time += profile_getclock() - ti; | ||
1100 | #endif | ||
1101 | if (use_icount) { | ||
1102 | /* Fold pending instructions back into the | ||
1103 | instruction counter, and clear the interrupt flag. */ | ||
1104 | qemu_icount -= (env->icount_decr.u16.low | ||
1105 | + env->icount_extra); | ||
1106 | env->icount_decr.u32 = 0; | ||
1107 | env->icount_extra = 0; | ||
1108 | } | ||
1109 | return ret; | ||
1110 | } | ||
1111 | |||
1112 | static void tcg_exec_all(void) | ||
1113 | { | ||
1114 | int r; | ||
1115 | |||
1116 | /* Account partial waits to the vm_clock. */ | ||
1117 | qemu_clock_warp(vm_clock); | ||
1118 | |||
1119 | if (next_cpu == NULL((void*)0)) { | ||
1120 | next_cpu = first_cpu; | ||
1121 | } | ||
1122 | for (; next_cpu != NULL((void*)0) && !exit_request; next_cpu = next_cpu->next_cpu) { | ||
1123 | CPUArchStatestruct CPUM68KState *env = next_cpu; | ||
1124 | |||
1125 | qemu_clock_enable(vm_clock, | ||
1126 | (env->singlestep_enabled & SSTEP_NOTIMER0x4) == 0); | ||
1127 | |||
1128 | if (cpu_can_run(env)) { | ||
1129 | r = tcg_cpu_exec(env); | ||
1130 | if (r == EXCP_DEBUG0x10002) { | ||
1131 | cpu_handle_guest_debug(env); | ||
1132 | break; | ||
1133 | } | ||
1134 | } else if (env->stop || env->stopped) { | ||
1135 | break; | ||
1136 | } | ||
1137 | } | ||
1138 | exit_request = 0; | ||
1139 | } | ||
1140 | |||
1141 | void set_numa_modes(void) | ||
1142 | { | ||
1143 | CPUArchStatestruct CPUM68KState *env; | ||
1144 | int i; | ||
1145 | |||
1146 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
1147 | for (i = 0; i < nb_numa_nodes; i++) { | ||
1148 | if (node_cpumask[i] & (1 << env->cpu_index)) { | ||
1149 | env->numa_node = i; | ||
1150 | } | ||
1151 | } | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | void set_cpu_log(const char *optarg) | ||
1156 | { | ||
1157 | int mask; | ||
1158 | const CPULogItem *item; | ||
1159 | |||
1160 | mask = cpu_str_to_log_mask(optarg); | ||
1161 | if (!mask) { | ||
1162 | printf("Log items (comma separated):\n"); | ||
1163 | for (item = cpu_log_items; item->mask != 0; item++) { | ||
1164 | printf("%-10s %s\n", item->name, item->help); | ||
1165 | } | ||
1166 | exit(1); | ||
1167 | } | ||
1168 | cpu_set_log(mask); | ||
1169 | } | ||
1170 | |||
1171 | void set_cpu_log_filename(const char *optarg) | ||
1172 | { | ||
1173 | cpu_set_log_filename(optarg); | ||
1174 | } | ||
1175 | |||
1176 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | ||
1177 | { | ||
1178 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | ||
1179 | #if defined(cpu_list_id) | ||
1180 | cpu_list_id(f, cpu_fprintf, optarg); | ||
1181 | #elif defined(cpu_listm68k_cpu_list) | ||
1182 | cpu_listm68k_cpu_list(f, cpu_fprintf); /* deprecated */ | ||
1183 | #endif | ||
1184 | } | ||
1185 | |||
1186 | CpuInfoList *qmp_query_cpus(Error **errp) | ||
1187 | { | ||
1188 | CpuInfoList *head = NULL((void*)0), *cur_item = NULL((void*)0); | ||
1189 | CPUArchStatestruct CPUM68KState *env; | ||
1190 | |||
1191 | for(env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
1192 | CpuInfoList *info; | ||
1193 | |||
1194 | cpu_synchronize_state(env); | ||
1195 | |||
1196 | info = g_malloc0(sizeof(*info)); | ||
1197 | info->value = g_malloc0(sizeof(*info->value)); | ||
1198 | info->value->CPU = env->cpu_index; | ||
1199 | info->value->current = (env == first_cpu); | ||
1200 | info->value->halted = env->halted; | ||
1201 | info->value->thread_id = env->thread_id; | ||
1202 | #if defined(TARGET_I386) | ||
1203 | info->value->has_pc = true1; | ||
1204 | info->value->pc = env->eip + env->segs[R_CS].base; | ||
1205 | #elif defined(TARGET_PPC) | ||
1206 | info->value->has_nip = true1; | ||
1207 | info->value->nip = env->nip; | ||
1208 | #elif defined(TARGET_SPARC) | ||
1209 | info->value->has_pc = true1; | ||
1210 | info->value->pc = env->pc; | ||
1211 | info->value->has_npc = true1; | ||
1212 | info->value->npc = env->npc; | ||
1213 | #elif defined(TARGET_MIPS) | ||
1214 | info->value->has_PC = true1; | ||
1215 | info->value->PC = env->active_tc.PC; | ||
1216 | #endif | ||
1217 | |||
1218 | /* XXX: waiting for the qapi to support GSList */ | ||
1219 | if (!cur_item) { | ||
1220 | head = cur_item = info; | ||
1221 | } else { | ||
1222 | cur_item->next = info; | ||
1223 | cur_item = info; | ||
1224 | } | ||
1225 | } | ||
1226 | |||
1227 | return head; | ||
1228 | } | ||
1229 | |||
1230 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | ||
1231 | bool_Bool has_cpu, int64_t cpu_index, Error **errp) | ||
1232 | { | ||
1233 | FILE *f; | ||
1234 | uint32_t l; | ||
1235 | CPUArchStatestruct CPUM68KState *env; | ||
1236 | uint8_t buf[1024]; | ||
1237 | |||
1238 | if (!has_cpu) { | ||
1239 | cpu_index = 0; | ||
1240 | } | ||
1241 | |||
1242 | for (env = first_cpu; env; env = env->next_cpu) { | ||
1243 | if (cpu_index == env->cpu_index) { | ||
1244 | break; | ||
1245 | } | ||
1246 | } | ||
1247 | |||
1248 | if (env == NULL((void*)0)) { | ||
1249 | error_set(errp, QERR_INVALID_PARAMETER_VALUE"{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }", "cpu-index", | ||
1250 | "a CPU number"); | ||
1251 | return; | ||
1252 | } | ||
1253 | |||
1254 | f = fopen(filename, "wb"); | ||
1255 | if (!f) { | ||
1256 | error_set(errp, QERR_OPEN_FILE_FAILED"{ 'class': 'OpenFileFailed', 'data': { 'filename': %s } }", filename); | ||
1257 | return; | ||
1258 | } | ||
1259 | |||
1260 | while (size != 0) { | ||
1261 | l = sizeof(buf); | ||
1262 | if (l > size) | ||
1263 | l = size; | ||
1264 | cpu_memory_rw_debug(env, addr, buf, l, 0); | ||
1265 | if (fwrite(buf, 1, l, f) != l) { | ||
1266 | error_set(errp, QERR_IO_ERROR"{ 'class': 'IOError', 'data': {} }"); | ||
1267 | goto exit; | ||
1268 | } | ||
1269 | addr += l; | ||
1270 | size -= l; | ||
1271 | } | ||
1272 | |||
1273 | exit: | ||
1274 | fclose(f); | ||
1275 | } | ||
1276 | |||
1277 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | ||
1278 | Error **errp) | ||
1279 | { | ||
1280 | FILE *f; | ||
1281 | uint32_t l; | ||
1282 | uint8_t buf[1024]; | ||
1283 | |||
1284 | f = fopen(filename, "wb"); | ||
1285 | if (!f) { | ||
1286 | error_set(errp, QERR_OPEN_FILE_FAILED"{ 'class': 'OpenFileFailed', 'data': { 'filename': %s } }", filename); | ||
1287 | return; | ||
1288 | } | ||
1289 | |||
1290 | while (size != 0) { | ||
1291 | l = sizeof(buf); | ||
1292 | if (l > size) | ||
1293 | l = size; | ||
1294 | cpu_physical_memory_rw(addr, buf, l, 0); | ||
1295 | if (fwrite(buf, 1, l, f) != l) { | ||
1296 | error_set(errp, QERR_IO_ERROR"{ 'class': 'IOError', 'data': {} }"); | ||
1297 | goto exit; | ||
1298 | } | ||
1299 | addr += l; | ||
1300 | size -= l; | ||
1301 | } | ||
1302 | |||
1303 | exit: | ||
1304 | fclose(f); | ||
1305 | } | ||
1306 | |||
1307 | void qmp_inject_nmi(Error **errp) | ||
1308 | { | ||
1309 | #if defined(TARGET_I386) | ||
1310 | CPUArchStatestruct CPUM68KState *env; | ||
1311 | |||
1312 | for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) { | ||
1313 | if (!env->apic_state) { | ||
1314 | cpu_interrupt(env, CPU_INTERRUPT_NMI); | ||
1315 | } else { | ||
1316 | apic_deliver_nmi(env->apic_state); | ||
1317 | } | ||
1318 | } | ||
1319 | #else | ||
1320 | error_set(errp, QERR_UNSUPPORTED"{ 'class': 'Unsupported', 'data': {} }"); | ||
1321 | #endif | ||
1322 | } |