Bug Summary

File:cpus.c
Location:line 823, column 12
Description:Dereference of null pointer

Annotated Source Code

1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Needed early for CONFIG_BSD etc. */
26#include "config-host.h"
27
28#include "monitor.h"
29#include "sysemu.h"
30#include "gdbstub.h"
31#include "dma.h"
32#include "kvm.h"
33#include "qmp-commands.h"
34
35#include "qemu-thread.h"
36#include "cpus.h"
37#include "qtest.h"
38#include "main-loop.h"
39
40#ifndef _WIN32
41#include "compatfd.h"
42#endif
43
44#ifdef CONFIG_LINUX1
45
46#include <sys/prctl.h>
47
48#ifndef PR_MCE_KILL33
49#define PR_MCE_KILL33 33
50#endif
51
52#ifndef PR_MCE_KILL_SET1
53#define PR_MCE_KILL_SET1 1
54#endif
55
56#ifndef PR_MCE_KILL_EARLY1
57#define PR_MCE_KILL_EARLY1 1
58#endif
59
60#endif /* CONFIG_LINUX */
61
62static CPUArchStatestruct CPUM68KState *next_cpu;
63
64/***********************************************************/
65/* guest cycle counter */
66
67/* Conversion factor from emulated instructions to virtual clock ticks. */
68static int icount_time_shift;
69/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
70#define MAX_ICOUNT_SHIFT10 10
71/* Compensate for varying guest execution speed. */
72static int64_t qemu_icount_bias;
73static QEMUTimer *icount_rt_timer;
74static QEMUTimer *icount_vm_timer;
75static QEMUTimer *icount_warp_timer;
76static int64_t vm_clock_warp_start;
77static int64_t qemu_icount;
78
79typedef struct TimersState {
80 int64_t cpu_ticks_prev;
81 int64_t cpu_ticks_offset;
82 int64_t cpu_clock_offset;
83 int32_t cpu_ticks_enabled;
84 int64_t dummy;
85} TimersState;
86
87TimersState timers_state;
88
89/* Return the virtual CPU time, based on the instruction counter. */
90int64_t cpu_get_icount(void)
91{
92 int64_t icount;
93 CPUArchStatestruct CPUM68KState *env = cpu_single_envtls__cpu_single_env;
94
95 icount = qemu_icount;
96 if (env) {
97 if (!can_do_io(env)) {
98 fprintf(stderrstderr, "Bad clock read\n");
99 }
100 icount -= (env->icount_decr.u16.low + env->icount_extra);
101 }
102 return qemu_icount_bias + (icount << icount_time_shift);
103}
104
105/* return the host CPU cycle counter and handle stop/restart */
106int64_t cpu_get_ticks(void)
107{
108 if (use_icount) {
109 return cpu_get_icount();
110 }
111 if (!timers_state.cpu_ticks_enabled) {
112 return timers_state.cpu_ticks_offset;
113 } else {
114 int64_t ticks;
115 ticks = cpu_get_real_ticks();
116 if (timers_state.cpu_ticks_prev > ticks) {
117 /* Note: non increasing ticks may happen if the host uses
118 software suspend */
119 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
120 }
121 timers_state.cpu_ticks_prev = ticks;
122 return ticks + timers_state.cpu_ticks_offset;
123 }
124}
125
126/* return the host CPU monotonic timer and handle stop/restart */
127int64_t cpu_get_clock(void)
128{
129 int64_t ti;
130 if (!timers_state.cpu_ticks_enabled) {
131 return timers_state.cpu_clock_offset;
132 } else {
133 ti = get_clock();
134 return ti + timers_state.cpu_clock_offset;
135 }
136}
137
138/* enable cpu_get_ticks() */
139void cpu_enable_ticks(void)
140{
141 if (!timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
143 timers_state.cpu_clock_offset -= get_clock();
144 timers_state.cpu_ticks_enabled = 1;
145 }
146}
147
148/* disable cpu_get_ticks() : the clock is stopped. You must not call
149 cpu_get_ticks() after that. */
150void cpu_disable_ticks(void)
151{
152 if (timers_state.cpu_ticks_enabled) {
153 timers_state.cpu_ticks_offset = cpu_get_ticks();
154 timers_state.cpu_clock_offset = cpu_get_clock();
155 timers_state.cpu_ticks_enabled = 0;
156 }
157}
158
159/* Correlation between real and virtual time is always going to be
160 fairly approximate, so ignore small variation.
161 When the guest is idle real and virtual time will be aligned in
162 the IO wait loop. */
163#define ICOUNT_WOBBLE(get_ticks_per_sec() / 10) (get_ticks_per_sec() / 10)
164
165static void icount_adjust(void)
166{
167 int64_t cur_time;
168 int64_t cur_icount;
169 int64_t delta;
170 static int64_t last_delta;
171 /* If the VM is not running, then do nothing. */
172 if (!runstate_is_running()) {
173 return;
174 }
175 cur_time = cpu_get_clock();
176 cur_icount = qemu_get_clock_ns(vm_clock);
177 delta = cur_icount - cur_time;
178 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
179 if (delta > 0
180 && last_delta + ICOUNT_WOBBLE(get_ticks_per_sec() / 10) < delta * 2
181 && icount_time_shift > 0) {
182 /* The guest is getting too far ahead. Slow time down. */
183 icount_time_shift--;
184 }
185 if (delta < 0
186 && last_delta - ICOUNT_WOBBLE(get_ticks_per_sec() / 10) > delta * 2
187 && icount_time_shift < MAX_ICOUNT_SHIFT10) {
188 /* The guest is getting too far behind. Speed time up. */
189 icount_time_shift++;
190 }
191 last_delta = delta;
192 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
193}
194
195static void icount_adjust_rt(void *opaque)
196{
197 qemu_mod_timer(icount_rt_timer,
198 qemu_get_clock_ms(rt_clock) + 1000);
199 icount_adjust();
200}
201
202static void icount_adjust_vm(void *opaque)
203{
204 qemu_mod_timer(icount_vm_timer,
205 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
206 icount_adjust();
207}
208
209static int64_t qemu_icount_round(int64_t count)
210{
211 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
212}
213
214static void icount_warp_rt(void *opaque)
215{
216 if (vm_clock_warp_start == -1) {
217 return;
218 }
219
220 if (runstate_is_running()) {
221 int64_t clock = qemu_get_clock_ns(rt_clock);
222 int64_t warp_delta = clock - vm_clock_warp_start;
223 if (use_icount == 1) {
224 qemu_icount_bias += warp_delta;
225 } else {
226 /*
227 * In adaptive mode, do not let the vm_clock run too
228 * far ahead of real time.
229 */
230 int64_t cur_time = cpu_get_clock();
231 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
232 int64_t delta = cur_time - cur_icount;
233 qemu_icount_bias += MIN(warp_delta, delta)(((warp_delta) < (delta)) ? (warp_delta) : (delta));
234 }
235 if (qemu_clock_expired(vm_clock)) {
236 qemu_notify_event();
237 }
238 }
239 vm_clock_warp_start = -1;
240}
241
242void qtest_clock_warp(int64_t dest)
243{
244 int64_t clock = qemu_get_clock_ns(vm_clock);
245 assert(qtest_enabled())((qtest_enabled()) ? (void) (0) : __assert_fail ("qtest_enabled()"
, "/home/stefan/src/qemu/qemu.org/qemu/cpus.c", 245, __PRETTY_FUNCTION__
))
;
246 while (clock < dest) {
247 int64_t deadline = qemu_clock_deadline(vm_clock);
248 int64_t warp = MIN(dest - clock, deadline)(((dest - clock) < (deadline)) ? (dest - clock) : (deadline
))
;
249 qemu_icount_bias += warp;
250 qemu_run_timers(vm_clock);
251 clock = qemu_get_clock_ns(vm_clock);
252 }
253 qemu_notify_event();
254}
255
256void qemu_clock_warp(QEMUClock *clock)
257{
258 int64_t deadline;
259
260 /*
261 * There are too many global variables to make the "warp" behavior
262 * applicable to other clocks. But a clock argument removes the
263 * need for if statements all over the place.
264 */
265 if (clock != vm_clock || !use_icount) {
266 return;
267 }
268
269 /*
270 * If the CPUs have been sleeping, advance the vm_clock timer now. This
271 * ensures that the deadline for the timer is computed correctly below.
272 * This also makes sure that the insn counter is synchronized before the
273 * CPU starts running, in case the CPU is woken by an event other than
274 * the earliest vm_clock timer.
275 */
276 icount_warp_rt(NULL((void*)0));
277 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
278 qemu_del_timer(icount_warp_timer);
279 return;
280 }
281
282 if (qtest_enabled()) {
283 /* When testing, qtest commands advance icount. */
284 return;
285 }
286
287 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
288 deadline = qemu_clock_deadline(vm_clock);
289 if (deadline > 0) {
290 /*
291 * Ensure the vm_clock proceeds even when the virtual CPU goes to
292 * sleep. Otherwise, the CPU might be waiting for a future timer
293 * interrupt to wake it up, but the interrupt never comes because
294 * the vCPU isn't running any insns and thus doesn't advance the
295 * vm_clock.
296 *
297 * An extreme solution for this problem would be to never let VCPUs
298 * sleep in icount mode if there is a pending vm_clock timer; rather
299 * time could just advance to the next vm_clock event. Instead, we
300 * do stop VCPUs and only advance vm_clock after some "real" time,
301 * (related to the time left until the next event) has passed. This
302 * rt_clock timer will do this. This avoids that the warps are too
303 * visible externally---for example, you will not be sending network
304 * packets continuously instead of every 100ms.
305 */
306 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
307 } else {
308 qemu_notify_event();
309 }
310}
311
312static const VMStateDescription vmstate_timers = {
313 .name = "timer",
314 .version_id = 2,
315 .minimum_version_id = 1,
316 .minimum_version_id_old = 1,
317 .fields = (VMStateField[]) {
318 VMSTATE_INT64(cpu_ticks_offset, TimersState){ .name = ("cpu_ticks_offset"), .version_id = (0), .field_exists
= (((void*)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState
, cpu_ticks_offset) + ((int64_t*)0 - (typeof(((TimersState *)
0)->cpu_ticks_offset)*)0)), }
,
319 VMSTATE_INT64(dummy, TimersState){ .name = ("dummy"), .version_id = (0), .field_exists = (((void
*)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState
, dummy) + ((int64_t*)0 - (typeof(((TimersState *)0)->dummy
)*)0)), }
,
320 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2){ .name = ("cpu_clock_offset"), .version_id = (2), .field_exists
= (((void*)0)), .size = sizeof(int64_t), .info = &(vmstate_info_int64
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(TimersState
, cpu_clock_offset) + ((int64_t*)0 - (typeof(((TimersState *)
0)->cpu_clock_offset)*)0)), }
,
321 VMSTATE_END_OF_LIST(){}
322 }
323};
324
325void configure_icount(const char *option)
326{
327 vmstate_register(NULL((void*)0), 0, &vmstate_timers, &timers_state);
328 if (!option) {
329 return;
330 }
331
332 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL((void*)0));
333 if (strcmp(option, "auto") != 0) {
334 icount_time_shift = strtol(option, NULL((void*)0), 0);
335 use_icount = 1;
336 return;
337 }
338
339 use_icount = 2;
340
341 /* 125MIPS seems a reasonable initial guess at the guest speed.
342 It will be corrected fairly quickly anyway. */
343 icount_time_shift = 3;
344
345 /* Have both realtime and virtual time triggers for speed adjustment.
346 The realtime trigger catches emulated time passing too slowly,
347 the virtual time trigger catches emulated time passing too fast.
348 Realtime triggers occur even when idle, so use them less frequently
349 than VM triggers. */
350 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL((void*)0));
351 qemu_mod_timer(icount_rt_timer,
352 qemu_get_clock_ms(rt_clock) + 1000);
353 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL((void*)0));
354 qemu_mod_timer(icount_vm_timer,
355 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
356}
357
358/***********************************************************/
359void hw_error(const char *fmt, ...)
360{
361 va_list ap;
362 CPUArchStatestruct CPUM68KState *env;
363
364 va_start(ap, fmt)__builtin_va_start(ap, fmt);
365 fprintf(stderrstderr, "qemu: hardware error: ");
366 vfprintf(stderrstderr, fmt, ap);
367 fprintf(stderrstderr, "\n");
368 for(env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
369 fprintf(stderrstderr, "CPU #%d:\n", env->cpu_index);
370#ifdef TARGET_I386
371 cpu_dump_state(env, stderrstderr, fprintf, X86_DUMP_FPU);
372#else
373 cpu_dump_state(env, stderrstderr, fprintf, 0);
374#endif
375 }
376 va_end(ap)__builtin_va_end(ap);
377 abort();
378}
379
380void cpu_synchronize_all_states(void)
381{
382 CPUArchStatestruct CPUM68KState *cpu;
383
384 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
385 cpu_synchronize_state(cpu);
386 }
387}
388
389void cpu_synchronize_all_post_reset(void)
390{
391 CPUArchStatestruct CPUM68KState *cpu;
392
393 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
394 cpu_synchronize_post_reset(cpu);
395 }
396}
397
398void cpu_synchronize_all_post_init(void)
399{
400 CPUArchStatestruct CPUM68KState *cpu;
401
402 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
403 cpu_synchronize_post_init(cpu);
404 }
405}
406
407int cpu_is_stopped(CPUArchStatestruct CPUM68KState *env)
408{
409 return !runstate_is_running() || env->stopped;
410}
411
412static void do_vm_stop(RunState state)
413{
414 if (runstate_is_running()) {
415 cpu_disable_ticks();
416 pause_all_vcpus();
417 runstate_set(state);
418 vm_state_notify(0, state);
419 bdrv_drain_all();
420 bdrv_flush_all();
421 monitor_protocol_event(QEVENT_STOP, NULL((void*)0));
422 }
423}
424
425static int cpu_can_run(CPUArchStatestruct CPUM68KState *env)
426{
427 if (env->stop) {
428 return 0;
429 }
430 if (env->stopped || !runstate_is_running()) {
431 return 0;
432 }
433 return 1;
434}
435
436static bool_Bool cpu_thread_is_idle(CPUArchStatestruct CPUM68KState *env)
437{
438 if (env->stop || env->queued_work_first) {
439 return false0;
440 }
441 if (env->stopped || !runstate_is_running()) {
442 return true1;
443 }
444 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()(0)) {
445 return false0;
446 }
447 return true1;
448}
449
450bool_Bool all_cpu_threads_idle(void)
451{
452 CPUArchStatestruct CPUM68KState *env;
453
454 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
455 if (!cpu_thread_is_idle(env)) {
456 return false0;
457 }
458 }
459 return true1;
460}
461
462static void cpu_handle_guest_debug(CPUArchStatestruct CPUM68KState *env)
463{
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
467}
468
469static void cpu_signal(int sig)
470{
471 if (cpu_single_envtls__cpu_single_env) {
472 cpu_exit(cpu_single_envtls__cpu_single_env);
473 }
474 exit_request = 1;
475}
476
477#ifdef CONFIG_LINUX1
478static void sigbus_reraise(void)
479{
480 sigset_t set;
481 struct sigaction action;
482
483 memset(&action, 0, sizeof(action));
484 action.sa_handler__sigaction_handler.sa_handler = SIG_DFL((__sighandler_t) 0);
485 if (!sigaction(SIGBUS7, &action, NULL((void*)0))) {
486 raise(SIGBUS7);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS7);
489 sigprocmask(SIG_UNBLOCK1, &set, NULL((void*)0));
490 }
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
493}
494
495static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
497{
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
501 }
502}
503
504static void qemu_init_sigbus(void)
505{
506 struct sigaction action;
507
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO4;
510 action.sa_sigaction__sigaction_handler.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS7, &action, NULL((void*)0));
512
513 prctl(PR_MCE_KILL33, PR_MCE_KILL_SET1, PR_MCE_KILL_EARLY1, 0, 0);
514}
515
516static void qemu_kvm_eat_signals(CPUArchStatestruct CPUM68KState *env)
517{
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
523
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI10);
526 sigaddset(&waitset, SIGBUS7);
527
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno(*__errno_location ()) == EAGAIN11 || errno(*__errno_location ()) == EINTR4)) {
531 perror("sigtimedwait");
532 exit(1);
533 }
534
535 switch (r) {
536 case SIGBUS7:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr_sifields._sigfault.si_addr)) {
538 sigbus_reraise();
539 }
540 break;
541 default:
542 break;
543 }
544
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
549 }
550 } while (sigismember(&chkset, SIG_IPI10) || sigismember(&chkset, SIGBUS7));
551}
552
553#else /* !CONFIG_LINUX */
554
555static void qemu_init_sigbus(void)
556{
557}
558
559static void qemu_kvm_eat_signals(CPUArchStatestruct CPUM68KState *env)
560{
561}
562#endif /* !CONFIG_LINUX */
563
564#ifndef _WIN32
565static void dummy_signal(int sig)
566{
567}
568
569static void qemu_kvm_init_cpu_signals(CPUArchStatestruct CPUM68KState *env)
570{
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler__sigaction_handler.sa_handler = dummy_signal;
577 sigaction(SIG_IPI10, &sigact, NULL((void*)0));
578
579 pthread_sigmask(SIG_BLOCK0, NULL((void*)0), &set);
580 sigdelset(&set, SIG_IPI10);
581 sigdelset(&set, SIGBUS7);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderrstderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
586 }
587}
588
589static void qemu_tcg_init_cpu_signals(void)
590{
591 sigset_t set;
592 struct sigaction sigact;
593
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler__sigaction_handler.sa_handler = cpu_signal;
596 sigaction(SIG_IPI10, &sigact, NULL((void*)0));
597
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI10);
600 pthread_sigmask(SIG_UNBLOCK1, &set, NULL((void*)0));
601}
602
603#else /* _WIN32 */
604static void qemu_kvm_init_cpu_signals(CPUArchStatestruct CPUM68KState *env)
605{
606 abort();
607}
608
609static void qemu_tcg_init_cpu_signals(void)
610{
611}
612#endif /* _WIN32 */
613
614QemuMutex qemu_global_mutex;
615static QemuCond qemu_io_proceeded_cond;
616static bool_Bool iothread_requesting_mutex;
617
618static QemuThread io_thread;
619
620static QemuThread *tcg_cpu_thread;
621static QemuCond *tcg_halt_cond;
622
623/* cpu creation */
624static QemuCond qemu_cpu_cond;
625/* system init */
626static QemuCond qemu_pause_cond;
627static QemuCond qemu_work_cond;
628
629void qemu_init_cpu_loop(void)
630{
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
637
638 qemu_thread_get_self(&io_thread);
639}
640
641void run_on_cpu(CPUArchStatestruct CPUM68KState *env, void (*func)(void *data), void *data)
642{
643 struct qemu_work_item wi;
644
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
648 }
649
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
656 }
657 env->queued_work_last = &wi;
658 wi.next = NULL((void*)0);
659 wi.done = false0;
660
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchStatestruct CPUM68KState *self_env = cpu_single_envtls__cpu_single_env;
664
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_envtls__cpu_single_env = self_env;
667 }
668}
669
670static void flush_queued_work(CPUArchStatestruct CPUM68KState *env)
671{
672 struct qemu_work_item *wi;
673
674 if (!env->queued_work_first) {
675 return;
676 }
677
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true1;
682 }
683 env->queued_work_last = NULL((void*)0);
684 qemu_cond_broadcast(&qemu_work_cond);
685}
686
687static void qemu_wait_io_event_common(CPUArchStatestruct CPUM68KState *env)
688{
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
693 }
694 flush_queued_work(env);
695 env->thread_kicked = false0;
696}
697
698static void qemu_tcg_wait_io_event(void)
699{
700 CPUArchStatestruct CPUM68KState *env;
701
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707 }
708
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711 }
712
713 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
715 }
716}
717
718static void qemu_kvm_wait_io_event(CPUArchStatestruct CPUM68KState *env)
719{
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722 }
723
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
726}
727
728static void *qemu_kvm_cpu_thread_fn(void *arg)
729{
730 CPUArchStatestruct CPUM68KState *env = arg;
731 int r;
732
733 qemu_mutex_lock(&qemu_global_mutex);
734 qemu_thread_get_self(env->thread);
735 env->thread_id = qemu_get_thread_id();
736 cpu_single_envtls__cpu_single_env = env;
737
738 r = kvm_init_vcpu(env);
739 if (r < 0) {
740 fprintf(stderrstderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
741 exit(1);
742 }
743
744 qemu_kvm_init_cpu_signals(env);
745
746 /* signal CPU creation */
747 env->created = 1;
748 qemu_cond_signal(&qemu_cpu_cond);
749
750 while (1) {
751 if (cpu_can_run(env)) {
752 r = kvm_cpu_exec(env);
753 if (r == EXCP_DEBUG0x10002) {
754 cpu_handle_guest_debug(env);
755 }
756 }
757 qemu_kvm_wait_io_event(env);
758 }
759
760 return NULL((void*)0);
761}
762
763static void *qemu_dummy_cpu_thread_fn(void *arg)
764{
765#ifdef _WIN32
766 fprintf(stderrstderr, "qtest is not supported under Windows\n");
767 exit(1);
768#else
769 CPUArchStatestruct CPUM68KState *env = arg;
770 sigset_t waitset;
771 int r;
772
773 qemu_mutex_lock_iothread();
774 qemu_thread_get_self(env->thread);
775 env->thread_id = qemu_get_thread_id();
776
777 sigemptyset(&waitset);
778 sigaddset(&waitset, SIG_IPI10);
779
780 /* signal CPU creation */
781 env->created = 1;
782 qemu_cond_signal(&qemu_cpu_cond);
783
784 cpu_single_envtls__cpu_single_env = env;
785 while (1) {
786 cpu_single_envtls__cpu_single_env = NULL((void*)0);
787 qemu_mutex_unlock_iothread();
788 do {
789 int sig;
790 r = sigwait(&waitset, &sig);
791 } while (r == -1 && (errno(*__errno_location ()) == EAGAIN11 || errno(*__errno_location ()) == EINTR4));
792 if (r == -1) {
793 perror("sigwait");
794 exit(1);
795 }
796 qemu_mutex_lock_iothread();
797 cpu_single_envtls__cpu_single_env = env;
798 qemu_wait_io_event_common(env);
799 }
800
801 return NULL((void*)0);
802#endif
803}
804
805static void tcg_exec_all(void);
806
807static void *qemu_tcg_cpu_thread_fn(void *arg)
808{
809 CPUArchStatestruct CPUM68KState *env = arg;
810
811 qemu_tcg_init_cpu_signals();
812 qemu_thread_get_self(env->thread);
813
814 /* signal CPU creation */
815 qemu_mutex_lock(&qemu_global_mutex);
816 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
1
Assuming pointer value is null
2
Loop condition is false. Execution continues on line 820
817 env->thread_id = qemu_get_thread_id();
818 env->created = 1;
819 }
820 qemu_cond_signal(&qemu_cpu_cond);
821
822 /* wait for initial kick-off after machine start */
823 while (first_cpu->stopped) {
3
Dereference of null pointer
824 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
825
826 /* process any pending work */
827 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
828 qemu_wait_io_event_common(env);
829 }
830 }
831
832 while (1) {
833 tcg_exec_all();
834 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
835 qemu_notify_event();
836 }
837 qemu_tcg_wait_io_event();
838 }
839
840 return NULL((void*)0);
841}
842
843static void qemu_cpu_kick_thread(CPUArchStatestruct CPUM68KState *env)
844{
845#ifndef _WIN32
846 int err;
847
848 err = pthread_kill(env->thread->thread, SIG_IPI10);
849 if (err) {
850 fprintf(stderrstderr, "qemu:%s: %s", __func__, strerror(err));
851 exit(1);
852 }
853#else /* _WIN32 */
854 if (!qemu_cpu_is_self(env)) {
855 SuspendThread(env->hThread);
856 cpu_signal(0);
857 ResumeThread(env->hThread);
858 }
859#endif
860}
861
862void qemu_cpu_kick(void *_env)
863{
864 CPUArchStatestruct CPUM68KState *env = _env;
865
866 qemu_cond_broadcast(env->halt_cond);
867 if (!tcg_enabled() && !env->thread_kicked) {
868 qemu_cpu_kick_thread(env);
869 env->thread_kicked = true1;
870 }
871}
872
873void qemu_cpu_kick_self(void)
874{
875#ifndef _WIN32
876 assert(cpu_single_env)((tls__cpu_single_env) ? (void) (0) : __assert_fail ("tls__cpu_single_env"
, "/home/stefan/src/qemu/qemu.org/qemu/cpus.c", 876, __PRETTY_FUNCTION__
))
;
877
878 if (!cpu_single_envtls__cpu_single_env->thread_kicked) {
879 qemu_cpu_kick_thread(cpu_single_envtls__cpu_single_env);
880 cpu_single_envtls__cpu_single_env->thread_kicked = true1;
881 }
882#else
883 abort();
884#endif
885}
886
887int qemu_cpu_is_self(void *_env)
888{
889 CPUArchStatestruct CPUM68KState *env = _env;
890
891 return qemu_thread_is_self(env->thread);
892}
893
894void qemu_mutex_lock_iothread(void)
895{
896 if (!tcg_enabled()) {
897 qemu_mutex_lock(&qemu_global_mutex);
898 } else {
899 iothread_requesting_mutex = true1;
900 if (qemu_mutex_trylock(&qemu_global_mutex)) {
901 qemu_cpu_kick_thread(first_cpu);
902 qemu_mutex_lock(&qemu_global_mutex);
903 }
904 iothread_requesting_mutex = false0;
905 qemu_cond_broadcast(&qemu_io_proceeded_cond);
906 }
907}
908
909void qemu_mutex_unlock_iothread(void)
910{
911 qemu_mutex_unlock(&qemu_global_mutex);
912}
913
914static int all_vcpus_paused(void)
915{
916 CPUArchStatestruct CPUM68KState *penv = first_cpu;
917
918 while (penv) {
919 if (!penv->stopped) {
920 return 0;
921 }
922 penv = penv->next_cpu;
923 }
924
925 return 1;
926}
927
928void pause_all_vcpus(void)
929{
930 CPUArchStatestruct CPUM68KState *penv = first_cpu;
931
932 qemu_clock_enable(vm_clock, false0);
933 while (penv) {
934 penv->stop = 1;
935 qemu_cpu_kick(penv);
936 penv = penv->next_cpu;
937 }
938
939 if (!qemu_thread_is_self(&io_thread)) {
940 cpu_stop_current();
941 if (!kvm_enabled()(0)) {
942 while (penv) {
943 penv->stop = 0;
944 penv->stopped = 1;
945 penv = penv->next_cpu;
946 }
947 return;
948 }
949 }
950
951 while (!all_vcpus_paused()) {
952 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
953 penv = first_cpu;
954 while (penv) {
955 qemu_cpu_kick(penv);
956 penv = penv->next_cpu;
957 }
958 }
959}
960
961void resume_all_vcpus(void)
962{
963 CPUArchStatestruct CPUM68KState *penv = first_cpu;
964
965 qemu_clock_enable(vm_clock, true1);
966 while (penv) {
967 penv->stop = 0;
968 penv->stopped = 0;
969 qemu_cpu_kick(penv);
970 penv = penv->next_cpu;
971 }
972}
973
974static void qemu_tcg_init_vcpu(void *_env)
975{
976 CPUArchStatestruct CPUM68KState *env = _env;
977
978 /* share a single thread for all cpus with TCG */
979 if (!tcg_cpu_thread) {
980 env->thread = g_malloc0(sizeof(QemuThread));
981 env->halt_cond = g_malloc0(sizeof(QemuCond));
982 qemu_cond_init(env->halt_cond);
983 tcg_halt_cond = env->halt_cond;
984 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
985 QEMU_THREAD_JOINABLE0);
986#ifdef _WIN32
987 env->hThread = qemu_thread_get_handle(env->thread);
988#endif
989 while (env->created == 0) {
990 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
991 }
992 tcg_cpu_thread = env->thread;
993 } else {
994 env->thread = tcg_cpu_thread;
995 env->halt_cond = tcg_halt_cond;
996 }
997}
998
999static void qemu_kvm_start_vcpu(CPUArchStatestruct CPUM68KState *env)
1000{
1001 env->thread = g_malloc0(sizeof(QemuThread));
1002 env->halt_cond = g_malloc0(sizeof(QemuCond));
1003 qemu_cond_init(env->halt_cond);
1004 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1005 QEMU_THREAD_JOINABLE0);
1006 while (env->created == 0) {
1007 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1008 }
1009}
1010
1011static void qemu_dummy_start_vcpu(CPUArchStatestruct CPUM68KState *env)
1012{
1013 env->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE0);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1020 }
1021}
1022
1023void qemu_init_vcpu(void *_env)
1024{
1025 CPUArchStatestruct CPUM68KState *env = _env;
1026
1027 env->nr_cores = smp_cores;
1028 env->nr_threads = smp_threads;
1029 env->stopped = 1;
1030 if (kvm_enabled()(0)) {
1031 qemu_kvm_start_vcpu(env);
1032 } else if (tcg_enabled()) {
1033 qemu_tcg_init_vcpu(env);
1034 } else {
1035 qemu_dummy_start_vcpu(env);
1036 }
1037}
1038
1039void cpu_stop_current(void)
1040{
1041 if (cpu_single_envtls__cpu_single_env) {
1042 cpu_single_envtls__cpu_single_env->stop = 0;
1043 cpu_single_envtls__cpu_single_env->stopped = 1;
1044 cpu_exit(cpu_single_envtls__cpu_single_env);
1045 qemu_cond_signal(&qemu_pause_cond);
1046 }
1047}
1048
1049void vm_stop(RunState state)
1050{
1051 if (!qemu_thread_is_self(&io_thread)) {
1052 qemu_system_vmstop_request(state);
1053 /*
1054 * FIXME: should not return to device code in case
1055 * vm_stop() has been requested.
1056 */
1057 cpu_stop_current();
1058 return;
1059 }
1060 do_vm_stop(state);
1061}
1062
1063/* does a state transition even if the VM is already stopped,
1064 current state is forgotten forever */
1065void vm_stop_force_state(RunState state)
1066{
1067 if (runstate_is_running()) {
1068 vm_stop(state);
1069 } else {
1070 runstate_set(state);
1071 }
1072}
1073
1074static int tcg_cpu_exec(CPUArchStatestruct CPUM68KState *env)
1075{
1076 int ret;
1077#ifdef CONFIG_PROFILER
1078 int64_t ti;
1079#endif
1080
1081#ifdef CONFIG_PROFILER
1082 ti = profile_getclock();
1083#endif
1084 if (use_icount) {
1085 int64_t count;
1086 int decr;
1087 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1088 env->icount_decr.u16.low = 0;
1089 env->icount_extra = 0;
1090 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1091 qemu_icount += count;
1092 decr = (count > 0xffff) ? 0xffff : count;
1093 count -= decr;
1094 env->icount_decr.u16.low = decr;
1095 env->icount_extra = count;
1096 }
1097 ret = cpu_execcpu_m68k_exec(env);
1098#ifdef CONFIG_PROFILER
1099 qemu_time += profile_getclock() - ti;
1100#endif
1101 if (use_icount) {
1102 /* Fold pending instructions back into the
1103 instruction counter, and clear the interrupt flag. */
1104 qemu_icount -= (env->icount_decr.u16.low
1105 + env->icount_extra);
1106 env->icount_decr.u32 = 0;
1107 env->icount_extra = 0;
1108 }
1109 return ret;
1110}
1111
1112static void tcg_exec_all(void)
1113{
1114 int r;
1115
1116 /* Account partial waits to the vm_clock. */
1117 qemu_clock_warp(vm_clock);
1118
1119 if (next_cpu == NULL((void*)0)) {
1120 next_cpu = first_cpu;
1121 }
1122 for (; next_cpu != NULL((void*)0) && !exit_request; next_cpu = next_cpu->next_cpu) {
1123 CPUArchStatestruct CPUM68KState *env = next_cpu;
1124
1125 qemu_clock_enable(vm_clock,
1126 (env->singlestep_enabled & SSTEP_NOTIMER0x4) == 0);
1127
1128 if (cpu_can_run(env)) {
1129 r = tcg_cpu_exec(env);
1130 if (r == EXCP_DEBUG0x10002) {
1131 cpu_handle_guest_debug(env);
1132 break;
1133 }
1134 } else if (env->stop || env->stopped) {
1135 break;
1136 }
1137 }
1138 exit_request = 0;
1139}
1140
1141void set_numa_modes(void)
1142{
1143 CPUArchStatestruct CPUM68KState *env;
1144 int i;
1145
1146 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
1147 for (i = 0; i < nb_numa_nodes; i++) {
1148 if (node_cpumask[i] & (1 << env->cpu_index)) {
1149 env->numa_node = i;
1150 }
1151 }
1152 }
1153}
1154
1155void set_cpu_log(const char *optarg)
1156{
1157 int mask;
1158 const CPULogItem *item;
1159
1160 mask = cpu_str_to_log_mask(optarg);
1161 if (!mask) {
1162 printf("Log items (comma separated):\n");
1163 for (item = cpu_log_items; item->mask != 0; item++) {
1164 printf("%-10s %s\n", item->name, item->help);
1165 }
1166 exit(1);
1167 }
1168 cpu_set_log(mask);
1169}
1170
1171void set_cpu_log_filename(const char *optarg)
1172{
1173 cpu_set_log_filename(optarg);
1174}
1175
1176void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1177{
1178 /* XXX: implement xxx_cpu_list for targets that still miss it */
1179#if defined(cpu_list_id)
1180 cpu_list_id(f, cpu_fprintf, optarg);
1181#elif defined(cpu_listm68k_cpu_list)
1182 cpu_listm68k_cpu_list(f, cpu_fprintf); /* deprecated */
1183#endif
1184}
1185
1186CpuInfoList *qmp_query_cpus(Error **errp)
1187{
1188 CpuInfoList *head = NULL((void*)0), *cur_item = NULL((void*)0);
1189 CPUArchStatestruct CPUM68KState *env;
1190
1191 for(env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
1192 CpuInfoList *info;
1193
1194 cpu_synchronize_state(env);
1195
1196 info = g_malloc0(sizeof(*info));
1197 info->value = g_malloc0(sizeof(*info->value));
1198 info->value->CPU = env->cpu_index;
1199 info->value->current = (env == first_cpu);
1200 info->value->halted = env->halted;
1201 info->value->thread_id = env->thread_id;
1202#if defined(TARGET_I386)
1203 info->value->has_pc = true1;
1204 info->value->pc = env->eip + env->segs[R_CS].base;
1205#elif defined(TARGET_PPC)
1206 info->value->has_nip = true1;
1207 info->value->nip = env->nip;
1208#elif defined(TARGET_SPARC)
1209 info->value->has_pc = true1;
1210 info->value->pc = env->pc;
1211 info->value->has_npc = true1;
1212 info->value->npc = env->npc;
1213#elif defined(TARGET_MIPS)
1214 info->value->has_PC = true1;
1215 info->value->PC = env->active_tc.PC;
1216#endif
1217
1218 /* XXX: waiting for the qapi to support GSList */
1219 if (!cur_item) {
1220 head = cur_item = info;
1221 } else {
1222 cur_item->next = info;
1223 cur_item = info;
1224 }
1225 }
1226
1227 return head;
1228}
1229
1230void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1231 bool_Bool has_cpu, int64_t cpu_index, Error **errp)
1232{
1233 FILE *f;
1234 uint32_t l;
1235 CPUArchStatestruct CPUM68KState *env;
1236 uint8_t buf[1024];
1237
1238 if (!has_cpu) {
1239 cpu_index = 0;
1240 }
1241
1242 for (env = first_cpu; env; env = env->next_cpu) {
1243 if (cpu_index == env->cpu_index) {
1244 break;
1245 }
1246 }
1247
1248 if (env == NULL((void*)0)) {
1249 error_set(errp, QERR_INVALID_PARAMETER_VALUE"{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }", "cpu-index",
1250 "a CPU number");
1251 return;
1252 }
1253
1254 f = fopen(filename, "wb");
1255 if (!f) {
1256 error_set(errp, QERR_OPEN_FILE_FAILED"{ 'class': 'OpenFileFailed', 'data': { 'filename': %s } }", filename);
1257 return;
1258 }
1259
1260 while (size != 0) {
1261 l = sizeof(buf);
1262 if (l > size)
1263 l = size;
1264 cpu_memory_rw_debug(env, addr, buf, l, 0);
1265 if (fwrite(buf, 1, l, f) != l) {
1266 error_set(errp, QERR_IO_ERROR"{ 'class': 'IOError', 'data': {} }");
1267 goto exit;
1268 }
1269 addr += l;
1270 size -= l;
1271 }
1272
1273exit:
1274 fclose(f);
1275}
1276
1277void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1278 Error **errp)
1279{
1280 FILE *f;
1281 uint32_t l;
1282 uint8_t buf[1024];
1283
1284 f = fopen(filename, "wb");
1285 if (!f) {
1286 error_set(errp, QERR_OPEN_FILE_FAILED"{ 'class': 'OpenFileFailed', 'data': { 'filename': %s } }", filename);
1287 return;
1288 }
1289
1290 while (size != 0) {
1291 l = sizeof(buf);
1292 if (l > size)
1293 l = size;
1294 cpu_physical_memory_rw(addr, buf, l, 0);
1295 if (fwrite(buf, 1, l, f) != l) {
1296 error_set(errp, QERR_IO_ERROR"{ 'class': 'IOError', 'data': {} }");
1297 goto exit;
1298 }
1299 addr += l;
1300 size -= l;
1301 }
1302
1303exit:
1304 fclose(f);
1305}
1306
1307void qmp_inject_nmi(Error **errp)
1308{
1309#if defined(TARGET_I386)
1310 CPUArchStatestruct CPUM68KState *env;
1311
1312 for (env = first_cpu; env != NULL((void*)0); env = env->next_cpu) {
1313 if (!env->apic_state) {
1314 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1315 } else {
1316 apic_deliver_nmi(env->apic_state);
1317 }
1318 }
1319#else
1320 error_set(errp, QERR_UNSUPPORTED"{ 'class': 'Unsupported', 'data': {} }");
1321#endif
1322}