File: | translate-all.c |
Location: | line 1189, column 14 |
Description: | Access to field 'cflags' results in a dereference of a null pointer (loaded from variable 'current_tb') |
1 | /* | |||
2 | * Host code generation | |||
3 | * | |||
4 | * Copyright (c) 2003 Fabrice Bellard | |||
5 | * | |||
6 | * This library is free software; you can redistribute it and/or | |||
7 | * modify it under the terms of the GNU Lesser General Public | |||
8 | * License as published by the Free Software Foundation; either | |||
9 | * version 2 of the License, or (at your option) any later version. | |||
10 | * | |||
11 | * This library is distributed in the hope that it will be useful, | |||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
14 | * Lesser General Public License for more details. | |||
15 | * | |||
16 | * You should have received a copy of the GNU Lesser General Public | |||
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |||
18 | */ | |||
19 | #ifdef _WIN32 | |||
20 | #include <windows.h> | |||
21 | #else | |||
22 | #include <sys/types.h> | |||
23 | #include <sys/mman.h> | |||
24 | #endif | |||
25 | #include <stdarg.h> | |||
26 | #include <stdlib.h> | |||
27 | #include <stdio.h> | |||
28 | #include <string.h> | |||
29 | #include <inttypes.h> | |||
30 | ||||
31 | #include "config.h" | |||
32 | ||||
33 | #include "qemu-common.h" | |||
34 | #define NO_CPU_IO_DEFS | |||
35 | #include "cpu.h" | |||
36 | #include "disas/disas.h" | |||
37 | #include "tcg.h" | |||
38 | #if defined(CONFIG_USER_ONLY1) | |||
39 | #include "qemu.h" | |||
40 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |||
41 | #include <sys/param.h> | |||
42 | #if __FreeBSD_version >= 700104 | |||
43 | #define HAVE_KINFO_GETVMMAP | |||
44 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |||
45 | #include <sys/time.h> | |||
46 | #include <sys/proc.h> | |||
47 | #include <machine/profile.h> | |||
48 | #define _KERNEL | |||
49 | #include <sys/user.h> | |||
50 | #undef _KERNEL | |||
51 | #undef sigqueue | |||
52 | #include <libutil.h> | |||
53 | #endif | |||
54 | #endif | |||
55 | #else | |||
56 | #include "exec/address-spaces.h" | |||
57 | #endif | |||
58 | ||||
59 | #include "exec/cputlb.h" | |||
60 | #include "translate-all.h" | |||
61 | #include "qemu/timer.h" | |||
62 | ||||
63 | //#define DEBUG_TB_INVALIDATE | |||
64 | //#define DEBUG_FLUSH | |||
65 | /* make various TB consistency checks */ | |||
66 | //#define DEBUG_TB_CHECK | |||
67 | ||||
68 | #if !defined(CONFIG_USER_ONLY1) | |||
69 | /* TB consistency checks only implemented for usermode emulation. */ | |||
70 | #undef DEBUG_TB_CHECK | |||
71 | #endif | |||
72 | ||||
73 | #define SMC_BITMAP_USE_THRESHOLD10 10 | |||
74 | ||||
75 | typedef struct PageDesc { | |||
76 | /* list of TBs intersecting this ram page */ | |||
77 | TranslationBlock *first_tb; | |||
78 | /* in order to optimize self modifying code, we count the number | |||
79 | of lookups we do to a given page to use a bitmap */ | |||
80 | unsigned int code_write_count; | |||
81 | uint8_t *code_bitmap; | |||
82 | #if defined(CONFIG_USER_ONLY1) | |||
83 | unsigned long flags; | |||
84 | #endif | |||
85 | } PageDesc; | |||
86 | ||||
87 | /* In system mode we want L1_MAP to be based on ram offsets, | |||
88 | while in user mode we want it to be based on virtual addresses. */ | |||
89 | #if !defined(CONFIG_USER_ONLY1) | |||
90 | #if HOST_LONG_BITS64 < TARGET_PHYS_ADDR_SPACE_BITS52 | |||
91 | # define L1_MAP_ADDR_SPACE_BITS47 HOST_LONG_BITS64 | |||
92 | #else | |||
93 | # define L1_MAP_ADDR_SPACE_BITS47 TARGET_PHYS_ADDR_SPACE_BITS52 | |||
94 | #endif | |||
95 | #else | |||
96 | # define L1_MAP_ADDR_SPACE_BITS47 TARGET_VIRT_ADDR_SPACE_BITS47 | |||
97 | #endif | |||
98 | ||||
99 | /* Size of the L2 (and L3, etc) page tables. */ | |||
100 | #define V_L2_BITS10 10 | |||
101 | #define V_L2_SIZE(1 << 10) (1 << V_L2_BITS10) | |||
102 | ||||
103 | /* The bits remaining after N lower levels of page tables. */ | |||
104 | #define V_L1_BITS_REM((47 - 12) % 10) \ | |||
105 | ((L1_MAP_ADDR_SPACE_BITS47 - TARGET_PAGE_BITS12) % V_L2_BITS10) | |||
106 | ||||
107 | #if V_L1_BITS_REM((47 - 12) % 10) < 4 | |||
108 | #define V_L1_BITS((47 - 12) % 10) (V_L1_BITS_REM((47 - 12) % 10) + V_L2_BITS10) | |||
109 | #else | |||
110 | #define V_L1_BITS((47 - 12) % 10) V_L1_BITS_REM((47 - 12) % 10) | |||
111 | #endif | |||
112 | ||||
113 | #define V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)) ((target_ulong)1 << V_L1_BITS((47 - 12) % 10)) | |||
114 | ||||
115 | #define V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) (L1_MAP_ADDR_SPACE_BITS47 - TARGET_PAGE_BITS12 - V_L1_BITS((47 - 12) % 10)) | |||
116 | ||||
117 | uintptr_t qemu_real_host_page_size; | |||
118 | uintptr_t qemu_host_page_size; | |||
119 | uintptr_t qemu_host_page_mask; | |||
120 | ||||
121 | /* This is a multi-level map on the virtual address space. | |||
122 | The bottom level has pointers to PageDesc. */ | |||
123 | static void *l1_map[V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10))]; | |||
124 | ||||
125 | /* code generation context */ | |||
126 | TCGContext tcg_ctx; | |||
127 | ||||
128 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |||
129 | tb_page_addr_t phys_page2); | |||
130 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); | |||
131 | ||||
132 | void cpu_gen_init(void) | |||
133 | { | |||
134 | tcg_context_init(&tcg_ctx); | |||
135 | } | |||
136 | ||||
137 | /* return non zero if the very first instruction is invalid so that | |||
138 | the virtual CPU can trigger an exception. | |||
139 | ||||
140 | '*gen_code_size_ptr' contains the size of the generated code (host | |||
141 | code). | |||
142 | */ | |||
143 | int cpu_gen_codecpu_x86_gen_code(CPUArchStatestruct CPUX86State *env, TranslationBlock *tb, int *gen_code_size_ptr) | |||
144 | { | |||
145 | TCGContext *s = &tcg_ctx; | |||
146 | uint8_t *gen_code_buf; | |||
147 | int gen_code_size; | |||
148 | #ifdef CONFIG_PROFILER | |||
149 | int64_t ti; | |||
150 | #endif | |||
151 | ||||
152 | #ifdef CONFIG_PROFILER | |||
153 | s->tb_count1++; /* includes aborted translations because of | |||
154 | exceptions */ | |||
155 | ti = profile_getclock(); | |||
156 | #endif | |||
157 | tcg_func_start(s); | |||
158 | ||||
159 | gen_intermediate_code(env, tb); | |||
160 | ||||
161 | /* generate machine code */ | |||
162 | gen_code_buf = tb->tc_ptr; | |||
163 | tb->tb_next_offset[0] = 0xffff; | |||
164 | tb->tb_next_offset[1] = 0xffff; | |||
165 | s->tb_next_offset = tb->tb_next_offset; | |||
166 | #ifdef USE_DIRECT_JUMP | |||
167 | s->tb_jmp_offset = tb->tb_jmp_offset; | |||
168 | s->tb_next = NULL((void*)0); | |||
169 | #else | |||
170 | s->tb_jmp_offset = NULL((void*)0); | |||
171 | s->tb_next = tb->tb_next; | |||
172 | #endif | |||
173 | ||||
174 | #ifdef CONFIG_PROFILER | |||
175 | s->tb_count++; | |||
176 | s->interm_time += profile_getclock() - ti; | |||
177 | s->code_time -= profile_getclock(); | |||
178 | #endif | |||
179 | gen_code_size = tcg_gen_code(s, gen_code_buf); | |||
180 | *gen_code_size_ptr = gen_code_size; | |||
181 | #ifdef CONFIG_PROFILER | |||
182 | s->code_time += profile_getclock(); | |||
183 | s->code_in_len += tb->size; | |||
184 | s->code_out_len += gen_code_size; | |||
185 | #endif | |||
186 | ||||
187 | #ifdef DEBUG_DISAS | |||
188 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM(1 << 0))) { | |||
189 | qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr); | |||
190 | log_disas(tb->tc_ptr, *gen_code_size_ptr); | |||
191 | qemu_log("\n"); | |||
192 | qemu_log_flush(); | |||
193 | } | |||
194 | #endif | |||
195 | return 0; | |||
196 | } | |||
197 | ||||
198 | /* The cpu state corresponding to 'searched_pc' is restored. | |||
199 | */ | |||
200 | static int cpu_restore_state_from_tb(TranslationBlock *tb, CPUArchStatestruct CPUX86State *env, | |||
201 | uintptr_t searched_pc) | |||
202 | { | |||
203 | TCGContext *s = &tcg_ctx; | |||
204 | int j; | |||
205 | uintptr_t tc_ptr; | |||
206 | #ifdef CONFIG_PROFILER | |||
207 | int64_t ti; | |||
208 | #endif | |||
209 | ||||
210 | #ifdef CONFIG_PROFILER | |||
211 | ti = profile_getclock(); | |||
212 | #endif | |||
213 | tcg_func_start(s); | |||
214 | ||||
215 | gen_intermediate_code_pc(env, tb); | |||
216 | ||||
217 | if (use_icount) { | |||
218 | /* Reset the cycle counter to the start of the block. */ | |||
219 | env->icount_decr.u16.low += tb->icount; | |||
220 | /* Clear the IO flag. */ | |||
221 | env->can_do_io = 0; | |||
222 | } | |||
223 | ||||
224 | /* find opc index corresponding to search_pc */ | |||
225 | tc_ptr = (uintptr_t)tb->tc_ptr; | |||
226 | if (searched_pc < tc_ptr) | |||
227 | return -1; | |||
228 | ||||
229 | s->tb_next_offset = tb->tb_next_offset; | |||
230 | #ifdef USE_DIRECT_JUMP | |||
231 | s->tb_jmp_offset = tb->tb_jmp_offset; | |||
232 | s->tb_next = NULL((void*)0); | |||
233 | #else | |||
234 | s->tb_jmp_offset = NULL((void*)0); | |||
235 | s->tb_next = tb->tb_next; | |||
236 | #endif | |||
237 | j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr); | |||
238 | if (j < 0) | |||
239 | return -1; | |||
240 | /* now find start of instruction before */ | |||
241 | while (s->gen_opc_instr_start[j] == 0) { | |||
242 | j--; | |||
243 | } | |||
244 | env->icount_decr.u16.low -= s->gen_opc_icount[j]; | |||
245 | ||||
246 | restore_state_to_opc(env, tb, j); | |||
247 | ||||
248 | #ifdef CONFIG_PROFILER | |||
249 | s->restore_time += profile_getclock() - ti; | |||
250 | s->restore_count++; | |||
251 | #endif | |||
252 | return 0; | |||
253 | } | |||
254 | ||||
255 | bool_Bool cpu_restore_state(CPUArchStatestruct CPUX86State *env, uintptr_t retaddr) | |||
256 | { | |||
257 | TranslationBlock *tb; | |||
258 | ||||
259 | tb = tb_find_pc(retaddr); | |||
260 | if (tb) { | |||
261 | cpu_restore_state_from_tb(tb, env, retaddr); | |||
262 | return true1; | |||
263 | } | |||
264 | return false0; | |||
265 | } | |||
266 | ||||
267 | #ifdef _WIN32 | |||
268 | static inline void map_exec(void *addr, long size) | |||
269 | { | |||
270 | DWORD old_protect; | |||
271 | VirtualProtect(addr, size, | |||
272 | PAGE_EXECUTE_READWRITE, &old_protect); | |||
273 | } | |||
274 | #else | |||
275 | static inline void map_exec(void *addr, long size) | |||
276 | { | |||
277 | unsigned long start, end, page_size; | |||
278 | ||||
279 | page_size = getpagesize(); | |||
280 | start = (unsigned long)addr; | |||
281 | start &= ~(page_size - 1); | |||
282 | ||||
283 | end = (unsigned long)addr + size; | |||
284 | end += page_size - 1; | |||
285 | end &= ~(page_size - 1); | |||
286 | ||||
287 | mprotect((void *)start, end - start, | |||
288 | PROT_READ0x1 | PROT_WRITE0x2 | PROT_EXEC0x4); | |||
289 | } | |||
290 | #endif | |||
291 | ||||
292 | static void page_init(void) | |||
293 | { | |||
294 | /* NOTE: we can always suppose that qemu_host_page_size >= | |||
295 | TARGET_PAGE_SIZE */ | |||
296 | #ifdef _WIN32 | |||
297 | { | |||
298 | SYSTEM_INFO system_info; | |||
299 | ||||
300 | GetSystemInfo(&system_info); | |||
301 | qemu_real_host_page_size = system_info.dwPageSize; | |||
302 | } | |||
303 | #else | |||
304 | qemu_real_host_page_size = getpagesize(); | |||
305 | #endif | |||
306 | if (qemu_host_page_size == 0) { | |||
307 | qemu_host_page_size = qemu_real_host_page_size; | |||
308 | } | |||
309 | if (qemu_host_page_size < TARGET_PAGE_SIZE(1 << 12)) { | |||
310 | qemu_host_page_size = TARGET_PAGE_SIZE(1 << 12); | |||
311 | } | |||
312 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |||
313 | ||||
314 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY1) | |||
315 | { | |||
316 | #ifdef HAVE_KINFO_GETVMMAP | |||
317 | struct kinfo_vmentry *freep; | |||
318 | int i, cnt; | |||
319 | ||||
320 | freep = kinfo_getvmmap(getpid(), &cnt); | |||
321 | if (freep) { | |||
322 | mmap_lock(); | |||
323 | for (i = 0; i < cnt; i++) { | |||
324 | unsigned long startaddr, endaddr; | |||
325 | ||||
326 | startaddr = freep[i].kve_start; | |||
327 | endaddr = freep[i].kve_end; | |||
328 | if (h2g_valid(startaddr)({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
329 | startaddr = h2g(startaddr)({ ((({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(startaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 329, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(startaddr) - guest_base; (abi_ulong)__ret; }); }) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
330 | ||||
331 | if (h2g_valid(endaddr)({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
332 | endaddr = h2g(endaddr)({ ((({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(endaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 332, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(endaddr) - guest_base; (abi_ulong)__ret; }); }); | |||
333 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
334 | } else { | |||
335 | #if TARGET_ABI_BITS64 <= L1_MAP_ADDR_SPACE_BITS47 | |||
336 | endaddr = ~0ul; | |||
337 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
338 | #endif | |||
339 | } | |||
340 | } | |||
341 | } | |||
342 | free(freep); | |||
343 | mmap_unlock(); | |||
344 | } | |||
345 | #else | |||
346 | FILE *f; | |||
347 | ||||
348 | last_brk = (unsigned long)sbrk(0); | |||
349 | ||||
350 | f = fopen("/compat/linux/proc/self/maps", "r"); | |||
351 | if (f) { | |||
352 | mmap_lock(); | |||
353 | ||||
354 | do { | |||
355 | unsigned long startaddr, endaddr; | |||
356 | int n; | |||
357 | ||||
358 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |||
359 | ||||
360 | if (n == 2 && h2g_valid(startaddr)({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
361 | startaddr = h2g(startaddr)({ ((({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(startaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 361, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(startaddr) - guest_base; (abi_ulong)__ret; }); }) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
362 | ||||
363 | if (h2g_valid(endaddr)({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
364 | endaddr = h2g(endaddr)({ ((({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(endaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 364, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(endaddr) - guest_base; (abi_ulong)__ret; }); }); | |||
365 | } else { | |||
366 | endaddr = ~0ul; | |||
367 | } | |||
368 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
369 | } | |||
370 | } while (!feof(f)); | |||
371 | ||||
372 | fclose(f); | |||
373 | mmap_unlock(); | |||
374 | } | |||
375 | #endif | |||
376 | } | |||
377 | #endif | |||
378 | } | |||
379 | ||||
380 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |||
381 | { | |||
382 | PageDesc *pd; | |||
383 | void **lp; | |||
384 | int i; | |||
385 | ||||
386 | #if defined(CONFIG_USER_ONLY1) | |||
387 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |||
388 | # define ALLOC(P, SIZE) \ | |||
389 | do { \ | |||
390 | P = mmap(NULL((void*)0), SIZE, PROT_READ0x1 | PROT_WRITE0x2, \ | |||
391 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); \ | |||
392 | } while (0) | |||
393 | #else | |||
394 | # define ALLOC(P, SIZE) \ | |||
395 | do { P = g_malloc0(SIZE); } while (0) | |||
396 | #endif | |||
397 | ||||
398 | /* Level 1. Always allocated. */ | |||
399 | lp = l1_map + ((index >> V_L1_SHIFT(47 - 12 - ((47 - 12) % 10))) & (V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)) - 1)); | |||
400 | ||||
401 | /* Level 2..N-1. */ | |||
402 | for (i = V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1; i > 0; i--) { | |||
403 | void **p = *lp; | |||
404 | ||||
405 | if (p == NULL((void*)0)) { | |||
406 | if (!alloc) { | |||
407 | return NULL((void*)0); | |||
408 | } | |||
409 | ALLOC(p, sizeof(void *) * V_L2_SIZE(1 << 10)); | |||
410 | *lp = p; | |||
411 | } | |||
412 | ||||
413 | lp = p + ((index >> (i * V_L2_BITS10)) & (V_L2_SIZE(1 << 10) - 1)); | |||
414 | } | |||
415 | ||||
416 | pd = *lp; | |||
417 | if (pd == NULL((void*)0)) { | |||
418 | if (!alloc) { | |||
419 | return NULL((void*)0); | |||
420 | } | |||
421 | ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE(1 << 10)); | |||
422 | *lp = pd; | |||
423 | } | |||
424 | ||||
425 | #undef ALLOC | |||
426 | ||||
427 | return pd + (index & (V_L2_SIZE(1 << 10) - 1)); | |||
428 | } | |||
429 | ||||
430 | static inline PageDesc *page_find(tb_page_addr_t index) | |||
431 | { | |||
432 | return page_find_alloc(index, 0); | |||
433 | } | |||
434 | ||||
435 | #if !defined(CONFIG_USER_ONLY1) | |||
436 | #define mmap_lock() do { } while (0) | |||
437 | #define mmap_unlock() do { } while (0) | |||
438 | #endif | |||
439 | ||||
440 | #if defined(CONFIG_USER_ONLY1) | |||
441 | /* Currently it is not recommended to allocate big chunks of data in | |||
442 | user mode. It will change when a dedicated libc will be used. */ | |||
443 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |||
444 | region in which the guest needs to run. Revisit this. */ | |||
445 | #define USE_STATIC_CODE_GEN_BUFFER | |||
446 | #endif | |||
447 | ||||
448 | /* ??? Should configure for this, not list operating systems here. */ | |||
449 | #if (defined(__linux__1) \ | |||
450 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |||
451 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |||
452 | || defined(__NetBSD__)) | |||
453 | # define USE_MMAP | |||
454 | #endif | |||
455 | ||||
456 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |||
457 | but not so small that we can't have a fair number of TB's live. */ | |||
458 | #define MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024) (1024u * 1024) | |||
459 | ||||
460 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |||
461 | indicated, this is constrained by the range of direct branches on the | |||
462 | host cpu, as used by the TCG implementation of goto_tb. */ | |||
463 | #if defined(__x86_64__1) | |||
464 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (2ul * 1024 * 1024 * 1024) | |||
465 | #elif defined(__sparc__) | |||
466 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (2ul * 1024 * 1024 * 1024) | |||
467 | #elif defined(__aarch64__) | |||
468 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (128ul * 1024 * 1024) | |||
469 | #elif defined(__arm__) | |||
470 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (16u * 1024 * 1024) | |||
471 | #elif defined(__s390x__) | |||
472 | /* We have a +- 4GB range on the branches; leave some slop. */ | |||
473 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (3ul * 1024 * 1024 * 1024) | |||
474 | #else | |||
475 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) ((size_t)-1) | |||
476 | #endif | |||
477 | ||||
478 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) (32u * 1024 * 1024) | |||
479 | ||||
480 | #define DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024)) \ | |||
481 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) < MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) \ | |||
482 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) : MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024)) | |||
483 | ||||
484 | static inline size_t size_code_gen_buffer(size_t tb_size) | |||
485 | { | |||
486 | /* Size the buffer. */ | |||
487 | if (tb_size == 0) { | |||
488 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |||
489 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024)); | |||
490 | #else | |||
491 | /* ??? Needs adjustments. */ | |||
492 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |||
493 | static buffer, we could size this on RESERVED_VA, on the text | |||
494 | segment size of the executable, or continue to use the default. */ | |||
495 | tb_size = (unsigned long)(ram_size / 4); | |||
496 | #endif | |||
497 | } | |||
498 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024)) { | |||
499 | tb_size = MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024); | |||
500 | } | |||
501 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024)) { | |||
502 | tb_size = MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024); | |||
503 | } | |||
504 | tcg_ctx.code_gen_buffer_size = tb_size; | |||
505 | return tb_size; | |||
506 | } | |||
507 | ||||
508 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |||
509 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024))] | |||
510 | __attribute__((aligned(CODE_GEN_ALIGN16))); | |||
511 | ||||
512 | static inline void *alloc_code_gen_buffer(void) | |||
513 | { | |||
514 | map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |||
515 | return static_code_gen_buffer; | |||
516 | } | |||
517 | #elif defined(USE_MMAP) | |||
518 | static inline void *alloc_code_gen_buffer(void) | |||
519 | { | |||
520 | int flags = MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20; | |||
521 | uintptr_t start = 0; | |||
522 | void *buf; | |||
523 | ||||
524 | /* Constrain the position of the buffer based on the host cpu. | |||
525 | Note that these addresses are chosen in concert with the | |||
526 | addresses assigned in the relevant linker script file. */ | |||
527 | # if defined(__PIE__) || defined(__PIC__) | |||
528 | /* Don't bother setting a preferred location if we're building | |||
529 | a position-independent executable. We're more likely to get | |||
530 | an address near the main executable if we let the kernel | |||
531 | choose the address. */ | |||
532 | # elif defined(__x86_64__1) && defined(MAP_32BIT0x40) | |||
533 | /* Force the memory down into low memory with the executable. | |||
534 | Leave the choice of exact location with the kernel. */ | |||
535 | flags |= MAP_32BIT0x40; | |||
536 | /* Cannot expect to map more than 800MB in low memory. */ | |||
537 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { | |||
538 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |||
539 | } | |||
540 | # elif defined(__sparc__) | |||
541 | start = 0x40000000ul; | |||
542 | # elif defined(__s390x__) | |||
543 | start = 0x90000000ul; | |||
544 | # endif | |||
545 | ||||
546 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, | |||
547 | PROT_WRITE0x2 | PROT_READ0x1 | PROT_EXEC0x4, flags, -1, 0); | |||
548 | return buf == MAP_FAILED((void *) -1) ? NULL((void*)0) : buf; | |||
549 | } | |||
550 | #else | |||
551 | static inline void *alloc_code_gen_buffer(void) | |||
552 | { | |||
553 | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); | |||
554 | ||||
555 | if (buf) { | |||
556 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |||
557 | } | |||
558 | return buf; | |||
559 | } | |||
560 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |||
561 | ||||
562 | static inline void code_gen_alloc(size_t tb_size) | |||
563 | { | |||
564 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); | |||
565 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |||
566 | if (tcg_ctx.code_gen_buffer == NULL((void*)0)) { | |||
567 | fprintf(stderrstderr, "Could not allocate dynamic translator buffer\n"); | |||
568 | exit(1); | |||
569 | } | |||
570 | ||||
571 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, | |||
572 | QEMU_MADV_HUGEPAGE14); | |||
573 | ||||
574 | /* Steal room for the prologue at the end of the buffer. This ensures | |||
575 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |||
576 | from TB's to the prologue are going to be in range. It also means | |||
577 | that we don't need to mark (additional) portions of the data segment | |||
578 | as executable. */ | |||
579 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + | |||
580 | tcg_ctx.code_gen_buffer_size - 1024; | |||
581 | tcg_ctx.code_gen_buffer_size -= 1024; | |||
582 | ||||
583 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - | |||
584 | (TCG_MAX_OP_SIZE192 * OPC_BUF_SIZE640); | |||
585 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / | |||
586 | CODE_GEN_AVG_BLOCK_SIZE64; | |||
587 | tcg_ctx.tb_ctx.tbs = | |||
588 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |||
589 | } | |||
590 | ||||
591 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |||
592 | (in bytes) allocated to the translation buffer. Zero means default | |||
593 | size. */ | |||
594 | void tcg_exec_init(unsigned long tb_size) | |||
595 | { | |||
596 | cpu_gen_init(); | |||
597 | code_gen_alloc(tb_size); | |||
598 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |||
599 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |||
600 | page_init(); | |||
601 | #if !defined(CONFIG_USER_ONLY1) || !defined(CONFIG_USE_GUEST_BASE1) | |||
602 | /* There's no guest base to take into account, so go ahead and | |||
603 | initialize the prologue now. */ | |||
604 | tcg_prologue_init(&tcg_ctx); | |||
605 | #endif | |||
606 | } | |||
607 | ||||
608 | bool_Bool tcg_enabled(void) | |||
609 | { | |||
610 | return tcg_ctx.code_gen_buffer != NULL((void*)0); | |||
611 | } | |||
612 | ||||
613 | /* Allocate a new translation block. Flush the translation buffer if | |||
614 | too many translation blocks or too much generated code. */ | |||
615 | static TranslationBlock *tb_alloc(target_ulong pc) | |||
616 | { | |||
617 | TranslationBlock *tb; | |||
618 | ||||
619 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || | |||
620 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= | |||
621 | tcg_ctx.code_gen_buffer_max_size) { | |||
622 | return NULL((void*)0); | |||
623 | } | |||
624 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; | |||
625 | tb->pc = pc; | |||
626 | tb->cflags = 0; | |||
627 | return tb; | |||
628 | } | |||
629 | ||||
630 | void tb_free(TranslationBlock *tb) | |||
631 | { | |||
632 | /* In practice this is mostly used for single use temporary TB | |||
633 | Ignore the hard cases and just back up if this TB happens to | |||
634 | be the last one generated. */ | |||
635 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && | |||
636 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |||
637 | tcg_ctx.code_gen_ptr = tb->tc_ptr; | |||
638 | tcg_ctx.tb_ctx.nb_tbs--; | |||
639 | } | |||
640 | } | |||
641 | ||||
642 | static inline void invalidate_page_bitmap(PageDesc *p) | |||
643 | { | |||
644 | if (p->code_bitmap) { | |||
645 | g_free(p->code_bitmap); | |||
646 | p->code_bitmap = NULL((void*)0); | |||
647 | } | |||
648 | p->code_write_count = 0; | |||
649 | } | |||
650 | ||||
651 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |||
652 | static void page_flush_tb_1(int level, void **lp) | |||
653 | { | |||
654 | int i; | |||
655 | ||||
656 | if (*lp == NULL((void*)0)) { | |||
657 | return; | |||
658 | } | |||
659 | if (level == 0) { | |||
660 | PageDesc *pd = *lp; | |||
661 | ||||
662 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
663 | pd[i].first_tb = NULL((void*)0); | |||
664 | invalidate_page_bitmap(pd + i); | |||
665 | } | |||
666 | } else { | |||
667 | void **pp = *lp; | |||
668 | ||||
669 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
670 | page_flush_tb_1(level - 1, pp + i); | |||
671 | } | |||
672 | } | |||
673 | } | |||
674 | ||||
675 | static void page_flush_tb(void) | |||
676 | { | |||
677 | int i; | |||
678 | ||||
679 | for (i = 0; i < V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)); i++) { | |||
680 | page_flush_tb_1(V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1, l1_map + i); | |||
681 | } | |||
682 | } | |||
683 | ||||
684 | /* flush all the translation blocks */ | |||
685 | /* XXX: tb_flush is currently not thread safe */ | |||
686 | void tb_flush(CPUArchStatestruct CPUX86State *env1) | |||
687 | { | |||
688 | CPUState *cpu; | |||
689 | ||||
690 | #if defined(DEBUG_FLUSH) | |||
691 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |||
692 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), | |||
693 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? | |||
694 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / | |||
695 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
696 | #endif | |||
697 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) | |||
698 | > tcg_ctx.code_gen_buffer_size) { | |||
699 | cpu_abort(env1, "Internal error: code buffer overflow\n"); | |||
700 | } | |||
701 | tcg_ctx.tb_ctx.nb_tbs = 0; | |||
702 | ||||
703 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { | |||
704 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
705 | ||||
706 | memset(env->tb_jmp_cache, 0, sizeof(env->tb_jmp_cache)); | |||
707 | } | |||
708 | ||||
709 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); | |||
710 | page_flush_tb(); | |||
711 | ||||
712 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |||
713 | /* XXX: flush processor icache at this point if cache flush is | |||
714 | expensive */ | |||
715 | tcg_ctx.tb_ctx.tb_flush_count++; | |||
716 | } | |||
717 | ||||
718 | #ifdef DEBUG_TB_CHECK | |||
719 | ||||
720 | static void tb_invalidate_check(target_ulong address) | |||
721 | { | |||
722 | TranslationBlock *tb; | |||
723 | int i; | |||
724 | ||||
725 | address &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
726 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE(1 << 15); i++) { | |||
727 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL((void*)0); tb = tb->phys_hash_next) { | |||
728 | if (!(address + TARGET_PAGE_SIZE(1 << 12) <= tb->pc || | |||
729 | address >= tb->pc + tb->size)) { | |||
730 | printf("ERROR invalidate: address=" TARGET_FMT_lx"%016" "l" "x" | |||
731 | " PC=%08lx size=%04x\n", | |||
732 | address, (long)tb->pc, tb->size); | |||
733 | } | |||
734 | } | |||
735 | } | |||
736 | } | |||
737 | ||||
738 | /* verify that all the pages have correct rights for code */ | |||
739 | static void tb_page_check(void) | |||
740 | { | |||
741 | TranslationBlock *tb; | |||
742 | int i, flags1, flags2; | |||
743 | ||||
744 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE(1 << 15); i++) { | |||
745 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL((void*)0); | |||
746 | tb = tb->phys_hash_next) { | |||
747 | flags1 = page_get_flags(tb->pc); | |||
748 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |||
749 | if ((flags1 & PAGE_WRITE0x0002) || (flags2 & PAGE_WRITE0x0002)) { | |||
750 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |||
751 | (long)tb->pc, tb->size, flags1, flags2); | |||
752 | } | |||
753 | } | |||
754 | } | |||
755 | } | |||
756 | ||||
757 | #endif | |||
758 | ||||
759 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) | |||
760 | { | |||
761 | TranslationBlock *tb1; | |||
762 | ||||
763 | for (;;) { | |||
764 | tb1 = *ptb; | |||
765 | if (tb1 == tb) { | |||
766 | *ptb = tb1->phys_hash_next; | |||
767 | break; | |||
768 | } | |||
769 | ptb = &tb1->phys_hash_next; | |||
770 | } | |||
771 | } | |||
772 | ||||
773 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |||
774 | { | |||
775 | TranslationBlock *tb1; | |||
776 | unsigned int n1; | |||
777 | ||||
778 | for (;;) { | |||
779 | tb1 = *ptb; | |||
780 | n1 = (uintptr_t)tb1 & 3; | |||
781 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
782 | if (tb1 == tb) { | |||
783 | *ptb = tb1->page_next[n1]; | |||
784 | break; | |||
785 | } | |||
786 | ptb = &tb1->page_next[n1]; | |||
787 | } | |||
788 | } | |||
789 | ||||
790 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |||
791 | { | |||
792 | TranslationBlock *tb1, **ptb; | |||
793 | unsigned int n1; | |||
794 | ||||
795 | ptb = &tb->jmp_next[n]; | |||
796 | tb1 = *ptb; | |||
797 | if (tb1) { | |||
798 | /* find tb(n) in circular list */ | |||
799 | for (;;) { | |||
800 | tb1 = *ptb; | |||
801 | n1 = (uintptr_t)tb1 & 3; | |||
802 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
803 | if (n1 == n && tb1 == tb) { | |||
804 | break; | |||
805 | } | |||
806 | if (n1 == 2) { | |||
807 | ptb = &tb1->jmp_first; | |||
808 | } else { | |||
809 | ptb = &tb1->jmp_next[n1]; | |||
810 | } | |||
811 | } | |||
812 | /* now we can suppress tb(n) from the list */ | |||
813 | *ptb = tb->jmp_next[n]; | |||
814 | ||||
815 | tb->jmp_next[n] = NULL((void*)0); | |||
816 | } | |||
817 | } | |||
818 | ||||
819 | /* reset the jump entry 'n' of a TB so that it is not chained to | |||
820 | another TB */ | |||
821 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |||
822 | { | |||
823 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |||
824 | } | |||
825 | ||||
826 | /* invalidate one TB */ | |||
827 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | |||
828 | { | |||
829 | CPUState *cpu; | |||
830 | PageDesc *p; | |||
831 | unsigned int h, n1; | |||
832 | tb_page_addr_t phys_pc; | |||
833 | TranslationBlock *tb1, *tb2; | |||
834 | ||||
835 | /* remove the TB from the hash list */ | |||
836 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
837 | h = tb_phys_hash_func(phys_pc); | |||
838 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); | |||
839 | ||||
840 | /* remove the TB from the page list */ | |||
841 | if (tb->page_addr[0] != page_addr) { | |||
842 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS12); | |||
843 | tb_page_remove(&p->first_tb, tb); | |||
844 | invalidate_page_bitmap(p); | |||
845 | } | |||
846 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |||
847 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS12); | |||
848 | tb_page_remove(&p->first_tb, tb); | |||
849 | invalidate_page_bitmap(p); | |||
850 | } | |||
851 | ||||
852 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |||
853 | ||||
854 | /* remove the TB from the hash list */ | |||
855 | h = tb_jmp_cache_hash_func(tb->pc); | |||
856 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { | |||
857 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
858 | ||||
859 | if (env->tb_jmp_cache[h] == tb) { | |||
860 | env->tb_jmp_cache[h] = NULL((void*)0); | |||
861 | } | |||
862 | } | |||
863 | ||||
864 | /* suppress this TB from the two jump lists */ | |||
865 | tb_jmp_remove(tb, 0); | |||
866 | tb_jmp_remove(tb, 1); | |||
867 | ||||
868 | /* suppress any remaining jumps to this TB */ | |||
869 | tb1 = tb->jmp_first; | |||
870 | for (;;) { | |||
871 | n1 = (uintptr_t)tb1 & 3; | |||
872 | if (n1 == 2) { | |||
873 | break; | |||
874 | } | |||
875 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
876 | tb2 = tb1->jmp_next[n1]; | |||
877 | tb_reset_jump(tb1, n1); | |||
878 | tb1->jmp_next[n1] = NULL((void*)0); | |||
879 | tb1 = tb2; | |||
880 | } | |||
881 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |||
882 | ||||
883 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; | |||
884 | } | |||
885 | ||||
886 | static inline void set_bits(uint8_t *tab, int start, int len) | |||
887 | { | |||
888 | int end, mask, end1; | |||
889 | ||||
890 | end = start + len; | |||
891 | tab += start >> 3; | |||
892 | mask = 0xff << (start & 7); | |||
893 | if ((start & ~7) == (end & ~7)) { | |||
894 | if (start < end) { | |||
895 | mask &= ~(0xff << (end & 7)); | |||
896 | *tab |= mask; | |||
897 | } | |||
898 | } else { | |||
899 | *tab++ |= mask; | |||
900 | start = (start + 8) & ~7; | |||
901 | end1 = end & ~7; | |||
902 | while (start < end1) { | |||
903 | *tab++ = 0xff; | |||
904 | start += 8; | |||
905 | } | |||
906 | if (start < end) { | |||
907 | mask = ~(0xff << (end & 7)); | |||
908 | *tab |= mask; | |||
909 | } | |||
910 | } | |||
911 | } | |||
912 | ||||
913 | static void build_page_bitmap(PageDesc *p) | |||
914 | { | |||
915 | int n, tb_start, tb_end; | |||
916 | TranslationBlock *tb; | |||
917 | ||||
918 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE(1 << 12) / 8); | |||
919 | ||||
920 | tb = p->first_tb; | |||
921 | while (tb != NULL((void*)0)) { | |||
922 | n = (uintptr_t)tb & 3; | |||
923 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
924 | /* NOTE: this is subtle as a TB may span two physical pages */ | |||
925 | if (n == 0) { | |||
926 | /* NOTE: tb_end may be after the end of the page, but | |||
927 | it is not a problem */ | |||
928 | tb_start = tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1); | |||
929 | tb_end = tb_start + tb->size; | |||
930 | if (tb_end > TARGET_PAGE_SIZE(1 << 12)) { | |||
931 | tb_end = TARGET_PAGE_SIZE(1 << 12); | |||
932 | } | |||
933 | } else { | |||
934 | tb_start = 0; | |||
935 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
936 | } | |||
937 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |||
938 | tb = tb->page_next[n]; | |||
939 | } | |||
940 | } | |||
941 | ||||
942 | TranslationBlock *tb_gen_code(CPUArchStatestruct CPUX86State *env, | |||
943 | target_ulong pc, target_ulong cs_base, | |||
944 | int flags, int cflags) | |||
945 | { | |||
946 | TranslationBlock *tb; | |||
947 | uint8_t *tc_ptr; | |||
948 | tb_page_addr_t phys_pc, phys_page2; | |||
949 | target_ulong virt_page2; | |||
950 | int code_gen_size; | |||
951 | ||||
952 | phys_pc = get_page_addr_code(env, pc); | |||
953 | tb = tb_alloc(pc); | |||
954 | if (!tb) { | |||
955 | /* flush must be done */ | |||
956 | tb_flush(env); | |||
957 | /* cannot fail at this point */ | |||
958 | tb = tb_alloc(pc); | |||
959 | /* Don't forget to invalidate previous TB info. */ | |||
960 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |||
961 | } | |||
962 | tc_ptr = tcg_ctx.code_gen_ptr; | |||
963 | tb->tc_ptr = tc_ptr; | |||
964 | tb->cs_base = cs_base; | |||
965 | tb->flags = flags; | |||
966 | tb->cflags = cflags; | |||
967 | cpu_gen_codecpu_x86_gen_code(env, tb, &code_gen_size); | |||
968 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + | |||
969 | code_gen_size + CODE_GEN_ALIGN16 - 1) & ~(CODE_GEN_ALIGN16 - 1)); | |||
970 | ||||
971 | /* check next page if needed */ | |||
972 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
973 | phys_page2 = -1; | |||
974 | if ((pc & TARGET_PAGE_MASK~((1 << 12) - 1)) != virt_page2) { | |||
975 | phys_page2 = get_page_addr_code(env, virt_page2); | |||
976 | } | |||
977 | tb_link_page(tb, phys_pc, phys_page2); | |||
978 | return tb; | |||
979 | } | |||
980 | ||||
981 | /* | |||
982 | * Invalidate all TBs which intersect with the target physical address range | |||
983 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |||
984 | * 'is_cpu_write_access' should be true if called from a real cpu write | |||
985 | * access: the virtual CPU will exit the current TB if code is modified inside | |||
986 | * this TB. | |||
987 | */ | |||
988 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |||
989 | int is_cpu_write_access) | |||
990 | { | |||
991 | while (start < end) { | |||
992 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |||
993 | start &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
994 | start += TARGET_PAGE_SIZE(1 << 12); | |||
995 | } | |||
996 | } | |||
997 | ||||
998 | /* | |||
999 | * Invalidate all TBs which intersect with the target physical address range | |||
1000 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |||
1001 | * 'is_cpu_write_access' should be true if called from a real cpu write | |||
1002 | * access: the virtual CPU will exit the current TB if code is modified inside | |||
1003 | * this TB. | |||
1004 | */ | |||
1005 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |||
1006 | int is_cpu_write_access) | |||
1007 | { | |||
1008 | TranslationBlock *tb, *tb_next, *saved_tb; | |||
1009 | CPUState *cpu = current_cputls__current_cpu; | |||
1010 | #if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY1) | |||
1011 | CPUArchStatestruct CPUX86State *env = NULL((void*)0); | |||
1012 | #endif | |||
1013 | tb_page_addr_t tb_start, tb_end; | |||
1014 | PageDesc *p; | |||
1015 | int n; | |||
1016 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1017 | int current_tb_not_found = is_cpu_write_access; | |||
1018 | TranslationBlock *current_tb = NULL((void*)0); | |||
1019 | int current_tb_modified = 0; | |||
1020 | target_ulong current_pc = 0; | |||
1021 | target_ulong current_cs_base = 0; | |||
1022 | int current_flags = 0; | |||
1023 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
1024 | ||||
1025 | p = page_find(start >> TARGET_PAGE_BITS12); | |||
1026 | if (!p) { | |||
1027 | return; | |||
1028 | } | |||
1029 | if (!p->code_bitmap && | |||
1030 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD10 && | |||
1031 | is_cpu_write_access) { | |||
1032 | /* build code bitmap */ | |||
1033 | build_page_bitmap(p); | |||
1034 | } | |||
1035 | #if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY1) | |||
1036 | if (cpu != NULL((void*)0)) { | |||
1037 | env = cpu->env_ptr; | |||
1038 | } | |||
1039 | #endif | |||
1040 | ||||
1041 | /* we remove all the TBs in the range [start, end[ */ | |||
1042 | /* XXX: see if in some cases it could be faster to invalidate all | |||
1043 | the code */ | |||
1044 | tb = p->first_tb; | |||
1045 | while (tb != NULL((void*)0)) { | |||
1046 | n = (uintptr_t)tb & 3; | |||
1047 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
1048 | tb_next = tb->page_next[n]; | |||
1049 | /* NOTE: this is subtle as a TB may span two physical pages */ | |||
1050 | if (n == 0) { | |||
1051 | /* NOTE: tb_end may be after the end of the page, but | |||
1052 | it is not a problem */ | |||
1053 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
1054 | tb_end = tb_start + tb->size; | |||
1055 | } else { | |||
1056 | tb_start = tb->page_addr[1]; | |||
1057 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
1058 | } | |||
1059 | if (!(tb_end <= start || tb_start >= end)) { | |||
1060 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1061 | if (current_tb_not_found) { | |||
1062 | current_tb_not_found = 0; | |||
1063 | current_tb = NULL((void*)0); | |||
1064 | if (env->mem_io_pc) { | |||
1065 | /* now we have a real cpu fault */ | |||
1066 | current_tb = tb_find_pc(env->mem_io_pc); | |||
1067 | } | |||
1068 | } | |||
1069 | if (current_tb == tb && | |||
1070 | (current_tb->cflags & CF_COUNT_MASK0x7fff) != 1) { | |||
1071 | /* If we are modifying the current TB, we must stop | |||
1072 | its execution. We could be more precise by checking | |||
1073 | that the modification is after the current PC, but it | |||
1074 | would require a specialized function to partially | |||
1075 | restore the CPU state */ | |||
1076 | ||||
1077 | current_tb_modified = 1; | |||
1078 | cpu_restore_state_from_tb(current_tb, env, env->mem_io_pc); | |||
1079 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |||
1080 | ¤t_flags); | |||
1081 | } | |||
1082 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
1083 | /* we need to do that to handle the case where a signal | |||
1084 | occurs while doing tb_phys_invalidate() */ | |||
1085 | saved_tb = NULL((void*)0); | |||
1086 | if (cpu != NULL((void*)0)) { | |||
1087 | saved_tb = cpu->current_tb; | |||
1088 | cpu->current_tb = NULL((void*)0); | |||
1089 | } | |||
1090 | tb_phys_invalidate(tb, -1); | |||
1091 | if (cpu != NULL((void*)0)) { | |||
1092 | cpu->current_tb = saved_tb; | |||
1093 | if (cpu->interrupt_request && cpu->current_tb) { | |||
1094 | cpu_interrupt(cpu, cpu->interrupt_request); | |||
1095 | } | |||
1096 | } | |||
1097 | } | |||
1098 | tb = tb_next; | |||
1099 | } | |||
1100 | #if !defined(CONFIG_USER_ONLY1) | |||
1101 | /* if no code remaining, no need to continue to use slow writes */ | |||
1102 | if (!p->first_tb) { | |||
1103 | invalidate_page_bitmap(p); | |||
1104 | if (is_cpu_write_access) { | |||
1105 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | |||
1106 | } | |||
1107 | } | |||
1108 | #endif | |||
1109 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1110 | if (current_tb_modified) { | |||
1111 | /* we generate a block containing just the instruction | |||
1112 | modifying the memory. It will ensure that it cannot modify | |||
1113 | itself */ | |||
1114 | cpu->current_tb = NULL((void*)0); | |||
1115 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |||
1116 | cpu_resume_from_signal(env, NULL((void*)0)); | |||
1117 | } | |||
1118 | #endif | |||
1119 | } | |||
1120 | ||||
1121 | /* len must be <= 8 and start must be a multiple of len */ | |||
1122 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |||
1123 | { | |||
1124 | PageDesc *p; | |||
1125 | int offset, b; | |||
1126 | ||||
1127 | #if 0 | |||
1128 | if (1) { | |||
1129 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |||
1130 | cpu_single_env->mem_io_vaddr, len, | |||
1131 | cpu_single_env->eip, | |||
1132 | cpu_single_env->eip + | |||
1133 | (intptr_t)cpu_single_env->segs[R_CS1].base); | |||
1134 | } | |||
1135 | #endif | |||
1136 | p = page_find(start >> TARGET_PAGE_BITS12); | |||
1137 | if (!p) { | |||
1138 | return; | |||
1139 | } | |||
1140 | if (p->code_bitmap) { | |||
1141 | offset = start & ~TARGET_PAGE_MASK~((1 << 12) - 1); | |||
1142 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |||
1143 | if (b & ((1 << len) - 1)) { | |||
1144 | goto do_invalidate; | |||
1145 | } | |||
1146 | } else { | |||
1147 | do_invalidate: | |||
1148 | tb_invalidate_phys_page_range(start, start + len, 1); | |||
1149 | } | |||
1150 | } | |||
1151 | ||||
1152 | #if !defined(CONFIG_SOFTMMU) | |||
1153 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |||
1154 | uintptr_t pc, void *puc, | |||
1155 | bool_Bool locked) | |||
1156 | { | |||
1157 | TranslationBlock *tb; | |||
1158 | PageDesc *p; | |||
1159 | int n; | |||
1160 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1161 | TranslationBlock *current_tb = NULL((void*)0); | |||
1162 | CPUState *cpu = current_cputls__current_cpu; | |||
1163 | CPUArchStatestruct CPUX86State *env = NULL((void*)0); | |||
1164 | int current_tb_modified = 0; | |||
1165 | target_ulong current_pc = 0; | |||
1166 | target_ulong current_cs_base = 0; | |||
1167 | int current_flags = 0; | |||
1168 | #endif | |||
1169 | ||||
1170 | addr &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
1171 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
1172 | if (!p) { | |||
1173 | return; | |||
1174 | } | |||
1175 | tb = p->first_tb; | |||
1176 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1177 | if (tb && pc != 0) { | |||
1178 | current_tb = tb_find_pc(pc); | |||
1179 | } | |||
1180 | if (cpu != NULL((void*)0)) { | |||
1181 | env = cpu->env_ptr; | |||
1182 | } | |||
1183 | #endif | |||
1184 | while (tb != NULL((void*)0)) { | |||
1185 | n = (uintptr_t)tb & 3; | |||
1186 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
1187 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1188 | if (current_tb == tb && | |||
1189 | (current_tb->cflags & CF_COUNT_MASK0x7fff) != 1) { | |||
| ||||
1190 | /* If we are modifying the current TB, we must stop | |||
1191 | its execution. We could be more precise by checking | |||
1192 | that the modification is after the current PC, but it | |||
1193 | would require a specialized function to partially | |||
1194 | restore the CPU state */ | |||
1195 | ||||
1196 | current_tb_modified = 1; | |||
1197 | cpu_restore_state_from_tb(current_tb, env, pc); | |||
1198 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |||
1199 | ¤t_flags); | |||
1200 | } | |||
1201 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
1202 | tb_phys_invalidate(tb, addr); | |||
1203 | tb = tb->page_next[n]; | |||
1204 | } | |||
1205 | p->first_tb = NULL((void*)0); | |||
1206 | #ifdef TARGET_HAS_PRECISE_SMC | |||
1207 | if (current_tb_modified) { | |||
1208 | /* we generate a block containing just the instruction | |||
1209 | modifying the memory. It will ensure that it cannot modify | |||
1210 | itself */ | |||
1211 | cpu->current_tb = NULL((void*)0); | |||
1212 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |||
1213 | if (locked) { | |||
1214 | mmap_unlock(); | |||
1215 | } | |||
1216 | cpu_resume_from_signal(env, puc); | |||
1217 | } | |||
1218 | #endif | |||
1219 | } | |||
1220 | #endif | |||
1221 | ||||
1222 | /* add the tb in the target page and protect it if necessary */ | |||
1223 | static inline void tb_alloc_page(TranslationBlock *tb, | |||
1224 | unsigned int n, tb_page_addr_t page_addr) | |||
1225 | { | |||
1226 | PageDesc *p; | |||
1227 | #ifndef CONFIG_USER_ONLY1 | |||
1228 | bool_Bool page_already_protected; | |||
1229 | #endif | |||
1230 | ||||
1231 | tb->page_addr[n] = page_addr; | |||
1232 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS12, 1); | |||
1233 | tb->page_next[n] = p->first_tb; | |||
1234 | #ifndef CONFIG_USER_ONLY1 | |||
1235 | page_already_protected = p->first_tb != NULL((void*)0); | |||
1236 | #endif | |||
1237 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |||
1238 | invalidate_page_bitmap(p); | |||
1239 | ||||
1240 | #if defined(TARGET_HAS_SMC) || 1 | |||
1241 | ||||
1242 | #if defined(CONFIG_USER_ONLY1) | |||
1243 | if (p->flags & PAGE_WRITE0x0002) { | |||
1244 | target_ulong addr; | |||
1245 | PageDesc *p2; | |||
1246 | int prot; | |||
1247 | ||||
1248 | /* force the host page as non writable (writes will have a | |||
1249 | page fault + mprotect overhead) */ | |||
1250 | page_addr &= qemu_host_page_mask; | |||
1251 | prot = 0; | |||
1252 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |||
1253 | addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
1254 | ||||
1255 | p2 = page_find(addr >> TARGET_PAGE_BITS12); | |||
1256 | if (!p2) { | |||
1257 | continue; | |||
1258 | } | |||
1259 | prot |= p2->flags; | |||
1260 | p2->flags &= ~PAGE_WRITE0x0002; | |||
1261 | } | |||
1262 | mprotect(g2h(page_addr)((void *)((unsigned long)(target_ulong)(page_addr) + guest_base )), qemu_host_page_size, | |||
1263 | (prot & PAGE_BITS(0x0001 | 0x0002 | 0x0004)) & ~PAGE_WRITE0x0002); | |||
1264 | #ifdef DEBUG_TB_INVALIDATE | |||
1265 | printf("protecting code page: 0x" TARGET_FMT_lx"%016" "l" "x" "\n", | |||
1266 | page_addr); | |||
1267 | #endif | |||
1268 | } | |||
1269 | #else | |||
1270 | /* if some code is already present, then the pages are already | |||
1271 | protected. So we handle the case where only the first TB is | |||
1272 | allocated in a physical page */ | |||
1273 | if (!page_already_protected) { | |||
1274 | tlb_protect_code(page_addr); | |||
1275 | } | |||
1276 | #endif | |||
1277 | ||||
1278 | #endif /* TARGET_HAS_SMC */ | |||
1279 | } | |||
1280 | ||||
1281 | /* add a new TB and link it to the physical page tables. phys_page2 is | |||
1282 | (-1) to indicate that only one page contains the TB. */ | |||
1283 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |||
1284 | tb_page_addr_t phys_page2) | |||
1285 | { | |||
1286 | unsigned int h; | |||
1287 | TranslationBlock **ptb; | |||
1288 | ||||
1289 | /* Grab the mmap lock to stop another thread invalidating this TB | |||
1290 | before we are done. */ | |||
1291 | mmap_lock(); | |||
1292 | /* add in the physical hash table */ | |||
1293 | h = tb_phys_hash_func(phys_pc); | |||
1294 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |||
1295 | tb->phys_hash_next = *ptb; | |||
1296 | *ptb = tb; | |||
1297 | ||||
1298 | /* add in the page list */ | |||
1299 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
1300 | if (phys_page2 != -1) { | |||
1301 | tb_alloc_page(tb, 1, phys_page2); | |||
1302 | } else { | |||
1303 | tb->page_addr[1] = -1; | |||
1304 | } | |||
1305 | ||||
1306 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |||
1307 | tb->jmp_next[0] = NULL((void*)0); | |||
1308 | tb->jmp_next[1] = NULL((void*)0); | |||
1309 | ||||
1310 | /* init original jump addresses */ | |||
1311 | if (tb->tb_next_offset[0] != 0xffff) { | |||
1312 | tb_reset_jump(tb, 0); | |||
1313 | } | |||
1314 | if (tb->tb_next_offset[1] != 0xffff) { | |||
1315 | tb_reset_jump(tb, 1); | |||
1316 | } | |||
1317 | ||||
1318 | #ifdef DEBUG_TB_CHECK | |||
1319 | tb_page_check(); | |||
1320 | #endif | |||
1321 | mmap_unlock(); | |||
1322 | } | |||
1323 | ||||
1324 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |||
1325 | tb[1].tc_ptr. Return NULL if not found */ | |||
1326 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) | |||
1327 | { | |||
1328 | int m_min, m_max, m; | |||
1329 | uintptr_t v; | |||
1330 | TranslationBlock *tb; | |||
1331 | ||||
1332 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { | |||
1333 | return NULL((void*)0); | |||
1334 | } | |||
1335 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || | |||
1336 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |||
1337 | return NULL((void*)0); | |||
1338 | } | |||
1339 | /* binary search (cf Knuth) */ | |||
1340 | m_min = 0; | |||
1341 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; | |||
1342 | while (m_min <= m_max) { | |||
1343 | m = (m_min + m_max) >> 1; | |||
1344 | tb = &tcg_ctx.tb_ctx.tbs[m]; | |||
1345 | v = (uintptr_t)tb->tc_ptr; | |||
1346 | if (v == tc_ptr) { | |||
1347 | return tb; | |||
1348 | } else if (tc_ptr < v) { | |||
1349 | m_max = m - 1; | |||
1350 | } else { | |||
1351 | m_min = m + 1; | |||
1352 | } | |||
1353 | } | |||
1354 | return &tcg_ctx.tb_ctx.tbs[m_max]; | |||
1355 | } | |||
1356 | ||||
1357 | #if defined(TARGET_HAS_ICE1) && !defined(CONFIG_USER_ONLY1) | |||
1358 | void tb_invalidate_phys_addr(hwaddr addr) | |||
1359 | { | |||
1360 | ram_addr_t ram_addr; | |||
1361 | MemoryRegion *mr; | |||
1362 | hwaddr l = 1; | |||
1363 | ||||
1364 | mr = address_space_translate(&address_space_memory, addr, &addr, &l, false0); | |||
1365 | if (!(memory_region_is_ram(mr) | |||
1366 | || memory_region_is_romd(mr))) { | |||
1367 | return; | |||
1368 | } | |||
1369 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK~((1 << 12) - 1)) | |||
1370 | + addr; | |||
1371 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |||
1372 | } | |||
1373 | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | |||
1374 | ||||
1375 | void tb_check_watchpoint(CPUArchStatestruct CPUX86State *env) | |||
1376 | { | |||
1377 | TranslationBlock *tb; | |||
1378 | ||||
1379 | tb = tb_find_pc(env->mem_io_pc); | |||
1380 | if (!tb) { | |||
1381 | cpu_abort(env, "check_watchpoint: could not find TB for pc=%p", | |||
1382 | (void *)env->mem_io_pc); | |||
1383 | } | |||
1384 | cpu_restore_state_from_tb(tb, env, env->mem_io_pc); | |||
1385 | tb_phys_invalidate(tb, -1); | |||
1386 | } | |||
1387 | ||||
1388 | #ifndef CONFIG_USER_ONLY1 | |||
1389 | /* mask must never be zero, except for A20 change call */ | |||
1390 | static void tcg_handle_interrupt(CPUState *cpu, int mask) | |||
1391 | { | |||
1392 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
1393 | int old_mask; | |||
1394 | ||||
1395 | old_mask = cpu->interrupt_request; | |||
1396 | cpu->interrupt_request |= mask; | |||
1397 | ||||
1398 | /* | |||
1399 | * If called from iothread context, wake the target cpu in | |||
1400 | * case its halted. | |||
1401 | */ | |||
1402 | if (!qemu_cpu_is_self(cpu)) { | |||
1403 | qemu_cpu_kick(cpu); | |||
1404 | return; | |||
1405 | } | |||
1406 | ||||
1407 | if (use_icount) { | |||
1408 | env->icount_decr.u16.high = 0xffff; | |||
1409 | if (!can_do_io(env) | |||
1410 | && (mask & ~old_mask) != 0) { | |||
1411 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |||
1412 | } | |||
1413 | } else { | |||
1414 | cpu->tcg_exit_req = 1; | |||
1415 | } | |||
1416 | } | |||
1417 | ||||
1418 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |||
1419 | ||||
1420 | /* in deterministic execution mode, instructions doing device I/Os | |||
1421 | must be at the end of the TB */ | |||
1422 | void cpu_io_recompile(CPUArchStatestruct CPUX86State *env, uintptr_t retaddr) | |||
1423 | { | |||
1424 | TranslationBlock *tb; | |||
1425 | uint32_t n, cflags; | |||
1426 | target_ulong pc, cs_base; | |||
1427 | uint64_t flags; | |||
1428 | ||||
1429 | tb = tb_find_pc(retaddr); | |||
1430 | if (!tb) { | |||
1431 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |||
1432 | (void *)retaddr); | |||
1433 | } | |||
1434 | n = env->icount_decr.u16.low + tb->icount; | |||
1435 | cpu_restore_state_from_tb(tb, env, retaddr); | |||
1436 | /* Calculate how many instructions had been executed before the fault | |||
1437 | occurred. */ | |||
1438 | n = n - env->icount_decr.u16.low; | |||
1439 | /* Generate a new TB ending on the I/O insn. */ | |||
1440 | n++; | |||
1441 | /* On MIPS and SH, delay slot instructions can only be restarted if | |||
1442 | they were already the first instruction in the TB. If this is not | |||
1443 | the first instruction in a TB then re-execute the preceding | |||
1444 | branch. */ | |||
1445 | #if defined(TARGET_MIPS) | |||
1446 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |||
1447 | env->active_tc.PC -= 4; | |||
1448 | env->icount_decr.u16.low++; | |||
1449 | env->hflags &= ~MIPS_HFLAG_BMASK; | |||
1450 | } | |||
1451 | #elif defined(TARGET_SH4) | |||
1452 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |||
1453 | && n > 1) { | |||
1454 | env->pc -= 2; | |||
1455 | env->icount_decr.u16.low++; | |||
1456 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |||
1457 | } | |||
1458 | #endif | |||
1459 | /* This should never happen. */ | |||
1460 | if (n > CF_COUNT_MASK0x7fff) { | |||
1461 | cpu_abort(env, "TB too big during recompile"); | |||
1462 | } | |||
1463 | ||||
1464 | cflags = n | CF_LAST_IO0x8000; | |||
1465 | pc = tb->pc; | |||
1466 | cs_base = tb->cs_base; | |||
1467 | flags = tb->flags; | |||
1468 | tb_phys_invalidate(tb, -1); | |||
1469 | /* FIXME: In theory this could raise an exception. In practice | |||
1470 | we have already translated the block once so it's probably ok. */ | |||
1471 | tb_gen_code(env, pc, cs_base, flags, cflags); | |||
1472 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |||
1473 | the first in the TB) then we end up generating a whole new TB and | |||
1474 | repeating the fault, which is horribly inefficient. | |||
1475 | Better would be to execute just this insn uncached, or generate a | |||
1476 | second new TB. */ | |||
1477 | cpu_resume_from_signal(env, NULL((void*)0)); | |||
1478 | } | |||
1479 | ||||
1480 | void tb_flush_jmp_cache(CPUArchStatestruct CPUX86State *env, target_ulong addr) | |||
1481 | { | |||
1482 | unsigned int i; | |||
1483 | ||||
1484 | /* Discard jump cache entries for any tb which might potentially | |||
1485 | overlap the flushed page. */ | |||
1486 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE(1 << 12)); | |||
1487 | memset(&env->tb_jmp_cache[i], 0, | |||
1488 | TB_JMP_PAGE_SIZE(1 << (12 / 2)) * sizeof(TranslationBlock *)); | |||
1489 | ||||
1490 | i = tb_jmp_cache_hash_page(addr); | |||
1491 | memset(&env->tb_jmp_cache[i], 0, | |||
1492 | TB_JMP_PAGE_SIZE(1 << (12 / 2)) * sizeof(TranslationBlock *)); | |||
1493 | } | |||
1494 | ||||
1495 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |||
1496 | { | |||
1497 | int i, target_code_size, max_target_code_size; | |||
1498 | int direct_jmp_count, direct_jmp2_count, cross_page; | |||
1499 | TranslationBlock *tb; | |||
1500 | ||||
1501 | target_code_size = 0; | |||
1502 | max_target_code_size = 0; | |||
1503 | cross_page = 0; | |||
1504 | direct_jmp_count = 0; | |||
1505 | direct_jmp2_count = 0; | |||
1506 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { | |||
1507 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |||
1508 | target_code_size += tb->size; | |||
1509 | if (tb->size > max_target_code_size) { | |||
1510 | max_target_code_size = tb->size; | |||
1511 | } | |||
1512 | if (tb->page_addr[1] != -1) { | |||
1513 | cross_page++; | |||
1514 | } | |||
1515 | if (tb->tb_next_offset[0] != 0xffff) { | |||
1516 | direct_jmp_count++; | |||
1517 | if (tb->tb_next_offset[1] != 0xffff) { | |||
1518 | direct_jmp2_count++; | |||
1519 | } | |||
1520 | } | |||
1521 | } | |||
1522 | /* XXX: avoid using doubles ? */ | |||
1523 | cpu_fprintf(f, "Translation buffer state:\n"); | |||
1524 | cpu_fprintf(f, "gen code size %td/%zd\n", | |||
1525 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, | |||
1526 | tcg_ctx.code_gen_buffer_max_size); | |||
1527 | cpu_fprintf(f, "TB count %d/%d\n", | |||
1528 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); | |||
1529 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |||
1530 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / | |||
1531 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
1532 | max_target_code_size); | |||
1533 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", | |||
1534 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - | |||
1535 | tcg_ctx.code_gen_buffer) / | |||
1536 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
1537 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |||
1538 | tcg_ctx.code_gen_buffer) / | |||
1539 | target_code_size : 0); | |||
1540 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |||
1541 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |||
1542 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
1543 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |||
1544 | direct_jmp_count, | |||
1545 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / | |||
1546 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
1547 | direct_jmp2_count, | |||
1548 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / | |||
1549 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
1550 | cpu_fprintf(f, "\nStatistics:\n"); | |||
1551 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); | |||
1552 | cpu_fprintf(f, "TB invalidate count %d\n", | |||
1553 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |||
1554 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |||
1555 | tcg_dump_info(f, cpu_fprintf); | |||
1556 | } | |||
1557 | ||||
1558 | #else /* CONFIG_USER_ONLY */ | |||
1559 | ||||
1560 | void cpu_interrupt(CPUState *cpu, int mask) | |||
1561 | { | |||
1562 | cpu->interrupt_request |= mask; | |||
1563 | cpu->tcg_exit_req = 1; | |||
1564 | } | |||
1565 | ||||
1566 | /* | |||
1567 | * Walks guest process memory "regions" one by one | |||
1568 | * and calls callback function 'fn' for each region. | |||
1569 | */ | |||
1570 | struct walk_memory_regions_data { | |||
1571 | walk_memory_regions_fn fn; | |||
1572 | void *priv; | |||
1573 | uintptr_t start; | |||
1574 | int prot; | |||
1575 | }; | |||
1576 | ||||
1577 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |||
1578 | abi_ulong end, int new_prot) | |||
1579 | { | |||
1580 | if (data->start != -1ul) { | |||
1581 | int rc = data->fn(data->priv, data->start, end, data->prot); | |||
1582 | if (rc != 0) { | |||
1583 | return rc; | |||
1584 | } | |||
1585 | } | |||
1586 | ||||
1587 | data->start = (new_prot ? end : -1ul); | |||
1588 | data->prot = new_prot; | |||
1589 | ||||
1590 | return 0; | |||
1591 | } | |||
1592 | ||||
1593 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |||
1594 | abi_ulong base, int level, void **lp) | |||
1595 | { | |||
1596 | abi_ulong pa; | |||
1597 | int i, rc; | |||
1598 | ||||
1599 | if (*lp == NULL((void*)0)) { | |||
1600 | return walk_memory_regions_end(data, base, 0); | |||
1601 | } | |||
1602 | ||||
1603 | if (level == 0) { | |||
1604 | PageDesc *pd = *lp; | |||
1605 | ||||
1606 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
1607 | int prot = pd[i].flags; | |||
1608 | ||||
1609 | pa = base | (i << TARGET_PAGE_BITS12); | |||
1610 | if (prot != data->prot) { | |||
1611 | rc = walk_memory_regions_end(data, pa, prot); | |||
1612 | if (rc != 0) { | |||
1613 | return rc; | |||
1614 | } | |||
1615 | } | |||
1616 | } | |||
1617 | } else { | |||
1618 | void **pp = *lp; | |||
1619 | ||||
1620 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
1621 | pa = base | ((abi_ulong)i << | |||
1622 | (TARGET_PAGE_BITS12 + V_L2_BITS10 * level)); | |||
1623 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | |||
1624 | if (rc != 0) { | |||
1625 | return rc; | |||
1626 | } | |||
1627 | } | |||
1628 | } | |||
1629 | ||||
1630 | return 0; | |||
1631 | } | |||
1632 | ||||
1633 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |||
1634 | { | |||
1635 | struct walk_memory_regions_data data; | |||
1636 | uintptr_t i; | |||
1637 | ||||
1638 | data.fn = fn; | |||
1639 | data.priv = priv; | |||
1640 | data.start = -1ul; | |||
1641 | data.prot = 0; | |||
1642 | ||||
1643 | for (i = 0; i < V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)); i++) { | |||
1644 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)), | |||
1645 | V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1, l1_map + i); | |||
1646 | ||||
1647 | if (rc != 0) { | |||
1648 | return rc; | |||
1649 | } | |||
1650 | } | |||
1651 | ||||
1652 | return walk_memory_regions_end(&data, 0, 0); | |||
1653 | } | |||
1654 | ||||
1655 | static int dump_region(void *priv, abi_ulong start, | |||
1656 | abi_ulong end, unsigned long prot) | |||
1657 | { | |||
1658 | FILE *f = (FILE *)priv; | |||
1659 | ||||
1660 | (void) fprintf(f, TARGET_ABI_FMT_lx"%016" "l" "x""-"TARGET_ABI_FMT_lx"%016" "l" "x" | |||
1661 | " "TARGET_ABI_FMT_lx"%016" "l" "x"" %c%c%c\n", | |||
1662 | start, end, end - start, | |||
1663 | ((prot & PAGE_READ0x0001) ? 'r' : '-'), | |||
1664 | ((prot & PAGE_WRITE0x0002) ? 'w' : '-'), | |||
1665 | ((prot & PAGE_EXEC0x0004) ? 'x' : '-')); | |||
1666 | ||||
1667 | return 0; | |||
1668 | } | |||
1669 | ||||
1670 | /* dump memory mappings */ | |||
1671 | void page_dump(FILE *f) | |||
1672 | { | |||
1673 | const int length = sizeof(abi_ulong) * 2; | |||
1674 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |||
1675 | length, "start", length, "end", length, "size", "prot"); | |||
1676 | walk_memory_regions(f, dump_region); | |||
1677 | } | |||
1678 | ||||
1679 | int page_get_flags(target_ulong address) | |||
1680 | { | |||
1681 | PageDesc *p; | |||
1682 | ||||
1683 | p = page_find(address >> TARGET_PAGE_BITS12); | |||
1684 | if (!p) { | |||
1685 | return 0; | |||
1686 | } | |||
1687 | return p->flags; | |||
1688 | } | |||
1689 | ||||
1690 | /* Modify the flags of a page and invalidate the code if necessary. | |||
1691 | The flag PAGE_WRITE_ORG is positioned automatically depending | |||
1692 | on PAGE_WRITE. The mmap_lock should already be held. */ | |||
1693 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |||
1694 | { | |||
1695 | target_ulong addr, len; | |||
1696 | ||||
1697 | /* This function should never be called with addresses outside the | |||
1698 | guest address space. If this assert fires, it probably indicates | |||
1699 | a missing call to h2g_valid. */ | |||
1700 | #if TARGET_ABI_BITS64 > L1_MAP_ADDR_SPACE_BITS47 | |||
1701 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS))((end < ((abi_ulong)1 << 47)) ? (void) (0) : __assert_fail ("end < ((abi_ulong)1 << 47)", "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c" , 1701, __PRETTY_FUNCTION__)); | |||
1702 | #endif | |||
1703 | assert(start < end)((start < end) ? (void) (0) : __assert_fail ("start < end" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 1703 , __PRETTY_FUNCTION__)); | |||
1704 | ||||
1705 | start = start & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
1706 | end = TARGET_PAGE_ALIGN(end)(((end) + (1 << 12) - 1) & ~((1 << 12) - 1)); | |||
1707 | ||||
1708 | if (flags & PAGE_WRITE0x0002) { | |||
1709 | flags |= PAGE_WRITE_ORG0x0010; | |||
1710 | } | |||
1711 | ||||
1712 | for (addr = start, len = end - start; | |||
1713 | len != 0; | |||
1714 | len -= TARGET_PAGE_SIZE(1 << 12), addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
1715 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS12, 1); | |||
1716 | ||||
1717 | /* If the write protection bit is set, then we invalidate | |||
1718 | the code inside. */ | |||
1719 | if (!(p->flags & PAGE_WRITE0x0002) && | |||
1720 | (flags & PAGE_WRITE0x0002) && | |||
1721 | p->first_tb) { | |||
1722 | tb_invalidate_phys_page(addr, 0, NULL((void*)0), false0); | |||
1723 | } | |||
1724 | p->flags = flags; | |||
1725 | } | |||
1726 | } | |||
1727 | ||||
1728 | int page_check_range(target_ulong start, target_ulong len, int flags) | |||
1729 | { | |||
1730 | PageDesc *p; | |||
1731 | target_ulong end; | |||
1732 | target_ulong addr; | |||
1733 | ||||
1734 | /* This function should never be called with addresses outside the | |||
1735 | guest address space. If this assert fires, it probably indicates | |||
1736 | a missing call to h2g_valid. */ | |||
1737 | #if TARGET_ABI_BITS64 > L1_MAP_ADDR_SPACE_BITS47 | |||
1738 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS))((start < ((abi_ulong)1 << 47)) ? (void) (0) : __assert_fail ("start < ((abi_ulong)1 << 47)", "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c" , 1738, __PRETTY_FUNCTION__)); | |||
1739 | #endif | |||
1740 | ||||
1741 | if (len == 0) { | |||
1742 | return 0; | |||
1743 | } | |||
1744 | if (start + len - 1 < start) { | |||
1745 | /* We've wrapped around. */ | |||
1746 | return -1; | |||
1747 | } | |||
1748 | ||||
1749 | /* must do before we loose bits in the next step */ | |||
1750 | end = TARGET_PAGE_ALIGN(start + len)(((start + len) + (1 << 12) - 1) & ~((1 << 12 ) - 1)); | |||
1751 | start = start & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
1752 | ||||
1753 | for (addr = start, len = end - start; | |||
1754 | len != 0; | |||
1755 | len -= TARGET_PAGE_SIZE(1 << 12), addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
1756 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
1757 | if (!p) { | |||
1758 | return -1; | |||
1759 | } | |||
1760 | if (!(p->flags & PAGE_VALID0x0008)) { | |||
1761 | return -1; | |||
1762 | } | |||
1763 | ||||
1764 | if ((flags & PAGE_READ0x0001) && !(p->flags & PAGE_READ0x0001)) { | |||
1765 | return -1; | |||
1766 | } | |||
1767 | if (flags & PAGE_WRITE0x0002) { | |||
1768 | if (!(p->flags & PAGE_WRITE_ORG0x0010)) { | |||
1769 | return -1; | |||
1770 | } | |||
1771 | /* unprotect the page if it was put read-only because it | |||
1772 | contains translated code */ | |||
1773 | if (!(p->flags & PAGE_WRITE0x0002)) { | |||
1774 | if (!page_unprotect(addr, 0, NULL((void*)0))) { | |||
1775 | return -1; | |||
1776 | } | |||
1777 | } | |||
1778 | return 0; | |||
1779 | } | |||
1780 | } | |||
1781 | return 0; | |||
1782 | } | |||
1783 | ||||
1784 | /* called from signal handler: invalidate the code and unprotect the | |||
1785 | page. Return TRUE if the fault was successfully handled. */ | |||
1786 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |||
1787 | { | |||
1788 | unsigned int prot; | |||
1789 | PageDesc *p; | |||
1790 | target_ulong host_start, host_end, addr; | |||
1791 | ||||
1792 | /* Technically this isn't safe inside a signal handler. However we | |||
1793 | know this only ever happens in a synchronous SEGV handler, so in | |||
1794 | practice it seems to be ok. */ | |||
1795 | mmap_lock(); | |||
1796 | ||||
1797 | p = page_find(address >> TARGET_PAGE_BITS12); | |||
1798 | if (!p) { | |||
| ||||
1799 | mmap_unlock(); | |||
1800 | return 0; | |||
1801 | } | |||
1802 | ||||
1803 | /* if the page was really writable, then we change its | |||
1804 | protection back to writable */ | |||
1805 | if ((p->flags & PAGE_WRITE_ORG0x0010) && !(p->flags & PAGE_WRITE0x0002)) { | |||
1806 | host_start = address & qemu_host_page_mask; | |||
1807 | host_end = host_start + qemu_host_page_size; | |||
1808 | ||||
1809 | prot = 0; | |||
1810 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
1811 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
1812 | p->flags |= PAGE_WRITE0x0002; | |||
1813 | prot |= p->flags; | |||
1814 | ||||
1815 | /* and since the content will be modified, we must invalidate | |||
1816 | the corresponding translated code. */ | |||
1817 | tb_invalidate_phys_page(addr, pc, puc, true1); | |||
1818 | #ifdef DEBUG_TB_CHECK | |||
1819 | tb_invalidate_check(addr); | |||
1820 | #endif | |||
1821 | } | |||
1822 | mprotect((void *)g2h(host_start)((void *)((unsigned long)(target_ulong)(host_start) + guest_base )), qemu_host_page_size, | |||
1823 | prot & PAGE_BITS(0x0001 | 0x0002 | 0x0004)); | |||
1824 | ||||
1825 | mmap_unlock(); | |||
1826 | return 1; | |||
1827 | } | |||
1828 | mmap_unlock(); | |||
1829 | return 0; | |||
1830 | } | |||
1831 | #endif /* CONFIG_USER_ONLY */ |