| File: | cpu-exec.c |
| Location: | line 646, column 25 |
| Description: | Value stored to 'tb' is never read |
| 1 | /* |
| 2 | * emulator main execution loop |
| 3 | * |
| 4 | * Copyright (c) 2003-2005 Fabrice Bellard |
| 5 | * |
| 6 | * This library is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU Lesser General Public |
| 8 | * License as published by the Free Software Foundation; either |
| 9 | * version 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This library is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | * Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public |
| 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | #include "config.h" |
| 20 | #include "cpu.h" |
| 21 | #include "disas/disas.h" |
| 22 | #include "tcg.h" |
| 23 | #include "qemu/atomic.h" |
| 24 | #include "sysemu/qtest.h" |
| 25 | |
| 26 | bool_Bool qemu_cpu_has_work(CPUState *cpu) |
| 27 | { |
| 28 | return cpu_has_work(cpu); |
| 29 | } |
| 30 | |
| 31 | void cpu_loop_exit(CPUArchStatestruct CPUAlphaState *env) |
| 32 | { |
| 33 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((alpha_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 33, __func__)); |
| 34 | |
| 35 | cpu->current_tb = NULL((void*)0); |
| 36 | siglongjmp(env->jmp_env, 1); |
| 37 | } |
| 38 | |
| 39 | /* exit the current TB from a signal handler. The host registers are |
| 40 | restored in a state compatible with the CPU emulator |
| 41 | */ |
| 42 | #if defined(CONFIG_SOFTMMU1) |
| 43 | void cpu_resume_from_signal(CPUArchStatestruct CPUAlphaState *env, void *puc) |
| 44 | { |
| 45 | /* XXX: restore cpu registers saved in host registers */ |
| 46 | |
| 47 | env->exception_index = -1; |
| 48 | siglongjmp(env->jmp_env, 1); |
| 49 | } |
| 50 | #endif |
| 51 | |
| 52 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ |
| 53 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) |
| 54 | { |
| 55 | CPUArchStatestruct CPUAlphaState *env = cpu->env_ptr; |
| 56 | uintptr_t next_tb; |
| 57 | |
| 58 | #if defined(DEBUG_DISAS) |
| 59 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU(1 << 8))) { |
| 60 | #if defined(TARGET_I386) |
| 61 | log_cpu_state(cpu, CPU_DUMP_CCOP); |
| 62 | #elif defined(TARGET_M68K) |
| 63 | /* ??? Should not modify env state for dumping. */ |
| 64 | cpu_m68k_flush_flags(env, env->cc_op); |
| 65 | env->cc_op = CC_OP_FLAGS; |
| 66 | env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); |
| 67 | log_cpu_state(cpu, 0); |
| 68 | #else |
| 69 | log_cpu_state(cpu, 0); |
| 70 | #endif |
| 71 | } |
| 72 | #endif /* DEBUG_DISAS */ |
| 73 | |
| 74 | next_tb = tcg_qemu_tb_exec(env, tb_ptr)((uintptr_t (*)(void *, void *))tcg_ctx.code_gen_prologue)(env , tb_ptr); |
| 75 | if ((next_tb & TB_EXIT_MASK3) > TB_EXIT_IDX11) { |
| 76 | /* We didn't start executing this TB (eg because the instruction |
| 77 | * counter hit zero); we must restore the guest PC to the address |
| 78 | * of the start of the TB. |
| 79 | */ |
| 80 | CPUClass *cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 80, __func__)); |
| 81 | TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
| 82 | if (cc->synchronize_from_tb) { |
| 83 | cc->synchronize_from_tb(cpu, tb); |
| 84 | } else { |
| 85 | assert(cc->set_pc)((cc->set_pc) ? (void) (0) : __assert_fail ("cc->set_pc" , "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c", 85, __PRETTY_FUNCTION__ )); |
| 86 | cc->set_pc(cpu, tb->pc); |
| 87 | } |
| 88 | } |
| 89 | if ((next_tb & TB_EXIT_MASK3) == TB_EXIT_REQUESTED3) { |
| 90 | /* We were asked to stop executing TBs (probably a pending |
| 91 | * interrupt. We've now stopped, so clear the flag. |
| 92 | */ |
| 93 | cpu->tcg_exit_req = 0; |
| 94 | } |
| 95 | return next_tb; |
| 96 | } |
| 97 | |
| 98 | /* Execute the code without caching the generated code. An interpreter |
| 99 | could be used if available. */ |
| 100 | static void cpu_exec_nocache(CPUArchStatestruct CPUAlphaState *env, int max_cycles, |
| 101 | TranslationBlock *orig_tb) |
| 102 | { |
| 103 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((alpha_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 103, __func__)); |
| 104 | TranslationBlock *tb; |
| 105 | |
| 106 | /* Should never happen. |
| 107 | We only end up here when an existing TB is too long. */ |
| 108 | if (max_cycles > CF_COUNT_MASK0x7fff) |
| 109 | max_cycles = CF_COUNT_MASK0x7fff; |
| 110 | |
| 111 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, |
| 112 | max_cycles); |
| 113 | cpu->current_tb = tb; |
| 114 | /* execute the generated code */ |
| 115 | cpu_tb_exec(cpu, tb->tc_ptr); |
| 116 | cpu->current_tb = NULL((void*)0); |
| 117 | tb_phys_invalidate(tb, -1); |
| 118 | tb_free(tb); |
| 119 | } |
| 120 | |
| 121 | static TranslationBlock *tb_find_slow(CPUArchStatestruct CPUAlphaState *env, |
| 122 | target_ulong pc, |
| 123 | target_ulong cs_base, |
| 124 | uint64_t flags) |
| 125 | { |
| 126 | TranslationBlock *tb, **ptb1; |
| 127 | unsigned int h; |
| 128 | tb_page_addr_t phys_pc, phys_page1; |
| 129 | target_ulong virt_page2; |
| 130 | |
| 131 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; |
| 132 | |
| 133 | /* find translated block using physical mappings */ |
| 134 | phys_pc = get_page_addr_code(env, pc); |
| 135 | phys_page1 = phys_pc & TARGET_PAGE_MASK~((1 << 13) - 1); |
| 136 | h = tb_phys_hash_func(phys_pc); |
| 137 | ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; |
| 138 | for(;;) { |
| 139 | tb = *ptb1; |
| 140 | if (!tb) |
| 141 | goto not_found; |
| 142 | if (tb->pc == pc && |
| 143 | tb->page_addr[0] == phys_page1 && |
| 144 | tb->cs_base == cs_base && |
| 145 | tb->flags == flags) { |
| 146 | /* check next page if needed */ |
| 147 | if (tb->page_addr[1] != -1) { |
| 148 | tb_page_addr_t phys_page2; |
| 149 | |
| 150 | virt_page2 = (pc & TARGET_PAGE_MASK~((1 << 13) - 1)) + |
| 151 | TARGET_PAGE_SIZE(1 << 13); |
| 152 | phys_page2 = get_page_addr_code(env, virt_page2); |
| 153 | if (tb->page_addr[1] == phys_page2) |
| 154 | goto found; |
| 155 | } else { |
| 156 | goto found; |
| 157 | } |
| 158 | } |
| 159 | ptb1 = &tb->phys_hash_next; |
| 160 | } |
| 161 | not_found: |
| 162 | /* if no translated code available, then translate it now */ |
| 163 | tb = tb_gen_code(env, pc, cs_base, flags, 0); |
| 164 | |
| 165 | found: |
| 166 | /* Move the last found TB to the head of the list */ |
| 167 | if (likely(*ptb1)__builtin_expect(!!(*ptb1), 1)) { |
| 168 | *ptb1 = tb->phys_hash_next; |
| 169 | tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; |
| 170 | tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; |
| 171 | } |
| 172 | /* we add the TB in the virtual pc hash table */ |
| 173 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; |
| 174 | return tb; |
| 175 | } |
| 176 | |
| 177 | static inline TranslationBlock *tb_find_fast(CPUArchStatestruct CPUAlphaState *env) |
| 178 | { |
| 179 | TranslationBlock *tb; |
| 180 | target_ulong cs_base, pc; |
| 181 | int flags; |
| 182 | |
| 183 | /* we record a subset of the CPU state. It will |
| 184 | always be the same before a given translated block |
| 185 | is executed. */ |
| 186 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| 187 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
| 188 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||__builtin_expect(!!(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags), 0) |
| 189 | tb->flags != flags)__builtin_expect(!!(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags), 0)) { |
| 190 | tb = tb_find_slow(env, pc, cs_base, flags); |
| 191 | } |
| 192 | return tb; |
| 193 | } |
| 194 | |
| 195 | static CPUDebugExcpHandler *debug_excp_handler; |
| 196 | |
| 197 | void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) |
| 198 | { |
| 199 | debug_excp_handler = handler; |
| 200 | } |
| 201 | |
| 202 | static void cpu_handle_debug_exception(CPUArchStatestruct CPUAlphaState *env) |
| 203 | { |
| 204 | CPUWatchpoint *wp; |
| 205 | |
| 206 | if (!env->watchpoint_hit) { |
| 207 | QTAILQ_FOREACH(wp, &env->watchpoints, entry)for ((wp) = ((&env->watchpoints)->tqh_first); (wp); (wp) = ((wp)->entry.tqe_next)) { |
| 208 | wp->flags &= ~BP_WATCHPOINT_HIT0x08; |
| 209 | } |
| 210 | } |
| 211 | if (debug_excp_handler) { |
| 212 | debug_excp_handler(env); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /* main execution loop */ |
| 217 | |
| 218 | volatile sig_atomic_t exit_request; |
| 219 | |
| 220 | int cpu_execcpu_alpha_exec(CPUArchStatestruct CPUAlphaState *env) |
| 221 | { |
| 222 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((alpha_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 222, __func__)); |
| 223 | #if !(defined(CONFIG_USER_ONLY) && \ |
| 224 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) |
| 225 | CPUClass *cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 225, __func__)); |
| 226 | #endif |
| 227 | #ifdef TARGET_I386 |
| 228 | X86CPU *x86_cpu = X86_CPU(cpu); |
| 229 | #endif |
| 230 | int ret, interrupt_request; |
| 231 | TranslationBlock *tb; |
| 232 | uint8_t *tc_ptr; |
| 233 | uintptr_t next_tb; |
| 234 | |
| 235 | if (cpu->halted) { |
| 236 | if (!cpu_has_work(cpu)) { |
| 237 | return EXCP_HALTED0x10003; |
| 238 | } |
| 239 | |
| 240 | cpu->halted = 0; |
| 241 | } |
| 242 | |
| 243 | current_cputls__current_cpu = cpu; |
| 244 | |
| 245 | /* As long as current_cpu is null, up to the assignment just above, |
| 246 | * requests by other threads to exit the execution loop are expected to |
| 247 | * be issued using the exit_request global. We must make sure that our |
| 248 | * evaluation of the global value is performed past the current_cpu |
| 249 | * value transition point, which requires a memory barrier as well as |
| 250 | * an instruction scheduling constraint on modern architectures. */ |
| 251 | smp_mb()__sync_synchronize(); |
| 252 | |
| 253 | if (unlikely(exit_request)__builtin_expect(!!(exit_request), 0)) { |
| 254 | cpu->exit_request = 1; |
| 255 | } |
| 256 | |
| 257 | #if defined(TARGET_I386) |
| 258 | /* put eflags in CPU temporary format */ |
| 259 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| 260 | env->df = 1 - (2 * ((env->eflags >> 10) & 1)); |
| 261 | CC_OP = CC_OP_EFLAGS; |
| 262 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| 263 | #elif defined(TARGET_SPARC) |
| 264 | #elif defined(TARGET_M68K) |
| 265 | env->cc_op = CC_OP_FLAGS; |
| 266 | env->cc_dest = env->sr & 0xf; |
| 267 | env->cc_x = (env->sr >> 4) & 1; |
| 268 | #elif defined(TARGET_ALPHA1) |
| 269 | #elif defined(TARGET_ARM) |
| 270 | #elif defined(TARGET_UNICORE32) |
| 271 | #elif defined(TARGET_PPC) |
| 272 | env->reserve_addr = -1; |
| 273 | #elif defined(TARGET_LM32) |
| 274 | #elif defined(TARGET_MICROBLAZE) |
| 275 | #elif defined(TARGET_MIPS) |
| 276 | #elif defined(TARGET_MOXIE) |
| 277 | #elif defined(TARGET_OPENRISC) |
| 278 | #elif defined(TARGET_SH4) |
| 279 | #elif defined(TARGET_CRIS) |
| 280 | #elif defined(TARGET_S390X) |
| 281 | #elif defined(TARGET_XTENSA) |
| 282 | /* XXXXX */ |
| 283 | #else |
| 284 | #error unsupported target CPU |
| 285 | #endif |
| 286 | env->exception_index = -1; |
| 287 | |
| 288 | /* prepare setjmp context for exception handling */ |
| 289 | for(;;) { |
| 290 | if (sigsetjmp(env->jmp_env, 0)__sigsetjmp (env->jmp_env, 0) == 0) { |
| 291 | /* if an exception is pending, we execute it here */ |
| 292 | if (env->exception_index >= 0) { |
| 293 | if (env->exception_index >= EXCP_INTERRUPT0x10000) { |
| 294 | /* exit request from the cpu execution loop */ |
| 295 | ret = env->exception_index; |
| 296 | if (ret == EXCP_DEBUG0x10002) { |
| 297 | cpu_handle_debug_exception(env); |
| 298 | } |
| 299 | break; |
| 300 | } else { |
| 301 | #if defined(CONFIG_USER_ONLY) |
| 302 | /* if user mode only, we simulate a fake exception |
| 303 | which will be handled outside the cpu execution |
| 304 | loop */ |
| 305 | #if defined(TARGET_I386) |
| 306 | cc->do_interrupt(cpu); |
| 307 | #endif |
| 308 | ret = env->exception_index; |
| 309 | break; |
| 310 | #else |
| 311 | cc->do_interrupt(cpu); |
| 312 | env->exception_index = -1; |
| 313 | #endif |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | next_tb = 0; /* force lookup of first TB */ |
| 318 | for(;;) { |
| 319 | interrupt_request = cpu->interrupt_request; |
| 320 | if (unlikely(interrupt_request)__builtin_expect(!!(interrupt_request), 0)) { |
| 321 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)__builtin_expect(!!(cpu->singlestep_enabled & 0x2), 0)) { |
| 322 | /* Mask out external interrupts for this step. */ |
| 323 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK(0x0002 | 0x0008 | 0x0010 | 0x0040 | 0x0200 | 0x1000); |
| 324 | } |
| 325 | if (interrupt_request & CPU_INTERRUPT_DEBUG0x0080) { |
| 326 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG0x0080; |
| 327 | env->exception_index = EXCP_DEBUG0x10002; |
| 328 | cpu_loop_exit(env); |
| 329 | } |
| 330 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
| 331 | defined(TARGET_PPC) || defined(TARGET_ALPHA1) || defined(TARGET_CRIS) || \ |
| 332 | defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) |
| 333 | if (interrupt_request & CPU_INTERRUPT_HALT0x0020) { |
| 334 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT0x0020; |
| 335 | cpu->halted = 1; |
| 336 | env->exception_index = EXCP_HLT0x10001; |
| 337 | cpu_loop_exit(env); |
| 338 | } |
| 339 | #endif |
| 340 | #if defined(TARGET_I386) |
| 341 | #if !defined(CONFIG_USER_ONLY) |
| 342 | if (interrupt_request & CPU_INTERRUPT_POLL) { |
| 343 | cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; |
| 344 | apic_poll_irq(x86_cpu->apic_state); |
| 345 | } |
| 346 | #endif |
| 347 | if (interrupt_request & CPU_INTERRUPT_INIT) { |
| 348 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, |
| 349 | 0); |
| 350 | do_cpu_init(x86_cpu); |
| 351 | env->exception_index = EXCP_HALTED0x10003; |
| 352 | cpu_loop_exit(env); |
| 353 | } else if (interrupt_request & CPU_INTERRUPT_SIPI) { |
| 354 | do_cpu_sipi(x86_cpu); |
| 355 | } else if (env->hflags2 & HF2_GIF_MASK) { |
| 356 | if ((interrupt_request & CPU_INTERRUPT_SMI) && |
| 357 | !(env->hflags & HF_SMM_MASK)) { |
| 358 | cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, |
| 359 | 0); |
| 360 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; |
| 361 | do_smm_enter(x86_cpu); |
| 362 | next_tb = 0; |
| 363 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && |
| 364 | !(env->hflags2 & HF2_NMI_MASK)) { |
| 365 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; |
| 366 | env->hflags2 |= HF2_NMI_MASK; |
| 367 | do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); |
| 368 | next_tb = 0; |
| 369 | } else if (interrupt_request & CPU_INTERRUPT_MCE) { |
| 370 | cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; |
| 371 | do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); |
| 372 | next_tb = 0; |
| 373 | } else if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
| 374 | (((env->hflags2 & HF2_VINTR_MASK) && |
| 375 | (env->hflags2 & HF2_HIF_MASK)) || |
| 376 | (!(env->hflags2 & HF2_VINTR_MASK) && |
| 377 | (env->eflags & IF_MASK && |
| 378 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { |
| 379 | int intno; |
| 380 | cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, |
| 381 | 0); |
| 382 | cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD0x0002 | |
| 383 | CPU_INTERRUPT_VIRQ); |
| 384 | intno = cpu_get_pic_interrupt(env); |
| 385 | qemu_log_mask(CPU_LOG_TB_IN_ASM(1 << 1), "Servicing hardware INT=0x%02x\n", intno); |
| 386 | do_interrupt_x86_hardirq(env, intno, 1); |
| 387 | /* ensure that no TB jump will be modified as |
| 388 | the program flow was changed */ |
| 389 | next_tb = 0; |
| 390 | #if !defined(CONFIG_USER_ONLY) |
| 391 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
| 392 | (env->eflags & IF_MASK) && |
| 393 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
| 394 | int intno; |
| 395 | /* FIXME: this should respect TPR */ |
| 396 | cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, |
| 397 | 0); |
| 398 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)__builtin_offsetof(struct vmcb, control.int_vector)); |
| 399 | qemu_log_mask(CPU_LOG_TB_IN_ASM(1 << 1), "Servicing virtual hardware INT=0x%02x\n", intno); |
| 400 | do_interrupt_x86_hardirq(env, intno, 1); |
| 401 | cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
| 402 | next_tb = 0; |
| 403 | #endif |
| 404 | } |
| 405 | } |
| 406 | #elif defined(TARGET_PPC) |
| 407 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { |
| 408 | cpu_reset(cpu); |
| 409 | } |
| 410 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
| 411 | ppc_hw_interrupt(env); |
| 412 | if (env->pending_interrupts == 0) { |
| 413 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD0x0002; |
| 414 | } |
| 415 | next_tb = 0; |
| 416 | } |
| 417 | #elif defined(TARGET_LM32) |
| 418 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
| 419 | && (env->ie & IE_IE)) { |
| 420 | env->exception_index = EXCP_IRQ; |
| 421 | cc->do_interrupt(cpu); |
| 422 | next_tb = 0; |
| 423 | } |
| 424 | #elif defined(TARGET_MICROBLAZE) |
| 425 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
| 426 | && (env->sregs[SR_MSR] & MSR_IE) |
| 427 | && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) |
| 428 | && !(env->iflags & (D_FLAG | IMM_FLAG))) { |
| 429 | env->exception_index = EXCP_IRQ; |
| 430 | cc->do_interrupt(cpu); |
| 431 | next_tb = 0; |
| 432 | } |
| 433 | #elif defined(TARGET_MIPS) |
| 434 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
| 435 | cpu_mips_hw_interrupts_pending(env)) { |
| 436 | /* Raise it */ |
| 437 | env->exception_index = EXCP_EXT_INTERRUPT; |
| 438 | env->error_code = 0; |
| 439 | cc->do_interrupt(cpu); |
| 440 | next_tb = 0; |
| 441 | } |
| 442 | #elif defined(TARGET_OPENRISC) |
| 443 | { |
| 444 | int idx = -1; |
| 445 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
| 446 | && (env->sr & SR_IEE)) { |
| 447 | idx = EXCP_INT; |
| 448 | } |
| 449 | if ((interrupt_request & CPU_INTERRUPT_TIMER0x0008) |
| 450 | && (env->sr & SR_TEE)) { |
| 451 | idx = EXCP_TICK; |
| 452 | } |
| 453 | if (idx >= 0) { |
| 454 | env->exception_index = idx; |
| 455 | cc->do_interrupt(cpu); |
| 456 | next_tb = 0; |
| 457 | } |
| 458 | } |
| 459 | #elif defined(TARGET_SPARC) |
| 460 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
| 461 | if (cpu_interrupts_enabled(env) && |
| 462 | env->interrupt_index > 0) { |
| 463 | int pil = env->interrupt_index & 0xf; |
| 464 | int type = env->interrupt_index & 0xf0; |
| 465 | |
| 466 | if (((type == TT_EXTINT) && |
| 467 | cpu_pil_allowed(env, pil)) || |
| 468 | type != TT_EXTINT) { |
| 469 | env->exception_index = env->interrupt_index; |
| 470 | cc->do_interrupt(cpu); |
| 471 | next_tb = 0; |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | #elif defined(TARGET_ARM) |
| 476 | if (interrupt_request & CPU_INTERRUPT_FIQ |
| 477 | && !(env->uncached_cpsr & CPSR_F)) { |
| 478 | env->exception_index = EXCP_FIQ; |
| 479 | cc->do_interrupt(cpu); |
| 480 | next_tb = 0; |
| 481 | } |
| 482 | /* ARMv7-M interrupt return works by loading a magic value |
| 483 | into the PC. On real hardware the load causes the |
| 484 | return to occur. The qemu implementation performs the |
| 485 | jump normally, then does the exception return when the |
| 486 | CPU tries to execute code at the magic address. |
| 487 | This will cause the magic PC value to be pushed to |
| 488 | the stack if an interrupt occurred at the wrong time. |
| 489 | We avoid this by disabling interrupts when |
| 490 | pc contains a magic address. */ |
| 491 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
| 492 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
| 493 | || !(env->uncached_cpsr & CPSR_I))) { |
| 494 | env->exception_index = EXCP_IRQ; |
| 495 | cc->do_interrupt(cpu); |
| 496 | next_tb = 0; |
| 497 | } |
| 498 | #elif defined(TARGET_UNICORE32) |
| 499 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
| 500 | && !(env->uncached_asr & ASR_I)) { |
| 501 | env->exception_index = UC32_EXCP_INTR; |
| 502 | cc->do_interrupt(cpu); |
| 503 | next_tb = 0; |
| 504 | } |
| 505 | #elif defined(TARGET_SH4) |
| 506 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
| 507 | cc->do_interrupt(cpu); |
| 508 | next_tb = 0; |
| 509 | } |
| 510 | #elif defined(TARGET_ALPHA1) |
| 511 | { |
| 512 | int idx = -1; |
| 513 | /* ??? This hard-codes the OSF/1 interrupt levels. */ |
| 514 | switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { |
| 515 | case 0 ... 3: |
| 516 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
| 517 | idx = EXCP_DEV_INTERRUPT; |
| 518 | } |
| 519 | /* FALLTHRU */ |
| 520 | case 4: |
| 521 | if (interrupt_request & CPU_INTERRUPT_TIMER0x0008) { |
| 522 | idx = EXCP_CLK_INTERRUPT; |
| 523 | } |
| 524 | /* FALLTHRU */ |
| 525 | case 5: |
| 526 | if (interrupt_request & CPU_INTERRUPT_SMP0x0010) { |
| 527 | idx = EXCP_SMP_INTERRUPT; |
| 528 | } |
| 529 | /* FALLTHRU */ |
| 530 | case 6: |
| 531 | if (interrupt_request & CPU_INTERRUPT_MCHK0x0040) { |
| 532 | idx = EXCP_MCHK; |
| 533 | } |
| 534 | } |
| 535 | if (idx >= 0) { |
| 536 | env->exception_index = idx; |
| 537 | env->error_code = 0; |
| 538 | cc->do_interrupt(cpu); |
| 539 | next_tb = 0; |
| 540 | } |
| 541 | } |
| 542 | #elif defined(TARGET_CRIS) |
| 543 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
| 544 | && (env->pregs[PR_CCS] & I_FLAG) |
| 545 | && !env->locked_irq) { |
| 546 | env->exception_index = EXCP_IRQ; |
| 547 | cc->do_interrupt(cpu); |
| 548 | next_tb = 0; |
| 549 | } |
| 550 | if (interrupt_request & CPU_INTERRUPT_NMI) { |
| 551 | unsigned int m_flag_archval; |
| 552 | if (env->pregs[PR_VR] < 32) { |
| 553 | m_flag_archval = M_FLAG_V10; |
| 554 | } else { |
| 555 | m_flag_archval = M_FLAG_V32; |
| 556 | } |
| 557 | if ((env->pregs[PR_CCS] & m_flag_archval)) { |
| 558 | env->exception_index = EXCP_NMI; |
| 559 | cc->do_interrupt(cpu); |
| 560 | next_tb = 0; |
| 561 | } |
| 562 | } |
| 563 | #elif defined(TARGET_M68K) |
| 564 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
| 565 | && ((env->sr & SR_I) >> SR_I_SHIFT) |
| 566 | < env->pending_level) { |
| 567 | /* Real hardware gets the interrupt vector via an |
| 568 | IACK cycle at this point. Current emulated |
| 569 | hardware doesn't rely on this, so we |
| 570 | provide/save the vector when the interrupt is |
| 571 | first signalled. */ |
| 572 | env->exception_index = env->pending_vector; |
| 573 | do_interrupt_m68k_hardirq(env); |
| 574 | next_tb = 0; |
| 575 | } |
| 576 | #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) |
| 577 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
| 578 | (env->psw.mask & PSW_MASK_EXT)) { |
| 579 | cc->do_interrupt(cpu); |
| 580 | next_tb = 0; |
| 581 | } |
| 582 | #elif defined(TARGET_XTENSA) |
| 583 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
| 584 | env->exception_index = EXC_IRQ; |
| 585 | cc->do_interrupt(cpu); |
| 586 | next_tb = 0; |
| 587 | } |
| 588 | #endif |
| 589 | /* Don't use the cached interrupt_request value, |
| 590 | do_interrupt may have updated the EXITTB flag. */ |
| 591 | if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB0x0004) { |
| 592 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB0x0004; |
| 593 | /* ensure that no TB jump will be modified as |
| 594 | the program flow was changed */ |
| 595 | next_tb = 0; |
| 596 | } |
| 597 | } |
| 598 | if (unlikely(cpu->exit_request)__builtin_expect(!!(cpu->exit_request), 0)) { |
| 599 | cpu->exit_request = 0; |
| 600 | env->exception_index = EXCP_INTERRUPT0x10000; |
| 601 | cpu_loop_exit(env); |
| 602 | } |
| 603 | spin_lock(&tcg_ctx.tb_ctx.tb_lock); |
| 604 | tb = tb_find_fast(env); |
| 605 | /* Note: we do it here to avoid a gcc bug on Mac OS X when |
| 606 | doing it in tb_find_slow */ |
| 607 | if (tcg_ctx.tb_ctx.tb_invalidated_flag) { |
| 608 | /* as some TB could have been invalidated because |
| 609 | of memory exceptions while generating the code, we |
| 610 | must recompute the hash index here */ |
| 611 | next_tb = 0; |
| 612 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; |
| 613 | } |
| 614 | if (qemu_loglevel_mask(CPU_LOG_EXEC(1 << 5))) { |
| 615 | qemu_log("Trace %p [" TARGET_FMT_lx"%016" "l" "x" "] %s\n", |
| 616 | tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); |
| 617 | } |
| 618 | /* see if we can patch the calling TB. When the TB |
| 619 | spans two pages, we cannot safely do a direct |
| 620 | jump. */ |
| 621 | if (next_tb != 0 && tb->page_addr[1] == -1) { |
| 622 | tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK3), |
| 623 | next_tb & TB_EXIT_MASK3, tb); |
| 624 | } |
| 625 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); |
| 626 | |
| 627 | /* cpu_interrupt might be called while translating the |
| 628 | TB, but before it is linked into a potentially |
| 629 | infinite loop and becomes env->current_tb. Avoid |
| 630 | starting execution if there is a pending interrupt. */ |
| 631 | cpu->current_tb = tb; |
| 632 | barrier()({ asm volatile("" ::: "memory"); (void)0; }); |
| 633 | if (likely(!cpu->exit_request)__builtin_expect(!!(!cpu->exit_request), 1)) { |
| 634 | tc_ptr = tb->tc_ptr; |
| 635 | /* execute the generated code */ |
| 636 | next_tb = cpu_tb_exec(cpu, tc_ptr); |
| 637 | switch (next_tb & TB_EXIT_MASK3) { |
| 638 | case TB_EXIT_REQUESTED3: |
| 639 | /* Something asked us to stop executing |
| 640 | * chained TBs; just continue round the main |
| 641 | * loop. Whatever requested the exit will also |
| 642 | * have set something else (eg exit_request or |
| 643 | * interrupt_request) which we will handle |
| 644 | * next time around the loop. |
| 645 | */ |
| 646 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
Value stored to 'tb' is never read | |
| 647 | next_tb = 0; |
| 648 | break; |
| 649 | case TB_EXIT_ICOUNT_EXPIRED2: |
| 650 | { |
| 651 | /* Instruction counter expired. */ |
| 652 | int insns_left; |
| 653 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
| 654 | insns_left = env->icount_decr.u32; |
| 655 | if (env->icount_extra && insns_left >= 0) { |
| 656 | /* Refill decrementer and continue execution. */ |
| 657 | env->icount_extra += insns_left; |
| 658 | if (env->icount_extra > 0xffff) { |
| 659 | insns_left = 0xffff; |
| 660 | } else { |
| 661 | insns_left = env->icount_extra; |
| 662 | } |
| 663 | env->icount_extra -= insns_left; |
| 664 | env->icount_decr.u16.low = insns_left; |
| 665 | } else { |
| 666 | if (insns_left > 0) { |
| 667 | /* Execute remaining instructions. */ |
| 668 | cpu_exec_nocache(env, insns_left, tb); |
| 669 | } |
| 670 | env->exception_index = EXCP_INTERRUPT0x10000; |
| 671 | next_tb = 0; |
| 672 | cpu_loop_exit(env); |
| 673 | } |
| 674 | break; |
| 675 | } |
| 676 | default: |
| 677 | break; |
| 678 | } |
| 679 | } |
| 680 | cpu->current_tb = NULL((void*)0); |
| 681 | /* reset soft MMU for next block (it can currently |
| 682 | only be set by a memory fault) */ |
| 683 | } /* for(;;) */ |
| 684 | } else { |
| 685 | /* Reload env after longjmp - the compiler may have smashed all |
| 686 | * local variables as longjmp is marked 'noreturn'. */ |
| 687 | cpu = current_cputls__current_cpu; |
| 688 | env = cpu->env_ptr; |
| 689 | #if !(defined(CONFIG_USER_ONLY) && \ |
| 690 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) |
| 691 | cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 691, __func__)); |
| 692 | #endif |
| 693 | #ifdef TARGET_I386 |
| 694 | x86_cpu = X86_CPU(cpu); |
| 695 | #endif |
| 696 | } |
| 697 | } /* for(;;) */ |
| 698 | |
| 699 | |
| 700 | #if defined(TARGET_I386) |
| 701 | /* restore flags in standard format */ |
| 702 | env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) |
| 703 | | (env->df & DF_MASK); |
| 704 | #elif defined(TARGET_ARM) |
| 705 | /* XXX: Save/restore host fpu exception state?. */ |
| 706 | #elif defined(TARGET_UNICORE32) |
| 707 | #elif defined(TARGET_SPARC) |
| 708 | #elif defined(TARGET_PPC) |
| 709 | #elif defined(TARGET_LM32) |
| 710 | #elif defined(TARGET_M68K) |
| 711 | cpu_m68k_flush_flags(env, env->cc_op); |
| 712 | env->cc_op = CC_OP_FLAGS; |
| 713 | env->sr = (env->sr & 0xffe0) |
| 714 | | env->cc_dest | (env->cc_x << 4); |
| 715 | #elif defined(TARGET_MICROBLAZE) |
| 716 | #elif defined(TARGET_MIPS) |
| 717 | #elif defined(TARGET_MOXIE) |
| 718 | #elif defined(TARGET_OPENRISC) |
| 719 | #elif defined(TARGET_SH4) |
| 720 | #elif defined(TARGET_ALPHA1) |
| 721 | #elif defined(TARGET_CRIS) |
| 722 | #elif defined(TARGET_S390X) |
| 723 | #elif defined(TARGET_XTENSA) |
| 724 | /* XXXXX */ |
| 725 | #else |
| 726 | #error unsupported target CPU |
| 727 | #endif |
| 728 | |
| 729 | /* fail safe : never use current_cpu outside cpu_exec() */ |
| 730 | current_cputls__current_cpu = NULL((void*)0); |
| 731 | return ret; |
| 732 | } |