| File: | target-arm/helper.c |
| Location: | line 4411, column 5 |
| Description: | Value stored to 'new_flags' is never read |
| 1 | #include "cpu.h" |
| 2 | #include "exec/gdbstub.h" |
| 3 | #include "helper.h" |
| 4 | #include "qemu/host-utils.h" |
| 5 | #include "sysemu/arch_init.h" |
| 6 | #include "sysemu/sysemu.h" |
| 7 | #include "qemu/bitops.h" |
| 8 | |
| 9 | #ifndef CONFIG_USER_ONLY1 |
| 10 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| 11 | int access_type, int is_user, |
| 12 | hwaddr *phys_ptr, int *prot, |
| 13 | target_ulong *page_size); |
| 14 | #endif |
| 15 | |
| 16 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 17 | { |
| 18 | int nregs; |
| 19 | |
| 20 | /* VFP data registers are always little-endian. */ |
| 21 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| 22 | if (reg < nregs) { |
| 23 | stfq_le_p(buf, env->vfp.regs[reg]); |
| 24 | return 8; |
| 25 | } |
| 26 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 27 | /* Aliases for Q regs. */ |
| 28 | nregs += 16; |
| 29 | if (reg < nregs) { |
| 30 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
| 31 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
| 32 | return 16; |
| 33 | } |
| 34 | } |
| 35 | switch (reg - nregs) { |
| 36 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID])stl_be_p(buf, env->vfp.xregs[0]); return 4; |
| 37 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR])stl_be_p(buf, env->vfp.xregs[1]); return 4; |
| 38 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC])stl_be_p(buf, env->vfp.xregs[8]); return 4; |
| 39 | } |
| 40 | return 0; |
| 41 | } |
| 42 | |
| 43 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 44 | { |
| 45 | int nregs; |
| 46 | |
| 47 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| 48 | if (reg < nregs) { |
| 49 | env->vfp.regs[reg] = ldfq_le_p(buf); |
| 50 | return 8; |
| 51 | } |
| 52 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 53 | nregs += 16; |
| 54 | if (reg < nregs) { |
| 55 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
| 56 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
| 57 | return 16; |
| 58 | } |
| 59 | } |
| 60 | switch (reg - nregs) { |
| 61 | case 0: env->vfp.xregs[ARM_VFP_FPSID0] = ldl_p(buf)ldl_be_p(buf); return 4; |
| 62 | case 1: env->vfp.xregs[ARM_VFP_FPSCR1] = ldl_p(buf)ldl_be_p(buf); return 4; |
| 63 | case 2: env->vfp.xregs[ARM_VFP_FPEXC8] = ldl_p(buf)ldl_be_p(buf) & (1 << 30); return 4; |
| 64 | } |
| 65 | return 0; |
| 66 | } |
| 67 | |
| 68 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 69 | { |
| 70 | switch (reg) { |
| 71 | case 0 ... 31: |
| 72 | /* 128 bit FP register */ |
| 73 | stfq_le_p(buf, env->vfp.regs[reg * 2]); |
| 74 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); |
| 75 | return 16; |
| 76 | case 32: |
| 77 | /* FPSR */ |
| 78 | stl_p(buf, vfp_get_fpsr(env))stl_be_p(buf, vfp_get_fpsr(env)); |
| 79 | return 4; |
| 80 | case 33: |
| 81 | /* FPCR */ |
| 82 | stl_p(buf, vfp_get_fpcr(env))stl_be_p(buf, vfp_get_fpcr(env)); |
| 83 | return 4; |
| 84 | default: |
| 85 | return 0; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| 90 | { |
| 91 | switch (reg) { |
| 92 | case 0 ... 31: |
| 93 | /* 128 bit FP register */ |
| 94 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); |
| 95 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); |
| 96 | return 16; |
| 97 | case 32: |
| 98 | /* FPSR */ |
| 99 | vfp_set_fpsr(env, ldl_p(buf)ldl_be_p(buf)); |
| 100 | return 4; |
| 101 | case 33: |
| 102 | /* FPCR */ |
| 103 | vfp_set_fpcr(env, ldl_p(buf)ldl_be_p(buf)); |
| 104 | return 4; |
| 105 | default: |
| 106 | return 0; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 111 | uint64_t *value) |
| 112 | { |
| 113 | if (ri->type & ARM_CP_64BIT4) { |
| 114 | *value = CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)); |
| 115 | } else { |
| 116 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); |
| 117 | } |
| 118 | return 0; |
| 119 | } |
| 120 | |
| 121 | static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 122 | uint64_t value) |
| 123 | { |
| 124 | if (ri->type & ARM_CP_64BIT4) { |
| 125 | CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) = value; |
| 126 | } else { |
| 127 | CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) = value; |
| 128 | } |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | static bool_Bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| 133 | uint64_t *v) |
| 134 | { |
| 135 | /* Raw read of a coprocessor register (as needed for migration, etc) |
| 136 | * return true on success, false if the read is impossible for some reason. |
| 137 | */ |
| 138 | if (ri->type & ARM_CP_CONST2) { |
| 139 | *v = ri->resetvalue; |
| 140 | } else if (ri->raw_readfn) { |
| 141 | return (ri->raw_readfn(env, ri, v) == 0); |
| 142 | } else if (ri->readfn) { |
| 143 | return (ri->readfn(env, ri, v) == 0); |
| 144 | } else { |
| 145 | raw_read(env, ri, v); |
| 146 | } |
| 147 | return true1; |
| 148 | } |
| 149 | |
| 150 | static bool_Bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| 151 | int64_t v) |
| 152 | { |
| 153 | /* Raw write of a coprocessor register (as needed for migration, etc). |
| 154 | * Return true on success, false if the write is impossible for some reason. |
| 155 | * Note that constant registers are treated as write-ignored; the |
| 156 | * caller should check for success by whether a readback gives the |
| 157 | * value written. |
| 158 | */ |
| 159 | if (ri->type & ARM_CP_CONST2) { |
| 160 | return true1; |
| 161 | } else if (ri->raw_writefn) { |
| 162 | return (ri->raw_writefn(env, ri, v) == 0); |
| 163 | } else if (ri->writefn) { |
| 164 | return (ri->writefn(env, ri, v) == 0); |
| 165 | } else { |
| 166 | raw_write(env, ri, v); |
| 167 | } |
| 168 | return true1; |
| 169 | } |
| 170 | |
| 171 | bool_Bool write_cpustate_to_list(ARMCPU *cpu) |
| 172 | { |
| 173 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
| 174 | int i; |
| 175 | bool_Bool ok = true1; |
| 176 | |
| 177 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
| 178 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| 179 | const ARMCPRegInfo *ri; |
| 180 | uint64_t v; |
| 181 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 182 | if (!ri) { |
| 183 | ok = false0; |
| 184 | continue; |
| 185 | } |
| 186 | if (ri->type & ARM_CP_NO_MIGRATE32) { |
| 187 | continue; |
| 188 | } |
| 189 | if (!read_raw_cp_reg(&cpu->env, ri, &v)) { |
| 190 | ok = false0; |
| 191 | continue; |
| 192 | } |
| 193 | cpu->cpreg_values[i] = v; |
| 194 | } |
| 195 | return ok; |
| 196 | } |
| 197 | |
| 198 | bool_Bool write_list_to_cpustate(ARMCPU *cpu) |
| 199 | { |
| 200 | int i; |
| 201 | bool_Bool ok = true1; |
| 202 | |
| 203 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
| 204 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| 205 | uint64_t v = cpu->cpreg_values[i]; |
| 206 | uint64_t readback; |
| 207 | const ARMCPRegInfo *ri; |
| 208 | |
| 209 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 210 | if (!ri) { |
| 211 | ok = false0; |
| 212 | continue; |
| 213 | } |
| 214 | if (ri->type & ARM_CP_NO_MIGRATE32) { |
| 215 | continue; |
| 216 | } |
| 217 | /* Write value and confirm it reads back as written |
| 218 | * (to catch read-only registers and partially read-only |
| 219 | * registers where the incoming migration value doesn't match) |
| 220 | */ |
| 221 | if (!write_raw_cp_reg(&cpu->env, ri, v) || |
| 222 | !read_raw_cp_reg(&cpu->env, ri, &readback) || |
| 223 | readback != v) { |
| 224 | ok = false0; |
| 225 | } |
| 226 | } |
| 227 | return ok; |
| 228 | } |
| 229 | |
| 230 | static void add_cpreg_to_list(gpointer key, gpointer opaque) |
| 231 | { |
| 232 | ARMCPU *cpu = opaque; |
| 233 | uint64_t regidx; |
| 234 | const ARMCPRegInfo *ri; |
| 235 | |
| 236 | regidx = *(uint32_t *)key; |
| 237 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 238 | |
| 239 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { |
| 240 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
| 241 | /* The value array need not be initialized at this point */ |
| 242 | cpu->cpreg_array_len++; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | static void count_cpreg(gpointer key, gpointer opaque) |
| 247 | { |
| 248 | ARMCPU *cpu = opaque; |
| 249 | uint64_t regidx; |
| 250 | const ARMCPRegInfo *ri; |
| 251 | |
| 252 | regidx = *(uint32_t *)key; |
| 253 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| 254 | |
| 255 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { |
| 256 | cpu->cpreg_array_len++; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
| 261 | { |
| 262 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
| 263 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
| 264 | |
| 265 | if (aidx > bidx) { |
| 266 | return 1; |
| 267 | } |
| 268 | if (aidx < bidx) { |
| 269 | return -1; |
| 270 | } |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
| 275 | { |
| 276 | GList **plist = udata; |
| 277 | |
| 278 | *plist = g_list_prepend(*plist, key); |
| 279 | } |
| 280 | |
| 281 | void init_cpreg_list(ARMCPU *cpu) |
| 282 | { |
| 283 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
| 284 | * Note that we require cpreg_tuples[] to be sorted by key ID. |
| 285 | */ |
| 286 | GList *keys = NULL((void*)0); |
| 287 | int arraylen; |
| 288 | |
| 289 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
| 290 | |
| 291 | keys = g_list_sort(keys, cpreg_key_compare); |
| 292 | |
| 293 | cpu->cpreg_array_len = 0; |
| 294 | |
| 295 | g_list_foreach(keys, count_cpreg, cpu); |
| 296 | |
| 297 | arraylen = cpu->cpreg_array_len; |
| 298 | cpu->cpreg_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
| 299 | cpu->cpreg_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
| 300 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
| 301 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
| 302 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
| 303 | cpu->cpreg_array_len = 0; |
| 304 | |
| 305 | g_list_foreach(keys, add_cpreg_to_list, cpu); |
| 306 | |
| 307 | assert(cpu->cpreg_array_len == arraylen)((cpu->cpreg_array_len == arraylen) ? (void) (0) : __assert_fail ("cpu->cpreg_array_len == arraylen", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 307, __PRETTY_FUNCTION__)); |
| 308 | |
| 309 | g_list_free(keys); |
| 310 | } |
| 311 | |
| 312 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 313 | { |
| 314 | env->cp15.c3 = value; |
| 315 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 320 | { |
| 321 | if (env->cp15.c13_fcse != value) { |
| 322 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
| 323 | * not modified virtual addresses, so this causes a TLB flush. |
| 324 | */ |
| 325 | tlb_flush(env, 1); |
| 326 | env->cp15.c13_fcse = value; |
| 327 | } |
| 328 | return 0; |
| 329 | } |
| 330 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 331 | uint64_t value) |
| 332 | { |
| 333 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
| 334 | /* For VMSA (when not using the LPAE long descriptor page table |
| 335 | * format) this register includes the ASID, so do a TLB flush. |
| 336 | * For PMSA it is purely a process ID and no action is needed. |
| 337 | */ |
| 338 | tlb_flush(env, 1); |
| 339 | } |
| 340 | env->cp15.c13_context = value; |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 345 | uint64_t value) |
| 346 | { |
| 347 | /* Invalidate all (TLBIALL) */ |
| 348 | tlb_flush(env, 1); |
| 349 | return 0; |
| 350 | } |
| 351 | |
| 352 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 353 | uint64_t value) |
| 354 | { |
| 355 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| 356 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 12) - 1)); |
| 357 | return 0; |
| 358 | } |
| 359 | |
| 360 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 361 | uint64_t value) |
| 362 | { |
| 363 | /* Invalidate by ASID (TLBIASID) */ |
| 364 | tlb_flush(env, value == 0); |
| 365 | return 0; |
| 366 | } |
| 367 | |
| 368 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 369 | uint64_t value) |
| 370 | { |
| 371 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| 372 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 12) - 1)); |
| 373 | return 0; |
| 374 | } |
| 375 | |
| 376 | static const ARMCPRegInfo cp_reginfo[] = { |
| 377 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture |
| 378 | * version" bits will read as a reserved value, which should cause |
| 379 | * Linux to not try to use the debug hardware. |
| 380 | */ |
| 381 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 382 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 383 | /* MMU Domain access control / MPU write buffer control */ |
| 384 | { .name = "DACR", .cp = 15, |
| 385 | .crn = 3, .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
| 386 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c3)__builtin_offsetof(CPUARMState, cp15.c3), |
| 387 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
| 388 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 389 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse)__builtin_offsetof(CPUARMState, cp15.c13_fcse), |
| 390 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| 391 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 392 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_context)__builtin_offsetof(CPUARMState, cp15.c13_context), |
| 393 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| 394 | /* ??? This covers not just the impdef TLB lockdown registers but also |
| 395 | * some v7VMSA registers relating to TEX remap, so it is overly broad. |
| 396 | */ |
| 397 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY0xff, |
| 398 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 399 | /* MMU TLB control. Note that the wildcarding means we cover not just |
| 400 | * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| 401 | */ |
| 402 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
| 403 | .opc1 = CP_ANY0xff, .opc2 = 0, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiall_write, |
| 404 | .type = ARM_CP_NO_MIGRATE32 }, |
| 405 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
| 406 | .opc1 = CP_ANY0xff, .opc2 = 1, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimva_write, |
| 407 | .type = ARM_CP_NO_MIGRATE32 }, |
| 408 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
| 409 | .opc1 = CP_ANY0xff, .opc2 = 2, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiasid_write, |
| 410 | .type = ARM_CP_NO_MIGRATE32 }, |
| 411 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
| 412 | .opc1 = CP_ANY0xff, .opc2 = 3, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimvaa_write, |
| 413 | .type = ARM_CP_NO_MIGRATE32 }, |
| 414 | /* Cache maintenance ops; some of this space may be overridden later. */ |
| 415 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, |
| 416 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
| 417 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 }, |
| 418 | REGINFO_SENTINEL{ .type = 0xffff } |
| 419 | }; |
| 420 | |
| 421 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| 422 | /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| 423 | * over-broad. |
| 424 | */ |
| 425 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| 426 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, |
| 427 | REGINFO_SENTINEL{ .type = 0xffff } |
| 428 | }; |
| 429 | |
| 430 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| 431 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| 432 | * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| 433 | */ |
| 434 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 435 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, |
| 436 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| 437 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| 438 | * OMAPCP will override this space. |
| 439 | */ |
| 440 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 441 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_data)__builtin_offsetof(CPUARMState, cp15.c9_data), |
| 442 | .resetvalue = 0 }, |
| 443 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 444 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_insn)__builtin_offsetof(CPUARMState, cp15.c9_insn), |
| 445 | .resetvalue = 0 }, |
| 446 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| 447 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY0xff, |
| 448 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
| 449 | .resetvalue = 0 }, |
| 450 | REGINFO_SENTINEL{ .type = 0xffff } |
| 451 | }; |
| 452 | |
| 453 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 454 | { |
| 455 | if (env->cp15.c1_coproc != value) { |
| 456 | env->cp15.c1_coproc = value; |
| 457 | /* ??? Is this safe when called from within a TB? */ |
| 458 | tb_flush(env); |
| 459 | } |
| 460 | return 0; |
| 461 | } |
| 462 | |
| 463 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
| 464 | /* prefetch by MVA in v6, NOP in v7 */ |
| 465 | { .name = "MVA_prefetch", |
| 466 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| 467 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 468 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| 469 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 470 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| 471 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 472 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| 473 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 474 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 475 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_insn)__builtin_offsetof(CPUARMState, cp15.c6_insn), |
| 476 | .resetvalue = 0, }, |
| 477 | /* Watchpoint Fault Address Register : should actually only be present |
| 478 | * for 1136, 1176, 11MPCore. |
| 479 | */ |
| 480 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 481 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, .resetvalue = 0, }, |
| 482 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 483 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc)__builtin_offsetof(CPUARMState, cp15.c1_coproc), |
| 484 | .resetvalue = 0, .writefn = cpacr_write }, |
| 485 | REGINFO_SENTINEL{ .type = 0xffff } |
| 486 | }; |
| 487 | |
| 488 | |
| 489 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 490 | uint64_t *value) |
| 491 | { |
| 492 | /* Generic performance monitor register read function for where |
| 493 | * user access may be allowed by PMUSERENR. |
| 494 | */ |
| 495 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 496 | return EXCP_UDEF1; |
| 497 | } |
| 498 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); |
| 499 | return 0; |
| 500 | } |
| 501 | |
| 502 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 503 | uint64_t value) |
| 504 | { |
| 505 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 506 | return EXCP_UDEF1; |
| 507 | } |
| 508 | /* only the DP, X, D and E bits are writable */ |
| 509 | env->cp15.c9_pmcr &= ~0x39; |
| 510 | env->cp15.c9_pmcr |= (value & 0x39); |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 515 | uint64_t value) |
| 516 | { |
| 517 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 518 | return EXCP_UDEF1; |
| 519 | } |
| 520 | value &= (1 << 31); |
| 521 | env->cp15.c9_pmcnten |= value; |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 526 | uint64_t value) |
| 527 | { |
| 528 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 529 | return EXCP_UDEF1; |
| 530 | } |
| 531 | value &= (1 << 31); |
| 532 | env->cp15.c9_pmcnten &= ~value; |
| 533 | return 0; |
| 534 | } |
| 535 | |
| 536 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 537 | uint64_t value) |
| 538 | { |
| 539 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 540 | return EXCP_UDEF1; |
| 541 | } |
| 542 | env->cp15.c9_pmovsr &= ~value; |
| 543 | return 0; |
| 544 | } |
| 545 | |
| 546 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 547 | uint64_t value) |
| 548 | { |
| 549 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| 550 | return EXCP_UDEF1; |
| 551 | } |
| 552 | env->cp15.c9_pmxevtyper = value & 0xff; |
| 553 | return 0; |
| 554 | } |
| 555 | |
| 556 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 557 | uint64_t value) |
| 558 | { |
| 559 | env->cp15.c9_pmuserenr = value & 1; |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 564 | uint64_t value) |
| 565 | { |
| 566 | /* We have no event counters so only the C bit can be changed */ |
| 567 | value &= (1 << 31); |
| 568 | env->cp15.c9_pminten |= value; |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 573 | uint64_t value) |
| 574 | { |
| 575 | value &= (1 << 31); |
| 576 | env->cp15.c9_pminten &= ~value; |
| 577 | return 0; |
| 578 | } |
| 579 | |
| 580 | static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 581 | uint64_t value) |
| 582 | { |
| 583 | env->cp15.c12_vbar = value & ~0x1Ful; |
| 584 | return 0; |
| 585 | } |
| 586 | |
| 587 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 588 | uint64_t *value) |
| 589 | { |
| 590 | ARMCPU *cpu = arm_env_get_cpu(env); |
| 591 | *value = cpu->ccsidr[env->cp15.c0_cssel]; |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 596 | uint64_t value) |
| 597 | { |
| 598 | env->cp15.c0_cssel = value & 0xf; |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
| 603 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| 604 | * debug components |
| 605 | */ |
| 606 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 607 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 608 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 610 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| 611 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| 612 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 613 | /* Performance monitors are implementation defined in v7, |
| 614 | * but with an ARM recommended set of registers, which we |
| 615 | * follow (although we don't actually implement any counters) |
| 616 | * |
| 617 | * Performance registers fall into three categories: |
| 618 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| 619 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| 620 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| 621 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| 622 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| 623 | */ |
| 624 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| 625 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = 0, |
| 626 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), |
| 627 | .readfn = pmreg_read, .writefn = pmcntenset_write, |
| 628 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
| 629 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| 630 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), |
| 631 | .readfn = pmreg_read, .writefn = pmcntenclr_write, |
| 632 | .type = ARM_CP_NO_MIGRATE32 }, |
| 633 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| 634 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr)__builtin_offsetof(CPUARMState, cp15.c9_pmovsr), |
| 635 | .readfn = pmreg_read, .writefn = pmovsr_write, |
| 636 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
| 637 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should |
| 638 | * respect PMUSERENR. |
| 639 | */ |
| 640 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| 641 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 642 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
| 643 | * We choose to RAZ/WI. XXX should respect PMUSERENR. |
| 644 | */ |
| 645 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| 646 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 647 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
| 648 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| 649 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 650 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| 651 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
| 652 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper)__builtin_offsetof(CPUARMState, cp15.c9_pmxevtyper), |
| 653 | .readfn = pmreg_read, .writefn = pmxevtyper_write, |
| 654 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
| 655 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
| 656 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| 657 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 658 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| 659 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))) | PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 660 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr)__builtin_offsetof(CPUARMState, cp15.c9_pmuserenr), |
| 661 | .resetvalue = 0, |
| 662 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| 663 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| 664 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 665 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), |
| 666 | .resetvalue = 0, |
| 667 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
| 668 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| 669 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
| 670 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), |
| 671 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
| 672 | { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 673 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vbar_write, |
| 674 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar)__builtin_offsetof(CPUARMState, cp15.c12_vbar), |
| 675 | .resetvalue = 0 }, |
| 676 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
| 677 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_scr)__builtin_offsetof(CPUARMState, cp15.c1_scr), |
| 678 | .resetvalue = 0, }, |
| 679 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| 680 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE32 }, |
| 681 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| 682 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel)__builtin_offsetof(CPUARMState, cp15.c0_cssel), |
| 683 | .writefn = csselr_write, .resetvalue = 0 }, |
| 684 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| 685 | * just RAZ for all cores: |
| 686 | */ |
| 687 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, |
| 688 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 689 | REGINFO_SENTINEL{ .type = 0xffff } |
| 690 | }; |
| 691 | |
| 692 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 693 | { |
| 694 | value &= 1; |
| 695 | env->teecr = value; |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 700 | uint64_t *value) |
| 701 | { |
| 702 | /* This is a helper function because the user access rights |
| 703 | * depend on the value of the TEECR. |
| 704 | */ |
| 705 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
| 706 | return EXCP_UDEF1; |
| 707 | } |
| 708 | *value = env->teehbr; |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 713 | uint64_t value) |
| 714 | { |
| 715 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
| 716 | return EXCP_UDEF1; |
| 717 | } |
| 718 | env->teehbr = value; |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| 723 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| 724 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, teecr)__builtin_offsetof(CPUARMState, teecr), |
| 725 | .resetvalue = 0, |
| 726 | .writefn = teecr_write }, |
| 727 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| 728 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, teehbr)__builtin_offsetof(CPUARMState, teehbr), |
| 729 | .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 730 | .readfn = teehbr_read, .writefn = teehbr_write }, |
| 731 | REGINFO_SENTINEL{ .type = 0xffff } |
| 732 | }; |
| 733 | |
| 734 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| 735 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
| 736 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
| 737 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
| 738 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, |
| 739 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 740 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
| 741 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), |
| 742 | .resetfn = arm_cp_reset_ignore }, |
| 743 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, |
| 744 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
| 745 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), |
| 746 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, |
| 747 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 748 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), |
| 749 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), |
| 750 | .resetfn = arm_cp_reset_ignore }, |
| 751 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| 752 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
| 753 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 754 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1)__builtin_offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
| 755 | REGINFO_SENTINEL{ .type = 0xffff } |
| 756 | }; |
| 757 | |
| 758 | #ifndef CONFIG_USER_ONLY1 |
| 759 | |
| 760 | static uint64_t gt_get_countervalue(CPUARMState *env) |
| 761 | { |
| 762 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE16; |
| 763 | } |
| 764 | |
| 765 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
| 766 | { |
| 767 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
| 768 | |
| 769 | if (gt->ctl & 1) { |
| 770 | /* Timer enabled: calculate and set current ISTATUS, irq, and |
| 771 | * reset timer to when ISTATUS next has to change |
| 772 | */ |
| 773 | uint64_t count = gt_get_countervalue(&cpu->env); |
| 774 | /* Note that this must be unsigned 64 bit arithmetic: */ |
| 775 | int istatus = count >= gt->cval; |
| 776 | uint64_t nexttick; |
| 777 | |
| 778 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
| 779 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| 780 | (istatus && !(gt->ctl & 2))); |
| 781 | if (istatus) { |
| 782 | /* Next transition is when count rolls back over to zero */ |
| 783 | nexttick = UINT64_MAX(18446744073709551615UL); |
| 784 | } else { |
| 785 | /* Next transition is when we hit cval */ |
| 786 | nexttick = gt->cval; |
| 787 | } |
| 788 | /* Note that the desired next expiry time might be beyond the |
| 789 | * signed-64-bit range of a QEMUTimer -- in this case we just |
| 790 | * set the timer for as far in the future as possible. When the |
| 791 | * timer expires we will reset the timer for any remaining period. |
| 792 | */ |
| 793 | if (nexttick > INT64_MAX(9223372036854775807L) / GTIMER_SCALE16) { |
| 794 | nexttick = INT64_MAX(9223372036854775807L) / GTIMER_SCALE16; |
| 795 | } |
| 796 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
| 797 | } else { |
| 798 | /* Timer disabled: ISTATUS and timer output always clear */ |
| 799 | gt->ctl &= ~4; |
| 800 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
| 801 | timer_del(cpu->gt_timer[timeridx]); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 806 | uint64_t *value) |
| 807 | { |
| 808 | /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ |
| 809 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
| 810 | return EXCP_UDEF1; |
| 811 | } |
| 812 | *value = env->cp15.c14_cntfrq; |
| 813 | return 0; |
| 814 | } |
| 815 | |
| 816 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 817 | { |
| 818 | ARMCPU *cpu = arm_env_get_cpu(env); |
| 819 | int timeridx = ri->opc1 & 1; |
| 820 | |
| 821 | timer_del(cpu->gt_timer[timeridx]); |
| 822 | } |
| 823 | |
| 824 | static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 825 | uint64_t *value) |
| 826 | { |
| 827 | int timeridx = ri->opc1 & 1; |
| 828 | |
| 829 | if (arm_current_pl(env) == 0 && |
| 830 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
| 831 | return EXCP_UDEF1; |
| 832 | } |
| 833 | *value = gt_get_countervalue(env); |
| 834 | return 0; |
| 835 | } |
| 836 | |
| 837 | static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 838 | uint64_t *value) |
| 839 | { |
| 840 | int timeridx = ri->opc1 & 1; |
| 841 | |
| 842 | if (arm_current_pl(env) == 0 && |
| 843 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| 844 | return EXCP_UDEF1; |
| 845 | } |
| 846 | *value = env->cp15.c14_timer[timeridx].cval; |
| 847 | return 0; |
| 848 | } |
| 849 | |
| 850 | static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 851 | uint64_t value) |
| 852 | { |
| 853 | int timeridx = ri->opc1 & 1; |
| 854 | |
| 855 | env->cp15.c14_timer[timeridx].cval = value; |
| 856 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| 857 | return 0; |
| 858 | } |
| 859 | static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 860 | uint64_t *value) |
| 861 | { |
| 862 | int timeridx = ri->crm & 1; |
| 863 | |
| 864 | if (arm_current_pl(env) == 0 && |
| 865 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| 866 | return EXCP_UDEF1; |
| 867 | } |
| 868 | *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
| 869 | gt_get_countervalue(env)); |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 874 | uint64_t value) |
| 875 | { |
| 876 | int timeridx = ri->crm & 1; |
| 877 | |
| 878 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + |
| 879 | + sextract64(value, 0, 32); |
| 880 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| 881 | return 0; |
| 882 | } |
| 883 | |
| 884 | static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 885 | uint64_t *value) |
| 886 | { |
| 887 | int timeridx = ri->crm & 1; |
| 888 | |
| 889 | if (arm_current_pl(env) == 0 && |
| 890 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| 891 | return EXCP_UDEF1; |
| 892 | } |
| 893 | *value = env->cp15.c14_timer[timeridx].ctl; |
| 894 | return 0; |
| 895 | } |
| 896 | |
| 897 | static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 898 | uint64_t value) |
| 899 | { |
| 900 | ARMCPU *cpu = arm_env_get_cpu(env); |
| 901 | int timeridx = ri->crm & 1; |
| 902 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
| 903 | |
| 904 | env->cp15.c14_timer[timeridx].ctl = value & 3; |
| 905 | if ((oldval ^ value) & 1) { |
| 906 | /* Enable toggled */ |
| 907 | gt_recalc_timer(cpu, timeridx); |
| 908 | } else if ((oldval & value) & 2) { |
| 909 | /* IMASK toggled: don't need to recalculate, |
| 910 | * just set the interrupt line based on ISTATUS |
| 911 | */ |
| 912 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| 913 | (oldval & 4) && (value & 2)); |
| 914 | } |
| 915 | return 0; |
| 916 | } |
| 917 | |
| 918 | void arm_gt_ptimer_cb(void *opaque) |
| 919 | { |
| 920 | ARMCPU *cpu = opaque; |
| 921 | |
| 922 | gt_recalc_timer(cpu, GTIMER_PHYS0); |
| 923 | } |
| 924 | |
| 925 | void arm_gt_vtimer_cb(void *opaque) |
| 926 | { |
| 927 | ARMCPU *cpu = opaque; |
| 928 | |
| 929 | gt_recalc_timer(cpu, GTIMER_VIRT1); |
| 930 | } |
| 931 | |
| 932 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| 933 | /* Note that CNTFRQ is purely reads-as-written for the benefit |
| 934 | * of software; writing it doesn't actually change the timer frequency. |
| 935 | * Our reset value matches the fixed frequency we implement the timer at. |
| 936 | */ |
| 937 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 938 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 939 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq)__builtin_offsetof(CPUARMState, cp15.c14_cntfrq), |
| 940 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE16, |
| 941 | .readfn = gt_cntfrq_read, .raw_readfn = raw_read, |
| 942 | }, |
| 943 | /* overall control: mostly access permissions */ |
| 944 | { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0, |
| 945 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 946 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl)__builtin_offsetof(CPUARMState, cp15.c14_cntkctl), |
| 947 | .resetvalue = 0, |
| 948 | }, |
| 949 | /* per-timer control */ |
| 950 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| 951 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 952 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].ctl), |
| 953 | .resetvalue = 0, |
| 954 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, |
| 955 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 956 | }, |
| 957 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
| 958 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 959 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].ctl), |
| 960 | .resetvalue = 0, |
| 961 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, |
| 962 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 963 | }, |
| 964 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
| 965 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 966 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 967 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
| 968 | }, |
| 969 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 970 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 971 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
| 972 | }, |
| 973 | /* The counter itself */ |
| 974 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, |
| 975 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, |
| 976 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
| 977 | }, |
| 978 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, |
| 979 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, |
| 980 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
| 981 | }, |
| 982 | /* Comparison value, indicating when the timer goes off */ |
| 983 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, |
| 984 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 985 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, |
| 986 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].cval), |
| 987 | .resetvalue = 0, |
| 988 | .readfn = gt_cval_read, .writefn = gt_cval_write, |
| 989 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 990 | }, |
| 991 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, |
| 992 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
| 993 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, |
| 994 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].cval), |
| 995 | .resetvalue = 0, |
| 996 | .readfn = gt_cval_read, .writefn = gt_cval_write, |
| 997 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 998 | }, |
| 999 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1000 | }; |
| 1001 | |
| 1002 | #else |
| 1003 | /* In user-mode none of the generic timer registers are accessible, |
| 1004 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
| 1005 | * so instead just don't register any of them. |
| 1006 | */ |
| 1007 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| 1008 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1009 | }; |
| 1010 | |
| 1011 | #endif |
| 1012 | |
| 1013 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 1014 | { |
| 1015 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 1016 | env->cp15.c7_par = value; |
| 1017 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| 1018 | env->cp15.c7_par = value & 0xfffff6ff; |
| 1019 | } else { |
| 1020 | env->cp15.c7_par = value & 0xfffff1ff; |
| 1021 | } |
| 1022 | return 0; |
| 1023 | } |
| 1024 | |
| 1025 | #ifndef CONFIG_USER_ONLY1 |
| 1026 | /* get_phys_addr() isn't present for user-mode-only targets */ |
| 1027 | |
| 1028 | /* Return true if extended addresses are enabled, ie this is an |
| 1029 | * LPAE implementation and we are using the long-descriptor translation |
| 1030 | * table format because the TTBCR EAE bit is set. |
| 1031 | */ |
| 1032 | static inline bool_Bool extended_addresses_enabled(CPUARMState *env) |
| 1033 | { |
| 1034 | return arm_feature(env, ARM_FEATURE_LPAE) |
| 1035 | && (env->cp15.c2_control & (1U << 31)); |
| 1036 | } |
| 1037 | |
| 1038 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 1039 | { |
| 1040 | hwaddr phys_addr; |
| 1041 | target_ulong page_size; |
| 1042 | int prot; |
| 1043 | int ret, is_user = ri->opc2 & 2; |
| 1044 | int access_type = ri->opc2 & 1; |
| 1045 | |
| 1046 | if (ri->opc2 & 4) { |
| 1047 | /* Other states are only available with TrustZone */ |
| 1048 | return EXCP_UDEF1; |
| 1049 | } |
| 1050 | ret = get_phys_addr(env, value, access_type, is_user, |
| 1051 | &phys_addr, &prot, &page_size); |
| 1052 | if (extended_addresses_enabled(env)) { |
| 1053 | /* ret is a DFSR/IFSR value for the long descriptor |
| 1054 | * translation table format, but with WnR always clear. |
| 1055 | * Convert it to a 64-bit PAR. |
| 1056 | */ |
| 1057 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ |
| 1058 | if (ret == 0) { |
| 1059 | par64 |= phys_addr & ~0xfffULL; |
| 1060 | /* We don't set the ATTR or SH fields in the PAR. */ |
| 1061 | } else { |
| 1062 | par64 |= 1; /* F */ |
| 1063 | par64 |= (ret & 0x3f) << 1; /* FS */ |
| 1064 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
| 1065 | * implement virtualization and therefore there can't be a stage 2 |
| 1066 | * fault. |
| 1067 | */ |
| 1068 | } |
| 1069 | env->cp15.c7_par = par64; |
| 1070 | env->cp15.c7_par_hi = par64 >> 32; |
| 1071 | } else { |
| 1072 | /* ret is a DFSR/IFSR value for the short descriptor |
| 1073 | * translation table format (with WnR always clear). |
| 1074 | * Convert it to a 32-bit PAR. |
| 1075 | */ |
| 1076 | if (ret == 0) { |
| 1077 | /* We do not set any attribute bits in the PAR */ |
| 1078 | if (page_size == (1 << 24) |
| 1079 | && arm_feature(env, ARM_FEATURE_V7)) { |
| 1080 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; |
| 1081 | } else { |
| 1082 | env->cp15.c7_par = phys_addr & 0xfffff000; |
| 1083 | } |
| 1084 | } else { |
| 1085 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | |
| 1086 | ((ret & (12 << 1)) >> 6) | |
| 1087 | ((ret & 0xf) << 1) | 1; |
| 1088 | } |
| 1089 | env->cp15.c7_par_hi = 0; |
| 1090 | } |
| 1091 | return 0; |
| 1092 | } |
| 1093 | #endif |
| 1094 | |
| 1095 | static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| 1096 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| 1097 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, |
| 1098 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par)__builtin_offsetof(CPUARMState, cp15.c7_par), |
| 1099 | .writefn = par_write }, |
| 1100 | #ifndef CONFIG_USER_ONLY1 |
| 1101 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1102 | .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = ats_write, .type = ARM_CP_NO_MIGRATE32 }, |
| 1103 | #endif |
| 1104 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1105 | }; |
| 1106 | |
| 1107 | /* Return basic MPU access permission bits. */ |
| 1108 | static uint32_t simple_mpu_ap_bits(uint32_t val) |
| 1109 | { |
| 1110 | uint32_t ret; |
| 1111 | uint32_t mask; |
| 1112 | int i; |
| 1113 | ret = 0; |
| 1114 | mask = 3; |
| 1115 | for (i = 0; i < 16; i += 2) { |
| 1116 | ret |= (val >> i) & mask; |
| 1117 | mask <<= 2; |
| 1118 | } |
| 1119 | return ret; |
| 1120 | } |
| 1121 | |
| 1122 | /* Pad basic MPU access permission bits to extended format. */ |
| 1123 | static uint32_t extended_mpu_ap_bits(uint32_t val) |
| 1124 | { |
| 1125 | uint32_t ret; |
| 1126 | uint32_t mask; |
| 1127 | int i; |
| 1128 | ret = 0; |
| 1129 | mask = 3; |
| 1130 | for (i = 0; i < 16; i += 2) { |
| 1131 | ret |= (val & mask) << i; |
| 1132 | mask <<= 2; |
| 1133 | } |
| 1134 | return ret; |
| 1135 | } |
| 1136 | |
| 1137 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1138 | uint64_t value) |
| 1139 | { |
| 1140 | env->cp15.c5_data = extended_mpu_ap_bits(value); |
| 1141 | return 0; |
| 1142 | } |
| 1143 | |
| 1144 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1145 | uint64_t *value) |
| 1146 | { |
| 1147 | *value = simple_mpu_ap_bits(env->cp15.c5_data); |
| 1148 | return 0; |
| 1149 | } |
| 1150 | |
| 1151 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1152 | uint64_t value) |
| 1153 | { |
| 1154 | env->cp15.c5_insn = extended_mpu_ap_bits(value); |
| 1155 | return 0; |
| 1156 | } |
| 1157 | |
| 1158 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1159 | uint64_t *value) |
| 1160 | { |
| 1161 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); |
| 1162 | return 0; |
| 1163 | } |
| 1164 | |
| 1165 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1166 | uint64_t *value) |
| 1167 | { |
| 1168 | if (ri->crm >= 8) { |
| 1169 | return EXCP_UDEF1; |
| 1170 | } |
| 1171 | *value = env->cp15.c6_region[ri->crm]; |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1176 | uint64_t value) |
| 1177 | { |
| 1178 | if (ri->crm >= 8) { |
| 1179 | return EXCP_UDEF1; |
| 1180 | } |
| 1181 | env->cp15.c6_region[ri->crm] = value; |
| 1182 | return 0; |
| 1183 | } |
| 1184 | |
| 1185 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| 1186 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1187 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
| 1188 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
| 1189 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| 1190 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1191 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
| 1192 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
| 1193 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| 1194 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 1195 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1196 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| 1197 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 1198 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1199 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| 1200 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1201 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1202 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data)__builtin_offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| 1203 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1204 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1205 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn)__builtin_offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| 1206 | /* Protection region base and size registers */ |
| 1207 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY0xff, .opc1 = 0, |
| 1208 | .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1209 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, |
| 1210 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1211 | }; |
| 1212 | |
| 1213 | static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1214 | uint64_t value) |
| 1215 | { |
| 1216 | int maskshift = extract32(value, 0, 3); |
| 1217 | |
| 1218 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
| 1219 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
| 1220 | } else { |
| 1221 | value &= 7; |
| 1222 | } |
| 1223 | /* Note that we always calculate c2_mask and c2_base_mask, but |
| 1224 | * they are only used for short-descriptor tables (ie if EAE is 0); |
| 1225 | * for long-descriptor tables the TTBCR fields are used differently |
| 1226 | * and the c2_mask and c2_base_mask values are meaningless. |
| 1227 | */ |
| 1228 | env->cp15.c2_control = value; |
| 1229 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| 1230 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| 1231 | return 0; |
| 1232 | } |
| 1233 | |
| 1234 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1235 | uint64_t value) |
| 1236 | { |
| 1237 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 1238 | /* With LPAE the TTBCR could result in a change of ASID |
| 1239 | * via the TTBCR.A1 bit, so do a TLB flush. |
| 1240 | */ |
| 1241 | tlb_flush(env, 1); |
| 1242 | } |
| 1243 | return vmsa_ttbcr_raw_write(env, ri, value); |
| 1244 | } |
| 1245 | |
| 1246 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1247 | { |
| 1248 | env->cp15.c2_base_mask = 0xffffc000u; |
| 1249 | env->cp15.c2_control = 0; |
| 1250 | env->cp15.c2_mask = 0; |
| 1251 | } |
| 1252 | |
| 1253 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| 1254 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1255 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1256 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| 1257 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1258 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1259 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| 1260 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1261 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1262 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0)__builtin_offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, |
| 1263 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1264 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1265 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1)__builtin_offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
| 1266 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 1267 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vmsa_ttbcr_write, |
| 1268 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
| 1269 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control)__builtin_offsetof(CPUARMState, cp15.c2_control) }, |
| 1270 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1271 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_data)__builtin_offsetof(CPUARMState, cp15.c6_data), |
| 1272 | .resetvalue = 0, }, |
| 1273 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1274 | }; |
| 1275 | |
| 1276 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1277 | uint64_t value) |
| 1278 | { |
| 1279 | env->cp15.c15_ticonfig = value & 0xe7; |
| 1280 | /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| 1281 | env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| 1282 | ARM_CPUID_TI915T0x54029152 : ARM_CPUID_TI925T0x54029252; |
| 1283 | return 0; |
| 1284 | } |
| 1285 | |
| 1286 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1287 | uint64_t value) |
| 1288 | { |
| 1289 | env->cp15.c15_threadid = value & 0xffff; |
| 1290 | return 0; |
| 1291 | } |
| 1292 | |
| 1293 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1294 | uint64_t value) |
| 1295 | { |
| 1296 | /* Wait-for-interrupt (deprecated) */ |
| 1297 | cpu_interrupt(CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1297, __func__)), CPU_INTERRUPT_HALT0x0020); |
| 1298 | return 0; |
| 1299 | } |
| 1300 | |
| 1301 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1302 | uint64_t value) |
| 1303 | { |
| 1304 | /* On OMAP there are registers indicating the max/min index of dcache lines |
| 1305 | * containing a dirty line; cache flush operations have to reset these. |
| 1306 | */ |
| 1307 | env->cp15.c15_i_max = 0x000; |
| 1308 | env->cp15.c15_i_min = 0xff0; |
| 1309 | return 0; |
| 1310 | } |
| 1311 | |
| 1312 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
| 1313 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY0xff, |
| 1314 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_OVERRIDE16, |
| 1315 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| 1316 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1317 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
| 1318 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| 1319 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1320 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig)__builtin_offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| 1321 | .writefn = omap_ticonfig_write }, |
| 1322 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| 1323 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1324 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max)__builtin_offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| 1325 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 1326 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0xff0, |
| 1327 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min)__builtin_offsetof(CPUARMState, cp15.c15_i_min) }, |
| 1328 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| 1329 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1330 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid)__builtin_offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| 1331 | .writefn = omap_threadid_write }, |
| 1332 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
| 1333 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1334 | .type = ARM_CP_NO_MIGRATE32, |
| 1335 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| 1336 | /* TODO: Peripheral port remap register: |
| 1337 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| 1338 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| 1339 | * when MMU is off. |
| 1340 | */ |
| 1341 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, |
| 1342 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
| 1343 | .type = ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32, |
| 1344 | .writefn = omap_cachemaint_write }, |
| 1345 | { .name = "C9", .cp = 15, .crn = 9, |
| 1346 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1347 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, .resetvalue = 0 }, |
| 1348 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1349 | }; |
| 1350 | |
| 1351 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1352 | uint64_t value) |
| 1353 | { |
| 1354 | value &= 0x3fff; |
| 1355 | if (env->cp15.c15_cpar != value) { |
| 1356 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
| 1357 | tb_flush(env); |
| 1358 | env->cp15.c15_cpar = value; |
| 1359 | } |
| 1360 | return 0; |
| 1361 | } |
| 1362 | |
| 1363 | static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| 1364 | { .name = "XSCALE_CPAR", |
| 1365 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1366 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar)__builtin_offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| 1367 | .writefn = xscale_cpar_write, }, |
| 1368 | { .name = "XSCALE_AUXCR", |
| 1369 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1370 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr)__builtin_offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| 1371 | .resetvalue = 0, }, |
| 1372 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1373 | }; |
| 1374 | |
| 1375 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| 1376 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| 1377 | * implementation of this implementation-defined space. |
| 1378 | * Ideally this should eventually disappear in favour of actually |
| 1379 | * implementing the correct behaviour for all cores. |
| 1380 | */ |
| 1381 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
| 1382 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
| 1383 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
| 1384 | .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32 | ARM_CP_OVERRIDE16, |
| 1385 | .resetvalue = 0 }, |
| 1386 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1387 | }; |
| 1388 | |
| 1389 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| 1390 | /* Cache status: RAZ because we have no cache so it's always clean */ |
| 1391 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| 1392 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
| 1393 | .resetvalue = 0 }, |
| 1394 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1395 | }; |
| 1396 | |
| 1397 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| 1398 | /* We never have a a block transfer operation in progress */ |
| 1399 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| 1400 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
| 1401 | .resetvalue = 0 }, |
| 1402 | /* The cache ops themselves: these all NOP for QEMU */ |
| 1403 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
| 1404 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1405 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
| 1406 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1407 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
| 1408 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1409 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
| 1410 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1411 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
| 1412 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1413 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
| 1414 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
| 1415 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1416 | }; |
| 1417 | |
| 1418 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| 1419 | /* The cache test-and-clean instructions always return (1 << 30) |
| 1420 | * to indicate that there are no dirty cache lines. |
| 1421 | */ |
| 1422 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| 1423 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
| 1424 | .resetvalue = (1 << 30) }, |
| 1425 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| 1426 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
| 1427 | .resetvalue = (1 << 30) }, |
| 1428 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1429 | }; |
| 1430 | |
| 1431 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| 1432 | /* Ignore ReadBuffer accesses */ |
| 1433 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
| 1434 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
| 1435 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, |
| 1436 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32 }, |
| 1437 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1438 | }; |
| 1439 | |
| 1440 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1441 | uint64_t *value) |
| 1442 | { |
| 1443 | CPUState *cs = CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1443, __func__)); |
| 1444 | uint32_t mpidr = cs->cpu_index; |
| 1445 | /* We don't support setting cluster ID ([8..11]) |
| 1446 | * so these bits always RAZ. |
| 1447 | */ |
| 1448 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| 1449 | mpidr |= (1U << 31); |
| 1450 | /* Cores which are uniprocessor (non-coherent) |
| 1451 | * but still implement the MP extensions set |
| 1452 | * bit 30. (For instance, A9UP.) However we do |
| 1453 | * not currently model any of those cores. |
| 1454 | */ |
| 1455 | } |
| 1456 | *value = mpidr; |
| 1457 | return 0; |
| 1458 | } |
| 1459 | |
| 1460 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
| 1461 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| 1462 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE32 }, |
| 1463 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1464 | }; |
| 1465 | |
| 1466 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
| 1467 | { |
| 1468 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
| 1469 | return 0; |
| 1470 | } |
| 1471 | |
| 1472 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 1473 | { |
| 1474 | env->cp15.c7_par_hi = value >> 32; |
| 1475 | env->cp15.c7_par = value; |
| 1476 | return 0; |
| 1477 | } |
| 1478 | |
| 1479 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1480 | { |
| 1481 | env->cp15.c7_par_hi = 0; |
| 1482 | env->cp15.c7_par = 0; |
| 1483 | } |
| 1484 | |
| 1485 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1486 | uint64_t *value) |
| 1487 | { |
| 1488 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
| 1489 | return 0; |
| 1490 | } |
| 1491 | |
| 1492 | static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1493 | uint64_t value) |
| 1494 | { |
| 1495 | env->cp15.c2_base0_hi = value >> 32; |
| 1496 | env->cp15.c2_base0 = value; |
| 1497 | return 0; |
| 1498 | } |
| 1499 | |
| 1500 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1501 | uint64_t value) |
| 1502 | { |
| 1503 | /* Writes to the 64 bit format TTBRs may change the ASID */ |
| 1504 | tlb_flush(env, 1); |
| 1505 | return ttbr064_raw_write(env, ri, value); |
| 1506 | } |
| 1507 | |
| 1508 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1509 | { |
| 1510 | env->cp15.c2_base0_hi = 0; |
| 1511 | env->cp15.c2_base0 = 0; |
| 1512 | } |
| 1513 | |
| 1514 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1515 | uint64_t *value) |
| 1516 | { |
| 1517 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
| 1518 | return 0; |
| 1519 | } |
| 1520 | |
| 1521 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1522 | uint64_t value) |
| 1523 | { |
| 1524 | env->cp15.c2_base1_hi = value >> 32; |
| 1525 | env->cp15.c2_base1 = value; |
| 1526 | return 0; |
| 1527 | } |
| 1528 | |
| 1529 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| 1530 | { |
| 1531 | env->cp15.c2_base1_hi = 0; |
| 1532 | env->cp15.c2_base1 = 0; |
| 1533 | } |
| 1534 | |
| 1535 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
| 1536 | /* NOP AMAIR0/1: the override is because these clash with the rather |
| 1537 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
| 1538 | */ |
| 1539 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
| 1540 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, |
| 1541 | .resetvalue = 0 }, |
| 1542 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
| 1543 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, |
| 1544 | .resetvalue = 0 }, |
| 1545 | /* 64 bit access versions of the (dummy) debug registers */ |
| 1546 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, |
| 1547 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, |
| 1548 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, |
| 1549 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, |
| 1550 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
| 1551 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, |
| 1552 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, |
| 1553 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
| 1554 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr064_read, |
| 1555 | .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, |
| 1556 | .resetfn = ttbr064_reset }, |
| 1557 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
| 1558 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr164_read, |
| 1559 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, |
| 1560 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1561 | }; |
| 1562 | |
| 1563 | static int aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1564 | uint64_t *value) |
| 1565 | { |
| 1566 | *value = vfp_get_fpcr(env); |
| 1567 | return 0; |
| 1568 | } |
| 1569 | |
| 1570 | static int aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1571 | uint64_t value) |
| 1572 | { |
| 1573 | vfp_set_fpcr(env, value); |
| 1574 | return 0; |
| 1575 | } |
| 1576 | |
| 1577 | static int aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1578 | uint64_t *value) |
| 1579 | { |
| 1580 | *value = vfp_get_fpsr(env); |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | static int aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| 1585 | uint64_t value) |
| 1586 | { |
| 1587 | vfp_set_fpsr(env, value); |
| 1588 | return 0; |
| 1589 | } |
| 1590 | |
| 1591 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
| 1592 | /* Minimal set of EL0-visible registers. This will need to be expanded |
| 1593 | * significantly for system emulation of AArch64 CPUs. |
| 1594 | */ |
| 1595 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, |
| 1596 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
| 1597 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_NZCV(1 | (3 << 8)) }, |
| 1598 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
| 1599 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
| 1600 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
| 1601 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
| 1602 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
| 1603 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
| 1604 | /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache. |
| 1605 | * It will eventually need to have a CPU-specified reset value. |
| 1606 | */ |
| 1607 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
| 1608 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
| 1609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, |
| 1610 | .resetvalue = 0x80030003 }, |
| 1611 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. |
| 1612 | * For system mode the DZP bit here will need to be computed, not constant. |
| 1613 | */ |
| 1614 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
| 1615 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
| 1616 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, |
| 1617 | .resetvalue = 0x10 }, |
| 1618 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1619 | }; |
| 1620 | |
| 1621 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| 1622 | { |
| 1623 | env->cp15.c1_sys = value; |
| 1624 | /* ??? Lots of these bits are not implemented. */ |
| 1625 | /* This may enable/disable the MMU, so do a TLB flush. */ |
| 1626 | tlb_flush(env, 1); |
| 1627 | return 0; |
| 1628 | } |
| 1629 | |
| 1630 | void register_cp_regs_for_features(ARMCPU *cpu) |
| 1631 | { |
| 1632 | /* Register all the coprocessor registers based on feature bits */ |
| 1633 | CPUARMState *env = &cpu->env; |
| 1634 | if (arm_feature(env, ARM_FEATURE_M)) { |
| 1635 | /* M profile has no coprocessor registers */ |
| 1636 | return; |
| 1637 | } |
| 1638 | |
| 1639 | define_arm_cp_regs(cpu, cp_reginfo); |
| 1640 | if (arm_feature(env, ARM_FEATURE_V6)) { |
| 1641 | /* The ID registers all have impdef reset values */ |
| 1642 | ARMCPRegInfo v6_idregs[] = { |
| 1643 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, |
| 1644 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1645 | .resetvalue = cpu->id_pfr0 }, |
| 1646 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, |
| 1647 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1648 | .resetvalue = cpu->id_pfr1 }, |
| 1649 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, |
| 1650 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1651 | .resetvalue = cpu->id_dfr0 }, |
| 1652 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, |
| 1653 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1654 | .resetvalue = cpu->id_afr0 }, |
| 1655 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, |
| 1656 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1657 | .resetvalue = cpu->id_mmfr0 }, |
| 1658 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, |
| 1659 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1660 | .resetvalue = cpu->id_mmfr1 }, |
| 1661 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, |
| 1662 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1663 | .resetvalue = cpu->id_mmfr2 }, |
| 1664 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, |
| 1665 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1666 | .resetvalue = cpu->id_mmfr3 }, |
| 1667 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, |
| 1668 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1669 | .resetvalue = cpu->id_isar0 }, |
| 1670 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, |
| 1671 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1672 | .resetvalue = cpu->id_isar1 }, |
| 1673 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, |
| 1674 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1675 | .resetvalue = cpu->id_isar2 }, |
| 1676 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, |
| 1677 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1678 | .resetvalue = cpu->id_isar3 }, |
| 1679 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, |
| 1680 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1681 | .resetvalue = cpu->id_isar4 }, |
| 1682 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, |
| 1683 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1684 | .resetvalue = cpu->id_isar5 }, |
| 1685 | /* 6..7 are as yet unallocated and must RAZ */ |
| 1686 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, |
| 1687 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1688 | .resetvalue = 0 }, |
| 1689 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, |
| 1690 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
| 1691 | .resetvalue = 0 }, |
| 1692 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1693 | }; |
| 1694 | define_arm_cp_regs(cpu, v6_idregs); |
| 1695 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
| 1696 | } else { |
| 1697 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| 1698 | } |
| 1699 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
| 1700 | define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| 1701 | } |
| 1702 | if (arm_feature(env, ARM_FEATURE_V7)) { |
| 1703 | /* v7 performance monitor control register: same implementor |
| 1704 | * field as main ID register, and we implement no event counters. |
| 1705 | */ |
| 1706 | ARMCPRegInfo pmcr = { |
| 1707 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| 1708 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = cpu->midr & 0xff000000, |
| 1709 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr)__builtin_offsetof(CPUARMState, cp15.c9_pmcr), |
| 1710 | .readfn = pmreg_read, .writefn = pmcr_write, |
| 1711 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
| 1712 | }; |
| 1713 | ARMCPRegInfo clidr = { |
| 1714 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| 1715 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->clidr |
| 1716 | }; |
| 1717 | define_one_arm_cp_reg(cpu, &pmcr); |
| 1718 | define_one_arm_cp_reg(cpu, &clidr); |
| 1719 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
| 1720 | } else { |
| 1721 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| 1722 | } |
| 1723 | if (arm_feature(env, ARM_FEATURE_V8)) { |
| 1724 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
| 1725 | } |
| 1726 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
| 1727 | /* These are the MPU registers prior to PMSAv6. Any new |
| 1728 | * PMSA core later than the ARM946 will require that we |
| 1729 | * implement the PMSAv6 or PMSAv7 registers, which are |
| 1730 | * completely different. |
| 1731 | */ |
| 1732 | assert(!arm_feature(env, ARM_FEATURE_V6))((!arm_feature(env, ARM_FEATURE_V6)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_V6)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1732, __PRETTY_FUNCTION__)); |
| 1733 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| 1734 | } else { |
| 1735 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| 1736 | } |
| 1737 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| 1738 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| 1739 | } |
| 1740 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| 1741 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| 1742 | } |
| 1743 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| 1744 | define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| 1745 | } |
| 1746 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| 1747 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| 1748 | } |
| 1749 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| 1750 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| 1751 | } |
| 1752 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| 1753 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| 1754 | } |
| 1755 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| 1756 | define_arm_cp_regs(cpu, omap_cp_reginfo); |
| 1757 | } |
| 1758 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| 1759 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| 1760 | } |
| 1761 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 1762 | define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| 1763 | } |
| 1764 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| 1765 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| 1766 | } |
| 1767 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| 1768 | define_arm_cp_regs(cpu, lpae_cp_reginfo); |
| 1769 | } |
| 1770 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| 1771 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| 1772 | * be read-only (ie write causes UNDEF exception). |
| 1773 | */ |
| 1774 | { |
| 1775 | ARMCPRegInfo id_cp_reginfo[] = { |
| 1776 | /* Note that the MIDR isn't a simple constant register because |
| 1777 | * of the TI925 behaviour where writes to another register can |
| 1778 | * cause the MIDR value to change. |
| 1779 | * |
| 1780 | * Unimplemented registers in the c15 0 0 0 space default to |
| 1781 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
| 1782 | * and friends override accordingly. |
| 1783 | */ |
| 1784 | { .name = "MIDR", |
| 1785 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1786 | .access = PL1_R(0x08 | (0x20 | 0x80)), .resetvalue = cpu->midr, |
| 1787 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
| 1788 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid)__builtin_offsetof(CPUARMState, cp15.c0_cpuid), |
| 1789 | .type = ARM_CP_OVERRIDE16 }, |
| 1790 | { .name = "CTR", |
| 1791 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1792 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->ctr }, |
| 1793 | { .name = "TCMTR", |
| 1794 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| 1795 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1796 | { .name = "TLBTR", |
| 1797 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| 1798 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1799 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| 1800 | { .name = "DUMMY", |
| 1801 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1802 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1803 | { .name = "DUMMY", |
| 1804 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1805 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1806 | { .name = "DUMMY", |
| 1807 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1808 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1809 | { .name = "DUMMY", |
| 1810 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1811 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1812 | { .name = "DUMMY", |
| 1813 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY0xff, |
| 1814 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
| 1815 | REGINFO_SENTINEL{ .type = 0xffff } |
| 1816 | }; |
| 1817 | ARMCPRegInfo crn0_wi_reginfo = { |
| 1818 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY0xff, |
| 1819 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
| 1820 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 |
| 1821 | }; |
| 1822 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| 1823 | arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| 1824 | ARMCPRegInfo *r; |
| 1825 | /* Register the blanket "writes ignored" value first to cover the |
| 1826 | * whole space. Then update the specific ID registers to allow write |
| 1827 | * access, so that they ignore writes rather than causing them to |
| 1828 | * UNDEF. |
| 1829 | */ |
| 1830 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| 1831 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL0xffff; r++) { |
| 1832 | r->access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
| 1833 | } |
| 1834 | } |
| 1835 | define_arm_cp_regs(cpu, id_cp_reginfo); |
| 1836 | } |
| 1837 | |
| 1838 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| 1839 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| 1840 | } |
| 1841 | |
| 1842 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| 1843 | ARMCPRegInfo auxcr = { |
| 1844 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, |
| 1845 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, |
| 1846 | .resetvalue = cpu->reset_auxcr |
| 1847 | }; |
| 1848 | define_one_arm_cp_reg(cpu, &auxcr); |
| 1849 | } |
| 1850 | |
| 1851 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
| 1852 | ARMCPRegInfo cbar = { |
| 1853 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| 1854 | .access = PL1_R(0x08 | (0x20 | 0x80))|PL3_W0x40, .resetvalue = cpu->reset_cbar, |
| 1855 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)__builtin_offsetof(CPUARMState, cp15.c15_config_base_address) |
| 1856 | }; |
| 1857 | define_one_arm_cp_reg(cpu, &cbar); |
| 1858 | } |
| 1859 | |
| 1860 | /* Generic registers whose values depend on the implementation */ |
| 1861 | { |
| 1862 | ARMCPRegInfo sctlr = { |
| 1863 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| 1864 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_sys)__builtin_offsetof(CPUARMState, cp15.c1_sys), |
| 1865 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
| 1866 | .raw_writefn = raw_write, |
| 1867 | }; |
| 1868 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 1869 | /* Normally we would always end the TB on an SCTLR write, but Linux |
| 1870 | * arch/arm/mach-pxa/sleep.S expects two instructions following |
| 1871 | * an MMU enable to execute from cache. Imitate this behaviour. |
| 1872 | */ |
| 1873 | sctlr.type |= ARM_CP_SUPPRESS_TB_END8; |
| 1874 | } |
| 1875 | define_one_arm_cp_reg(cpu, &sctlr); |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | ARMCPU *cpu_arm_init(const char *cpu_model) |
| 1880 | { |
| 1881 | ARMCPU *cpu; |
| 1882 | ObjectClass *oc; |
| 1883 | |
| 1884 | oc = cpu_class_by_name(TYPE_ARM_CPU"arm-cpu", cpu_model); |
| 1885 | if (!oc) { |
| 1886 | return NULL((void*)0); |
| 1887 | } |
| 1888 | cpu = ARM_CPU(object_new(object_class_get_name(oc)))((ARMCPU *)object_dynamic_cast_assert(((Object *)((object_new (object_class_get_name(oc))))), ("arm-cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1888, __func__)); |
| 1889 | |
| 1890 | /* TODO this should be set centrally, once possible */ |
| 1891 | object_property_set_bool(OBJECT(cpu)((Object *)(cpu)), true1, "realized", NULL((void*)0)); |
| 1892 | |
| 1893 | return cpu; |
| 1894 | } |
| 1895 | |
| 1896 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| 1897 | { |
| 1898 | CPUState *cs = CPU(cpu)((CPUState *)object_dynamic_cast_assert(((Object *)((cpu))), ( "cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1898, __func__)); |
| 1899 | CPUARMState *env = &cpu->env; |
| 1900 | |
| 1901 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| 1902 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| 1903 | aarch64_fpu_gdb_set_reg, |
| 1904 | 34, "aarch64-fpu.xml", 0); |
| 1905 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
| 1906 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 1907 | 51, "arm-neon.xml", 0); |
| 1908 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| 1909 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 1910 | 35, "arm-vfp3.xml", 0); |
| 1911 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| 1912 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 1913 | 19, "arm-vfp.xml", 0); |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | /* Sort alphabetically by type name, except for "any". */ |
| 1918 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| 1919 | { |
| 1920 | ObjectClass *class_a = (ObjectClass *)a; |
| 1921 | ObjectClass *class_b = (ObjectClass *)b; |
| 1922 | const char *name_a, *name_b; |
| 1923 | |
| 1924 | name_a = object_class_get_name(class_a); |
| 1925 | name_b = object_class_get_name(class_b); |
| 1926 | if (strcmp(name_a, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { |
| 1927 | return 1; |
| 1928 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { |
| 1929 | return -1; |
| 1930 | } else { |
| 1931 | return strcmp(name_a, name_b); |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| 1936 | { |
| 1937 | ObjectClass *oc = data; |
| 1938 | CPUListState *s = user_data; |
| 1939 | const char *typename; |
| 1940 | char *name; |
| 1941 | |
| 1942 | typename = object_class_get_name(oc); |
| 1943 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); |
| 1944 | (*s->cpu_fprintf)(s->file, " %s\n", |
| 1945 | name); |
| 1946 | g_free(name); |
| 1947 | } |
| 1948 | |
| 1949 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| 1950 | { |
| 1951 | CPUListState s = { |
| 1952 | .file = f, |
| 1953 | .cpu_fprintf = cpu_fprintf, |
| 1954 | }; |
| 1955 | GSList *list; |
| 1956 | |
| 1957 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); |
| 1958 | list = g_slist_sort(list, arm_cpu_list_compare); |
| 1959 | (*cpu_fprintf)(f, "Available CPUs:\n"); |
| 1960 | g_slist_foreach(list, arm_cpu_list_entry, &s); |
| 1961 | g_slist_free(list); |
| 1962 | #ifdef CONFIG_KVM |
| 1963 | /* The 'host' CPU type is dynamically registered only if KVM is |
| 1964 | * enabled, so we have to special-case it here: |
| 1965 | */ |
| 1966 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); |
| 1967 | #endif |
| 1968 | } |
| 1969 | |
| 1970 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
| 1971 | { |
| 1972 | ObjectClass *oc = data; |
| 1973 | CpuDefinitionInfoList **cpu_listarm_cpu_list = user_data; |
| 1974 | CpuDefinitionInfoList *entry; |
| 1975 | CpuDefinitionInfo *info; |
| 1976 | const char *typename; |
| 1977 | |
| 1978 | typename = object_class_get_name(oc); |
| 1979 | info = g_malloc0(sizeof(*info)); |
| 1980 | info->name = g_strndup(typename, |
| 1981 | strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); |
| 1982 | |
| 1983 | entry = g_malloc0(sizeof(*entry)); |
| 1984 | entry->value = info; |
| 1985 | entry->next = *cpu_listarm_cpu_list; |
| 1986 | *cpu_listarm_cpu_list = entry; |
| 1987 | } |
| 1988 | |
| 1989 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) |
| 1990 | { |
| 1991 | CpuDefinitionInfoList *cpu_listarm_cpu_list = NULL((void*)0); |
| 1992 | GSList *list; |
| 1993 | |
| 1994 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); |
| 1995 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_listarm_cpu_list); |
| 1996 | g_slist_free(list); |
| 1997 | |
| 1998 | return cpu_listarm_cpu_list; |
| 1999 | } |
| 2000 | |
| 2001 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
| 2002 | void *opaque, int state, |
| 2003 | int crm, int opc1, int opc2) |
| 2004 | { |
| 2005 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
| 2006 | * add a single reginfo struct to the hash table. |
| 2007 | */ |
| 2008 | uint32_t *key = g_new(uint32_t, 1)((uint32_t *) g_malloc_n ((1), sizeof (uint32_t))); |
| 2009 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| 2010 | int is64 = (r->type & ARM_CP_64BIT4) ? 1 : 0; |
| 2011 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
| 2012 | /* The AArch32 view of a shared register sees the lower 32 bits |
| 2013 | * of a 64 bit backing field. It is not migratable as the AArch64 |
| 2014 | * view handles that. AArch64 also handles reset. |
| 2015 | * We assume it is a cp15 register. |
| 2016 | */ |
| 2017 | r2->cp = 15; |
| 2018 | r2->type |= ARM_CP_NO_MIGRATE32; |
| 2019 | r2->resetfn = arm_cp_reset_ignore; |
| 2020 | #ifdef HOST_WORDS_BIGENDIAN |
| 2021 | if (r2->fieldoffset) { |
| 2022 | r2->fieldoffset += sizeof(uint32_t); |
| 2023 | } |
| 2024 | #endif |
| 2025 | } |
| 2026 | if (state == ARM_CP_STATE_AA64) { |
| 2027 | /* To allow abbreviation of ARMCPRegInfo |
| 2028 | * definitions, we treat cp == 0 as equivalent to |
| 2029 | * the value for "standard guest-visible sysreg". |
| 2030 | */ |
| 2031 | if (r->cp == 0) { |
| 2032 | r2->cp = CP_REG_ARM64_SYSREG_CP((0x0013 << 16) >> 16); |
| 2033 | } |
| 2034 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)) |
| 2035 | r2->opc0, opc1, opc2)((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)); |
| 2036 | } else { |
| 2037 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2)(((r2->cp) << 16) | ((is64) << 15) | ((r2-> crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)); |
| 2038 | } |
| 2039 | if (opaque) { |
| 2040 | r2->opaque = opaque; |
| 2041 | } |
| 2042 | /* Make sure reginfo passed to helpers for wildcarded regs |
| 2043 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| 2044 | */ |
| 2045 | r2->crm = crm; |
| 2046 | r2->opc1 = opc1; |
| 2047 | r2->opc2 = opc2; |
| 2048 | /* By convention, for wildcarded registers only the first |
| 2049 | * entry is used for migration; the others are marked as |
| 2050 | * NO_MIGRATE so we don't try to transfer the register |
| 2051 | * multiple times. Special registers (ie NOP/WFI) are |
| 2052 | * never migratable. |
| 2053 | */ |
| 2054 | if ((r->type & ARM_CP_SPECIAL1) || |
| 2055 | ((r->crm == CP_ANY0xff) && crm != 0) || |
| 2056 | ((r->opc1 == CP_ANY0xff) && opc1 != 0) || |
| 2057 | ((r->opc2 == CP_ANY0xff) && opc2 != 0)) { |
| 2058 | r2->type |= ARM_CP_NO_MIGRATE32; |
| 2059 | } |
| 2060 | |
| 2061 | /* Overriding of an existing definition must be explicitly |
| 2062 | * requested. |
| 2063 | */ |
| 2064 | if (!(r->type & ARM_CP_OVERRIDE16)) { |
| 2065 | ARMCPRegInfo *oldreg; |
| 2066 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| 2067 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE16)) { |
| 2068 | fprintf(stderrstderr, "Register redefined: cp=%d %d bit " |
| 2069 | "crn=%d crm=%d opc1=%d opc2=%d, " |
| 2070 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
| 2071 | r2->crn, r2->crm, r2->opc1, r2->opc2, |
| 2072 | oldreg->name, r2->name); |
| 2073 | g_assert_not_reached()do { g_assertion_message (((gchar*) 0), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2073, ((const char*) (__PRETTY_FUNCTION__)), ((void*)0)); } while (0); |
| 2074 | } |
| 2075 | } |
| 2076 | g_hash_table_insert(cpu->cp_regs, key, r2); |
| 2077 | } |
| 2078 | |
| 2079 | |
| 2080 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| 2081 | const ARMCPRegInfo *r, void *opaque) |
| 2082 | { |
| 2083 | /* Define implementations of coprocessor registers. |
| 2084 | * We store these in a hashtable because typically |
| 2085 | * there are less than 150 registers in a space which |
| 2086 | * is 16*16*16*8*8 = 262144 in size. |
| 2087 | * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| 2088 | * If a register is defined twice then the second definition is |
| 2089 | * used, so this can be used to define some generic registers and |
| 2090 | * then override them with implementation specific variations. |
| 2091 | * At least one of the original and the second definition should |
| 2092 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| 2093 | * against accidental use. |
| 2094 | * |
| 2095 | * The state field defines whether the register is to be |
| 2096 | * visible in the AArch32 or AArch64 execution state. If the |
| 2097 | * state is set to ARM_CP_STATE_BOTH then we synthesise a |
| 2098 | * reginfo structure for the AArch32 view, which sees the lower |
| 2099 | * 32 bits of the 64 bit register. |
| 2100 | * |
| 2101 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
| 2102 | * be wildcarded. AArch64 registers are always considered to be 64 |
| 2103 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
| 2104 | * the register, if any. |
| 2105 | */ |
| 2106 | int crm, opc1, opc2, state; |
| 2107 | int crmmin = (r->crm == CP_ANY0xff) ? 0 : r->crm; |
| 2108 | int crmmax = (r->crm == CP_ANY0xff) ? 15 : r->crm; |
| 2109 | int opc1min = (r->opc1 == CP_ANY0xff) ? 0 : r->opc1; |
| 2110 | int opc1max = (r->opc1 == CP_ANY0xff) ? 7 : r->opc1; |
| 2111 | int opc2min = (r->opc2 == CP_ANY0xff) ? 0 : r->opc2; |
| 2112 | int opc2max = (r->opc2 == CP_ANY0xff) ? 7 : r->opc2; |
| 2113 | /* 64 bit registers have only CRm and Opc1 fields */ |
| 2114 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)))((!((r->type & 4) && (r->opc2 || r->crn) )) ? (void) (0) : __assert_fail ("!((r->type & 4) && (r->opc2 || r->crn))" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2114 , __PRETTY_FUNCTION__)); |
| 2115 | /* op0 only exists in the AArch64 encodings */ |
| 2116 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0))(((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)) ? ( void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2116 , __PRETTY_FUNCTION__)); |
| 2117 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
| 2118 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT))(((r->state != ARM_CP_STATE_AA64) || !(r->type & 4) ) ? (void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA64) || !(r->type & 4)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2118 , __PRETTY_FUNCTION__)); |
| 2119 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
| 2120 | * encodes a minimum access level for the register. We roll this |
| 2121 | * runtime check into our general permission check code, so check |
| 2122 | * here that the reginfo's specified permissions are strict enough |
| 2123 | * to encompass the generic architectural permission check. |
| 2124 | */ |
| 2125 | if (r->state != ARM_CP_STATE_AA32) { |
| 2126 | int mask = 0; |
| 2127 | switch (r->opc1) { |
| 2128 | case 0: case 1: case 2: |
| 2129 | /* min_EL EL1 */ |
| 2130 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
| 2131 | break; |
| 2132 | case 3: |
| 2133 | /* min_EL EL0 */ |
| 2134 | mask = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))); |
| 2135 | break; |
| 2136 | case 4: |
| 2137 | /* min_EL EL2 */ |
| 2138 | mask = PL2_RW((0x20 | 0x80) | (0x10 | 0x40)); |
| 2139 | break; |
| 2140 | case 5: |
| 2141 | /* unallocated encoding, so not possible */ |
| 2142 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2142, __PRETTY_FUNCTION__)); |
| 2143 | break; |
| 2144 | case 6: |
| 2145 | /* min_EL EL3 */ |
| 2146 | mask = PL3_RW(0x80 | 0x40); |
| 2147 | break; |
| 2148 | case 7: |
| 2149 | /* min_EL EL1, secure mode only (we don't check the latter) */ |
| 2150 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
| 2151 | break; |
| 2152 | default: |
| 2153 | /* broken reginfo with out-of-range opc1 */ |
| 2154 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2154, __PRETTY_FUNCTION__)); |
| 2155 | break; |
| 2156 | } |
| 2157 | /* assert our permissions are not too lax (stricter is fine) */ |
| 2158 | assert((r->access & ~mask) == 0)(((r->access & ~mask) == 0) ? (void) (0) : __assert_fail ("(r->access & ~mask) == 0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2158, __PRETTY_FUNCTION__)); |
| 2159 | } |
| 2160 | |
| 2161 | /* Check that the register definition has enough info to handle |
| 2162 | * reads and writes if they are permitted. |
| 2163 | */ |
| 2164 | if (!(r->type & (ARM_CP_SPECIAL1|ARM_CP_CONST2))) { |
| 2165 | if (r->access & PL3_R0x80) { |
| 2166 | assert(r->fieldoffset || r->readfn)((r->fieldoffset || r->readfn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->readfn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2166, __PRETTY_FUNCTION__)); |
| 2167 | } |
| 2168 | if (r->access & PL3_W0x40) { |
| 2169 | assert(r->fieldoffset || r->writefn)((r->fieldoffset || r->writefn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->writefn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2169, __PRETTY_FUNCTION__)); |
| 2170 | } |
| 2171 | } |
| 2172 | /* Bad type field probably means missing sentinel at end of reg list */ |
| 2173 | assert(cptype_valid(r->type))((cptype_valid(r->type)) ? (void) (0) : __assert_fail ("cptype_valid(r->type)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2173 , __PRETTY_FUNCTION__)); |
| 2174 | for (crm = crmmin; crm <= crmmax; crm++) { |
| 2175 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| 2176 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| 2177 | for (state = ARM_CP_STATE_AA32; |
| 2178 | state <= ARM_CP_STATE_AA64; state++) { |
| 2179 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
| 2180 | continue; |
| 2181 | } |
| 2182 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
| 2183 | crm, opc1, opc2); |
| 2184 | } |
| 2185 | } |
| 2186 | } |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| 2191 | const ARMCPRegInfo *regs, void *opaque) |
| 2192 | { |
| 2193 | /* Define a whole list of registers */ |
| 2194 | const ARMCPRegInfo *r; |
| 2195 | for (r = regs; r->type != ARM_CP_SENTINEL0xffff; r++) { |
| 2196 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| 2197 | } |
| 2198 | } |
| 2199 | |
| 2200 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
| 2201 | { |
| 2202 | return g_hash_table_lookup(cpregs, &encoded_cp); |
| 2203 | } |
| 2204 | |
| 2205 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| 2206 | uint64_t value) |
| 2207 | { |
| 2208 | /* Helper coprocessor write function for write-ignore registers */ |
| 2209 | return 0; |
| 2210 | } |
| 2211 | |
| 2212 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
| 2213 | { |
| 2214 | /* Helper coprocessor write function for read-as-zero registers */ |
| 2215 | *value = 0; |
| 2216 | return 0; |
| 2217 | } |
| 2218 | |
| 2219 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
| 2220 | { |
| 2221 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
| 2222 | } |
| 2223 | |
| 2224 | static int bad_mode_switch(CPUARMState *env, int mode) |
| 2225 | { |
| 2226 | /* Return true if it is not valid for us to switch to |
| 2227 | * this CPU mode (ie all the UNPREDICTABLE cases in |
| 2228 | * the ARM ARM CPSRWriteByInstr pseudocode). |
| 2229 | */ |
| 2230 | switch (mode) { |
| 2231 | case ARM_CPU_MODE_USR: |
| 2232 | case ARM_CPU_MODE_SYS: |
| 2233 | case ARM_CPU_MODE_SVC: |
| 2234 | case ARM_CPU_MODE_ABT: |
| 2235 | case ARM_CPU_MODE_UND: |
| 2236 | case ARM_CPU_MODE_IRQ: |
| 2237 | case ARM_CPU_MODE_FIQ: |
| 2238 | return 0; |
| 2239 | default: |
| 2240 | return 1; |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | uint32_t cpsr_read(CPUARMState *env) |
| 2245 | { |
| 2246 | int ZF; |
| 2247 | ZF = (env->ZF == 0); |
| 2248 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| 2249 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| 2250 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| 2251 | | ((env->condexec_bits & 0xfc) << 8) |
| 2252 | | (env->GE << 16); |
| 2253 | } |
| 2254 | |
| 2255 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| 2256 | { |
| 2257 | if (mask & CPSR_NZCV((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))) { |
| 2258 | env->ZF = (~val) & CPSR_Z(1U << 30); |
| 2259 | env->NF = val; |
| 2260 | env->CF = (val >> 29) & 1; |
| 2261 | env->VF = (val << 3) & 0x80000000; |
| 2262 | } |
| 2263 | if (mask & CPSR_Q(1U << 27)) |
| 2264 | env->QF = ((val & CPSR_Q(1U << 27)) != 0); |
| 2265 | if (mask & CPSR_T(1U << 5)) |
| 2266 | env->thumb = ((val & CPSR_T(1U << 5)) != 0); |
| 2267 | if (mask & CPSR_IT_0_1(3U << 25)) { |
| 2268 | env->condexec_bits &= ~3; |
| 2269 | env->condexec_bits |= (val >> 25) & 3; |
| 2270 | } |
| 2271 | if (mask & CPSR_IT_2_7(0xfc00U)) { |
| 2272 | env->condexec_bits &= 3; |
| 2273 | env->condexec_bits |= (val >> 8) & 0xfc; |
| 2274 | } |
| 2275 | if (mask & CPSR_GE(0xfU << 16)) { |
| 2276 | env->GE = (val >> 16) & 0xf; |
| 2277 | } |
| 2278 | |
| 2279 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M(0x1fU)) { |
| 2280 | if (bad_mode_switch(env, val & CPSR_M(0x1fU))) { |
| 2281 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. |
| 2282 | * We choose to ignore the attempt and leave the CPSR M field |
| 2283 | * untouched. |
| 2284 | */ |
| 2285 | mask &= ~CPSR_M(0x1fU); |
| 2286 | } else { |
| 2287 | switch_mode(env, val & CPSR_M(0x1fU)); |
| 2288 | } |
| 2289 | } |
| 2290 | mask &= ~CACHED_CPSR_BITS((1U << 5) | (0xfU << 16) | ((3U << 25) | ( 0xfc00U)) | (1U << 27) | ((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))); |
| 2291 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| 2292 | } |
| 2293 | |
| 2294 | /* Sign/zero extend */ |
| 2295 | uint32_t HELPER(sxtb16)helper_sxtb16(uint32_t x) |
| 2296 | { |
| 2297 | uint32_t res; |
| 2298 | res = (uint16_t)(int8_t)x; |
| 2299 | res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| 2300 | return res; |
| 2301 | } |
| 2302 | |
| 2303 | uint32_t HELPER(uxtb16)helper_uxtb16(uint32_t x) |
| 2304 | { |
| 2305 | uint32_t res; |
| 2306 | res = (uint16_t)(uint8_t)x; |
| 2307 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| 2308 | return res; |
| 2309 | } |
| 2310 | |
| 2311 | uint32_t HELPER(clz)helper_clz(uint32_t x) |
| 2312 | { |
| 2313 | return clz32(x); |
| 2314 | } |
| 2315 | |
| 2316 | int32_t HELPER(sdiv)helper_sdiv(int32_t num, int32_t den) |
| 2317 | { |
| 2318 | if (den == 0) |
| 2319 | return 0; |
| 2320 | if (num == INT_MIN(-2147483647 -1) && den == -1) |
| 2321 | return INT_MIN(-2147483647 -1); |
| 2322 | return num / den; |
| 2323 | } |
| 2324 | |
| 2325 | uint32_t HELPER(udiv)helper_udiv(uint32_t num, uint32_t den) |
| 2326 | { |
| 2327 | if (den == 0) |
| 2328 | return 0; |
| 2329 | return num / den; |
| 2330 | } |
| 2331 | |
| 2332 | uint32_t HELPER(rbit)helper_rbit(uint32_t x) |
| 2333 | { |
| 2334 | x = ((x & 0xff000000) >> 24) |
| 2335 | | ((x & 0x00ff0000) >> 8) |
| 2336 | | ((x & 0x0000ff00) << 8) |
| 2337 | | ((x & 0x000000ff) << 24); |
| 2338 | x = ((x & 0xf0f0f0f0) >> 4) |
| 2339 | | ((x & 0x0f0f0f0f) << 4); |
| 2340 | x = ((x & 0x88888888) >> 3) |
| 2341 | | ((x & 0x44444444) >> 1) |
| 2342 | | ((x & 0x22222222) << 1) |
| 2343 | | ((x & 0x11111111) << 3); |
| 2344 | return x; |
| 2345 | } |
| 2346 | |
| 2347 | #if defined(CONFIG_USER_ONLY1) |
| 2348 | |
| 2349 | void arm_cpu_do_interrupt(CPUState *cs) |
| 2350 | { |
| 2351 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2351, __func__)); |
| 2352 | CPUARMState *env = &cpu->env; |
| 2353 | |
| 2354 | env->exception_index = -1; |
| 2355 | } |
| 2356 | |
| 2357 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
| 2358 | int mmu_idx) |
| 2359 | { |
| 2360 | if (rw == 2) { |
| 2361 | env->exception_index = EXCP_PREFETCH_ABORT3; |
| 2362 | env->cp15.c6_insn = address; |
| 2363 | } else { |
| 2364 | env->exception_index = EXCP_DATA_ABORT4; |
| 2365 | env->cp15.c6_data = address; |
| 2366 | } |
| 2367 | return 1; |
| 2368 | } |
| 2369 | |
| 2370 | /* These should probably raise undefined insn exceptions. */ |
| 2371 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) |
| 2372 | { |
| 2373 | cpu_abort(env, "v7m_mrs %d\n", reg); |
| 2374 | } |
| 2375 | |
| 2376 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) |
| 2377 | { |
| 2378 | cpu_abort(env, "v7m_mrs %d\n", reg); |
| 2379 | return 0; |
| 2380 | } |
| 2381 | |
| 2382 | void switch_mode(CPUARMState *env, int mode) |
| 2383 | { |
| 2384 | if (mode != ARM_CPU_MODE_USR) |
| 2385 | cpu_abort(env, "Tried to switch out of user mode\n"); |
| 2386 | } |
| 2387 | |
| 2388 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) |
| 2389 | { |
| 2390 | cpu_abort(env, "banked r13 write\n"); |
| 2391 | } |
| 2392 | |
| 2393 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) |
| 2394 | { |
| 2395 | cpu_abort(env, "banked r13 read\n"); |
| 2396 | return 0; |
| 2397 | } |
| 2398 | |
| 2399 | #else |
| 2400 | |
| 2401 | /* Map CPU modes onto saved register banks. */ |
| 2402 | int bank_number(int mode) |
| 2403 | { |
| 2404 | switch (mode) { |
| 2405 | case ARM_CPU_MODE_USR: |
| 2406 | case ARM_CPU_MODE_SYS: |
| 2407 | return 0; |
| 2408 | case ARM_CPU_MODE_SVC: |
| 2409 | return 1; |
| 2410 | case ARM_CPU_MODE_ABT: |
| 2411 | return 2; |
| 2412 | case ARM_CPU_MODE_UND: |
| 2413 | return 3; |
| 2414 | case ARM_CPU_MODE_IRQ: |
| 2415 | return 4; |
| 2416 | case ARM_CPU_MODE_FIQ: |
| 2417 | return 5; |
| 2418 | } |
| 2419 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
| 2420 | } |
| 2421 | |
| 2422 | void switch_mode(CPUARMState *env, int mode) |
| 2423 | { |
| 2424 | int old_mode; |
| 2425 | int i; |
| 2426 | |
| 2427 | old_mode = env->uncached_cpsr & CPSR_M(0x1fU); |
| 2428 | if (mode == old_mode) |
| 2429 | return; |
| 2430 | |
| 2431 | if (old_mode == ARM_CPU_MODE_FIQ) { |
| 2432 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| 2433 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| 2434 | } else if (mode == ARM_CPU_MODE_FIQ) { |
| 2435 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| 2436 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| 2437 | } |
| 2438 | |
| 2439 | i = bank_number(old_mode); |
| 2440 | env->banked_r13[i] = env->regs[13]; |
| 2441 | env->banked_r14[i] = env->regs[14]; |
| 2442 | env->banked_spsr[i] = env->spsr; |
| 2443 | |
| 2444 | i = bank_number(mode); |
| 2445 | env->regs[13] = env->banked_r13[i]; |
| 2446 | env->regs[14] = env->banked_r14[i]; |
| 2447 | env->spsr = env->banked_spsr[i]; |
| 2448 | } |
| 2449 | |
| 2450 | static void v7m_push(CPUARMState *env, uint32_t val) |
| 2451 | { |
| 2452 | env->regs[13] -= 4; |
| 2453 | stl_phys(env->regs[13], val); |
| 2454 | } |
| 2455 | |
| 2456 | static uint32_t v7m_pop(CPUARMState *env) |
| 2457 | { |
| 2458 | uint32_t val; |
| 2459 | val = ldl_phys(env->regs[13]); |
| 2460 | env->regs[13] += 4; |
| 2461 | return val; |
| 2462 | } |
| 2463 | |
| 2464 | /* Switch to V7M main or process stack pointer. */ |
| 2465 | static void switch_v7m_sp(CPUARMState *env, int process) |
| 2466 | { |
| 2467 | uint32_t tmp; |
| 2468 | if (env->v7m.current_sp != process) { |
| 2469 | tmp = env->v7m.other_sp; |
| 2470 | env->v7m.other_sp = env->regs[13]; |
| 2471 | env->regs[13] = tmp; |
| 2472 | env->v7m.current_sp = process; |
| 2473 | } |
| 2474 | } |
| 2475 | |
| 2476 | static void do_v7m_exception_exit(CPUARMState *env) |
| 2477 | { |
| 2478 | uint32_t type; |
| 2479 | uint32_t xpsr; |
| 2480 | |
| 2481 | type = env->regs[15]; |
| 2482 | if (env->v7m.exception != 0) |
| 2483 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
| 2484 | |
| 2485 | /* Switch to the target stack. */ |
| 2486 | switch_v7m_sp(env, (type & 4) != 0); |
| 2487 | /* Pop registers. */ |
| 2488 | env->regs[0] = v7m_pop(env); |
| 2489 | env->regs[1] = v7m_pop(env); |
| 2490 | env->regs[2] = v7m_pop(env); |
| 2491 | env->regs[3] = v7m_pop(env); |
| 2492 | env->regs[12] = v7m_pop(env); |
| 2493 | env->regs[14] = v7m_pop(env); |
| 2494 | env->regs[15] = v7m_pop(env); |
| 2495 | xpsr = v7m_pop(env); |
| 2496 | xpsr_write(env, xpsr, 0xfffffdff); |
| 2497 | /* Undo stack alignment. */ |
| 2498 | if (xpsr & 0x200) |
| 2499 | env->regs[13] |= 4; |
| 2500 | /* ??? The exception return type specifies Thread/Handler mode. However |
| 2501 | this is also implied by the xPSR value. Not sure what to do |
| 2502 | if there is a mismatch. */ |
| 2503 | /* ??? Likewise for mismatches between the CONTROL register and the stack |
| 2504 | pointer. */ |
| 2505 | } |
| 2506 | |
| 2507 | /* Exception names for debug logging; note that not all of these |
| 2508 | * precisely correspond to architectural exceptions. |
| 2509 | */ |
| 2510 | static const char * const excnames[] = { |
| 2511 | [EXCP_UDEF1] = "Undefined Instruction", |
| 2512 | [EXCP_SWI2] = "SVC", |
| 2513 | [EXCP_PREFETCH_ABORT3] = "Prefetch Abort", |
| 2514 | [EXCP_DATA_ABORT4] = "Data Abort", |
| 2515 | [EXCP_IRQ5] = "IRQ", |
| 2516 | [EXCP_FIQ6] = "FIQ", |
| 2517 | [EXCP_BKPT7] = "Breakpoint", |
| 2518 | [EXCP_EXCEPTION_EXIT8] = "QEMU v7M exception exit", |
| 2519 | [EXCP_KERNEL_TRAP9] = "QEMU intercept of kernel commpage", |
| 2520 | [EXCP_STREX10] = "QEMU intercept of STREX", |
| 2521 | }; |
| 2522 | |
| 2523 | static inline void arm_log_exception(int idx) |
| 2524 | { |
| 2525 | if (qemu_loglevel_mask(CPU_LOG_INT(1 << 4))) { |
| 2526 | const char *exc = NULL((void*)0); |
| 2527 | |
| 2528 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)(sizeof(excnames) / sizeof((excnames)[0]))) { |
| 2529 | exc = excnames[idx]; |
| 2530 | } |
| 2531 | if (!exc) { |
| 2532 | exc = "unknown"; |
| 2533 | } |
| 2534 | qemu_log_mask(CPU_LOG_INT(1 << 4), "Taking exception %d [%s]\n", idx, exc); |
| 2535 | } |
| 2536 | } |
| 2537 | |
| 2538 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
| 2539 | { |
| 2540 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2540, __func__)); |
| 2541 | CPUARMState *env = &cpu->env; |
| 2542 | uint32_t xpsr = xpsr_read(env); |
| 2543 | uint32_t lr; |
| 2544 | uint32_t addr; |
| 2545 | |
| 2546 | arm_log_exception(env->exception_index); |
| 2547 | |
| 2548 | lr = 0xfffffff1; |
| 2549 | if (env->v7m.current_sp) |
| 2550 | lr |= 4; |
| 2551 | if (env->v7m.exception == 0) |
| 2552 | lr |= 8; |
| 2553 | |
| 2554 | /* For exceptions we just mark as pending on the NVIC, and let that |
| 2555 | handle it. */ |
| 2556 | /* TODO: Need to escalate if the current priority is higher than the |
| 2557 | one we're raising. */ |
| 2558 | switch (env->exception_index) { |
| 2559 | case EXCP_UDEF1: |
| 2560 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE6); |
| 2561 | return; |
| 2562 | case EXCP_SWI2: |
| 2563 | /* The PC already points to the next instruction. */ |
| 2564 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC11); |
| 2565 | return; |
| 2566 | case EXCP_PREFETCH_ABORT3: |
| 2567 | case EXCP_DATA_ABORT4: |
| 2568 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM4); |
| 2569 | return; |
| 2570 | case EXCP_BKPT7: |
| 2571 | if (semihosting_enabled) { |
| 2572 | int nr; |
| 2573 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
| 2574 | if (nr == 0xab) { |
| 2575 | env->regs[15] += 2; |
| 2576 | env->regs[0] = do_arm_semihosting(env); |
| 2577 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
| 2578 | return; |
| 2579 | } |
| 2580 | } |
| 2581 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG12); |
| 2582 | return; |
| 2583 | case EXCP_IRQ5: |
| 2584 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
| 2585 | break; |
| 2586 | case EXCP_EXCEPTION_EXIT8: |
| 2587 | do_v7m_exception_exit(env); |
| 2588 | return; |
| 2589 | default: |
| 2590 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| 2591 | return; /* Never happens. Keep compiler happy. */ |
| 2592 | } |
| 2593 | |
| 2594 | /* Align stack pointer. */ |
| 2595 | /* ??? Should only do this if Configuration Control Register |
| 2596 | STACKALIGN bit is set. */ |
| 2597 | if (env->regs[13] & 4) { |
| 2598 | env->regs[13] -= 4; |
| 2599 | xpsr |= 0x200; |
| 2600 | } |
| 2601 | /* Switch to the handler mode. */ |
| 2602 | v7m_push(env, xpsr); |
| 2603 | v7m_push(env, env->regs[15]); |
| 2604 | v7m_push(env, env->regs[14]); |
| 2605 | v7m_push(env, env->regs[12]); |
| 2606 | v7m_push(env, env->regs[3]); |
| 2607 | v7m_push(env, env->regs[2]); |
| 2608 | v7m_push(env, env->regs[1]); |
| 2609 | v7m_push(env, env->regs[0]); |
| 2610 | switch_v7m_sp(env, 0); |
| 2611 | /* Clear IT bits */ |
| 2612 | env->condexec_bits = 0; |
| 2613 | env->regs[14] = lr; |
| 2614 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); |
| 2615 | env->regs[15] = addr & 0xfffffffe; |
| 2616 | env->thumb = addr & 1; |
| 2617 | } |
| 2618 | |
| 2619 | /* Handle a CPU exception. */ |
| 2620 | void arm_cpu_do_interrupt(CPUState *cs) |
| 2621 | { |
| 2622 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2622, __func__)); |
| 2623 | CPUARMState *env = &cpu->env; |
| 2624 | uint32_t addr; |
| 2625 | uint32_t mask; |
| 2626 | int new_mode; |
| 2627 | uint32_t offset; |
| 2628 | |
| 2629 | assert(!IS_M(env))((!arm_feature(env, ARM_FEATURE_M)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_M)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2629, __PRETTY_FUNCTION__)); |
| 2630 | |
| 2631 | arm_log_exception(env->exception_index); |
| 2632 | |
| 2633 | /* TODO: Vectored interrupt controller. */ |
| 2634 | switch (env->exception_index) { |
| 2635 | case EXCP_UDEF1: |
| 2636 | new_mode = ARM_CPU_MODE_UND; |
| 2637 | addr = 0x04; |
| 2638 | mask = CPSR_I(1U << 7); |
| 2639 | if (env->thumb) |
| 2640 | offset = 2; |
| 2641 | else |
| 2642 | offset = 4; |
| 2643 | break; |
| 2644 | case EXCP_SWI2: |
| 2645 | if (semihosting_enabled) { |
| 2646 | /* Check for semihosting interrupt. */ |
| 2647 | if (env->thumb) { |
| 2648 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
| 2649 | & 0xff; |
| 2650 | } else { |
| 2651 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
| 2652 | & 0xffffff; |
| 2653 | } |
| 2654 | /* Only intercept calls from privileged modes, to provide some |
| 2655 | semblance of security. */ |
| 2656 | if (((mask == 0x123456 && !env->thumb) |
| 2657 | || (mask == 0xab && env->thumb)) |
| 2658 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { |
| 2659 | env->regs[0] = do_arm_semihosting(env); |
| 2660 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
| 2661 | return; |
| 2662 | } |
| 2663 | } |
| 2664 | new_mode = ARM_CPU_MODE_SVC; |
| 2665 | addr = 0x08; |
| 2666 | mask = CPSR_I(1U << 7); |
| 2667 | /* The PC already points to the next instruction. */ |
| 2668 | offset = 0; |
| 2669 | break; |
| 2670 | case EXCP_BKPT7: |
| 2671 | /* See if this is a semihosting syscall. */ |
| 2672 | if (env->thumb && semihosting_enabled) { |
| 2673 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
| 2674 | if (mask == 0xab |
| 2675 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { |
| 2676 | env->regs[15] += 2; |
| 2677 | env->regs[0] = do_arm_semihosting(env); |
| 2678 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
| 2679 | return; |
| 2680 | } |
| 2681 | } |
| 2682 | env->cp15.c5_insn = 2; |
| 2683 | /* Fall through to prefetch abort. */ |
| 2684 | case EXCP_PREFETCH_ABORT3: |
| 2685 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with IFSR 0x%x IFAR 0x%x\n", |
| 2686 | env->cp15.c5_insn, env->cp15.c6_insn); |
| 2687 | new_mode = ARM_CPU_MODE_ABT; |
| 2688 | addr = 0x0c; |
| 2689 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
| 2690 | offset = 4; |
| 2691 | break; |
| 2692 | case EXCP_DATA_ABORT4: |
| 2693 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with DFSR 0x%x DFAR 0x%x\n", |
| 2694 | env->cp15.c5_data, env->cp15.c6_data); |
| 2695 | new_mode = ARM_CPU_MODE_ABT; |
| 2696 | addr = 0x10; |
| 2697 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
| 2698 | offset = 8; |
| 2699 | break; |
| 2700 | case EXCP_IRQ5: |
| 2701 | new_mode = ARM_CPU_MODE_IRQ; |
| 2702 | addr = 0x18; |
| 2703 | /* Disable IRQ and imprecise data aborts. */ |
| 2704 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
| 2705 | offset = 4; |
| 2706 | break; |
| 2707 | case EXCP_FIQ6: |
| 2708 | new_mode = ARM_CPU_MODE_FIQ; |
| 2709 | addr = 0x1c; |
| 2710 | /* Disable FIQ, IRQ and imprecise data aborts. */ |
| 2711 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7) | CPSR_F(1U << 6); |
| 2712 | offset = 4; |
| 2713 | break; |
| 2714 | default: |
| 2715 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| 2716 | return; /* Never happens. Keep compiler happy. */ |
| 2717 | } |
| 2718 | /* High vectors. */ |
| 2719 | if (env->cp15.c1_sys & (1 << 13)) { |
| 2720 | /* when enabled, base address cannot be remapped. */ |
| 2721 | addr += 0xffff0000; |
| 2722 | } else { |
| 2723 | /* ARM v7 architectures provide a vector base address register to remap |
| 2724 | * the interrupt vector table. |
| 2725 | * This register is only followed in non-monitor mode, and has a secure |
| 2726 | * and un-secure copy. Since the cpu is always in a un-secure operation |
| 2727 | * and is never in monitor mode this feature is always active. |
| 2728 | * Note: only bits 31:5 are valid. |
| 2729 | */ |
| 2730 | addr += env->cp15.c12_vbar; |
| 2731 | } |
| 2732 | switch_mode (env, new_mode); |
| 2733 | env->spsr = cpsr_read(env); |
| 2734 | /* Clear IT bits. */ |
| 2735 | env->condexec_bits = 0; |
| 2736 | /* Switch to the new mode, and to the correct instruction set. */ |
| 2737 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M(0x1fU)) | new_mode; |
| 2738 | env->uncached_cpsr |= mask; |
| 2739 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
| 2740 | * and we should just guard the thumb mode on V4 */ |
| 2741 | if (arm_feature(env, ARM_FEATURE_V4T)) { |
| 2742 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; |
| 2743 | } |
| 2744 | env->regs[14] = env->regs[15] + offset; |
| 2745 | env->regs[15] = addr; |
| 2746 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB0x0004; |
| 2747 | } |
| 2748 | |
| 2749 | /* Check section/page access permissions. |
| 2750 | Returns the page protection flags, or zero if the access is not |
| 2751 | permitted. */ |
| 2752 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
| 2753 | int access_type, int is_user) |
| 2754 | { |
| 2755 | int prot_ro; |
| 2756 | |
| 2757 | if (domain_prot == 3) { |
| 2758 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 2759 | } |
| 2760 | |
| 2761 | if (access_type == 1) |
| 2762 | prot_ro = 0; |
| 2763 | else |
| 2764 | prot_ro = PAGE_READ0x0001; |
| 2765 | |
| 2766 | switch (ap) { |
| 2767 | case 0: |
| 2768 | if (access_type == 1) |
| 2769 | return 0; |
| 2770 | switch ((env->cp15.c1_sys >> 8) & 3) { |
| 2771 | case 1: |
| 2772 | return is_user ? 0 : PAGE_READ0x0001; |
| 2773 | case 2: |
| 2774 | return PAGE_READ0x0001; |
| 2775 | default: |
| 2776 | return 0; |
| 2777 | } |
| 2778 | case 1: |
| 2779 | return is_user ? 0 : PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 2780 | case 2: |
| 2781 | if (is_user) |
| 2782 | return prot_ro; |
| 2783 | else |
| 2784 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 2785 | case 3: |
| 2786 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 2787 | case 4: /* Reserved. */ |
| 2788 | return 0; |
| 2789 | case 5: |
| 2790 | return is_user ? 0 : prot_ro; |
| 2791 | case 6: |
| 2792 | return prot_ro; |
| 2793 | case 7: |
| 2794 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
| 2795 | return 0; |
| 2796 | return prot_ro; |
| 2797 | default: |
| 2798 | abort(); |
| 2799 | } |
| 2800 | } |
| 2801 | |
| 2802 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
| 2803 | { |
| 2804 | uint32_t table; |
| 2805 | |
| 2806 | if (address & env->cp15.c2_mask) |
| 2807 | table = env->cp15.c2_base1 & 0xffffc000; |
| 2808 | else |
| 2809 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
| 2810 | |
| 2811 | table |= (address >> 18) & 0x3ffc; |
| 2812 | return table; |
| 2813 | } |
| 2814 | |
| 2815 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
| 2816 | int is_user, hwaddr *phys_ptr, |
| 2817 | int *prot, target_ulong *page_size) |
| 2818 | { |
| 2819 | int code; |
| 2820 | uint32_t table; |
| 2821 | uint32_t desc; |
| 2822 | int type; |
| 2823 | int ap; |
| 2824 | int domain; |
| 2825 | int domain_prot; |
| 2826 | hwaddr phys_addr; |
| 2827 | |
| 2828 | /* Pagetable walk. */ |
| 2829 | /* Lookup l1 descriptor. */ |
| 2830 | table = get_level1_table_address(env, address); |
| 2831 | desc = ldl_phys(table); |
| 2832 | type = (desc & 3); |
| 2833 | domain = (desc >> 5) & 0x0f; |
| 2834 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| 2835 | if (type == 0) { |
| 2836 | /* Section translation fault. */ |
| 2837 | code = 5; |
| 2838 | goto do_fault; |
| 2839 | } |
| 2840 | if (domain_prot == 0 || domain_prot == 2) { |
| 2841 | if (type == 2) |
| 2842 | code = 9; /* Section domain fault. */ |
| 2843 | else |
| 2844 | code = 11; /* Page domain fault. */ |
| 2845 | goto do_fault; |
| 2846 | } |
| 2847 | if (type == 2) { |
| 2848 | /* 1Mb section. */ |
| 2849 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| 2850 | ap = (desc >> 10) & 3; |
| 2851 | code = 13; |
| 2852 | *page_size = 1024 * 1024; |
| 2853 | } else { |
| 2854 | /* Lookup l2 entry. */ |
| 2855 | if (type == 1) { |
| 2856 | /* Coarse pagetable. */ |
| 2857 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| 2858 | } else { |
| 2859 | /* Fine pagetable. */ |
| 2860 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| 2861 | } |
| 2862 | desc = ldl_phys(table); |
| 2863 | switch (desc & 3) { |
| 2864 | case 0: /* Page translation fault. */ |
| 2865 | code = 7; |
| 2866 | goto do_fault; |
| 2867 | case 1: /* 64k page. */ |
| 2868 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| 2869 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| 2870 | *page_size = 0x10000; |
| 2871 | break; |
| 2872 | case 2: /* 4k page. */ |
| 2873 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 2874 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| 2875 | *page_size = 0x1000; |
| 2876 | break; |
| 2877 | case 3: /* 1k page. */ |
| 2878 | if (type == 1) { |
| 2879 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| 2880 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 2881 | } else { |
| 2882 | /* Page translation fault. */ |
| 2883 | code = 7; |
| 2884 | goto do_fault; |
| 2885 | } |
| 2886 | } else { |
| 2887 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| 2888 | } |
| 2889 | ap = (desc >> 4) & 3; |
| 2890 | *page_size = 0x400; |
| 2891 | break; |
| 2892 | default: |
| 2893 | /* Never happens, but compiler isn't smart enough to tell. */ |
| 2894 | abort(); |
| 2895 | } |
| 2896 | code = 15; |
| 2897 | } |
| 2898 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| 2899 | if (!*prot) { |
| 2900 | /* Access permission fault. */ |
| 2901 | goto do_fault; |
| 2902 | } |
| 2903 | *prot |= PAGE_EXEC0x0004; |
| 2904 | *phys_ptr = phys_addr; |
| 2905 | return 0; |
| 2906 | do_fault: |
| 2907 | return code | (domain << 4); |
| 2908 | } |
| 2909 | |
| 2910 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
| 2911 | int is_user, hwaddr *phys_ptr, |
| 2912 | int *prot, target_ulong *page_size) |
| 2913 | { |
| 2914 | int code; |
| 2915 | uint32_t table; |
| 2916 | uint32_t desc; |
| 2917 | uint32_t xn; |
| 2918 | uint32_t pxn = 0; |
| 2919 | int type; |
| 2920 | int ap; |
| 2921 | int domain = 0; |
| 2922 | int domain_prot; |
| 2923 | hwaddr phys_addr; |
| 2924 | |
| 2925 | /* Pagetable walk. */ |
| 2926 | /* Lookup l1 descriptor. */ |
| 2927 | table = get_level1_table_address(env, address); |
| 2928 | desc = ldl_phys(table); |
| 2929 | type = (desc & 3); |
| 2930 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
| 2931 | /* Section translation fault, or attempt to use the encoding |
| 2932 | * which is Reserved on implementations without PXN. |
| 2933 | */ |
| 2934 | code = 5; |
| 2935 | goto do_fault; |
| 2936 | } |
| 2937 | if ((type == 1) || !(desc & (1 << 18))) { |
| 2938 | /* Page or Section. */ |
| 2939 | domain = (desc >> 5) & 0x0f; |
| 2940 | } |
| 2941 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| 2942 | if (domain_prot == 0 || domain_prot == 2) { |
| 2943 | if (type != 1) { |
| 2944 | code = 9; /* Section domain fault. */ |
| 2945 | } else { |
| 2946 | code = 11; /* Page domain fault. */ |
| 2947 | } |
| 2948 | goto do_fault; |
| 2949 | } |
| 2950 | if (type != 1) { |
| 2951 | if (desc & (1 << 18)) { |
| 2952 | /* Supersection. */ |
| 2953 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| 2954 | *page_size = 0x1000000; |
| 2955 | } else { |
| 2956 | /* Section. */ |
| 2957 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| 2958 | *page_size = 0x100000; |
| 2959 | } |
| 2960 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| 2961 | xn = desc & (1 << 4); |
| 2962 | pxn = desc & 1; |
| 2963 | code = 13; |
| 2964 | } else { |
| 2965 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
| 2966 | pxn = (desc >> 2) & 1; |
| 2967 | } |
| 2968 | /* Lookup l2 entry. */ |
| 2969 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| 2970 | desc = ldl_phys(table); |
| 2971 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| 2972 | switch (desc & 3) { |
| 2973 | case 0: /* Page translation fault. */ |
| 2974 | code = 7; |
| 2975 | goto do_fault; |
| 2976 | case 1: /* 64k page. */ |
| 2977 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| 2978 | xn = desc & (1 << 15); |
| 2979 | *page_size = 0x10000; |
| 2980 | break; |
| 2981 | case 2: case 3: /* 4k page. */ |
| 2982 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| 2983 | xn = desc & 1; |
| 2984 | *page_size = 0x1000; |
| 2985 | break; |
| 2986 | default: |
| 2987 | /* Never happens, but compiler isn't smart enough to tell. */ |
| 2988 | abort(); |
| 2989 | } |
| 2990 | code = 15; |
| 2991 | } |
| 2992 | if (domain_prot == 3) { |
| 2993 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
| 2994 | } else { |
| 2995 | if (pxn && !is_user) { |
| 2996 | xn = 1; |
| 2997 | } |
| 2998 | if (xn && access_type == 2) |
| 2999 | goto do_fault; |
| 3000 | |
| 3001 | /* The simplified model uses AP[0] as an access control bit. */ |
| 3002 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { |
| 3003 | /* Access flag fault. */ |
| 3004 | code = (code == 15) ? 6 : 3; |
| 3005 | goto do_fault; |
| 3006 | } |
| 3007 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| 3008 | if (!*prot) { |
| 3009 | /* Access permission fault. */ |
| 3010 | goto do_fault; |
| 3011 | } |
| 3012 | if (!xn) { |
| 3013 | *prot |= PAGE_EXEC0x0004; |
| 3014 | } |
| 3015 | } |
| 3016 | *phys_ptr = phys_addr; |
| 3017 | return 0; |
| 3018 | do_fault: |
| 3019 | return code | (domain << 4); |
| 3020 | } |
| 3021 | |
| 3022 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
| 3023 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. |
| 3024 | */ |
| 3025 | typedef enum { |
| 3026 | translation_fault = 1, |
| 3027 | access_fault = 2, |
| 3028 | permission_fault = 3, |
| 3029 | } MMUFaultType; |
| 3030 | |
| 3031 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, |
| 3032 | int access_type, int is_user, |
| 3033 | hwaddr *phys_ptr, int *prot, |
| 3034 | target_ulong *page_size_ptr) |
| 3035 | { |
| 3036 | /* Read an LPAE long-descriptor translation table. */ |
| 3037 | MMUFaultType fault_type = translation_fault; |
| 3038 | uint32_t level = 1; |
| 3039 | uint32_t epd; |
| 3040 | uint32_t tsz; |
| 3041 | uint64_t ttbr; |
| 3042 | int ttbr_select; |
| 3043 | int n; |
| 3044 | hwaddr descaddr; |
| 3045 | uint32_t tableattrs; |
| 3046 | target_ulong page_size; |
| 3047 | uint32_t attrs; |
| 3048 | |
| 3049 | /* Determine whether this address is in the region controlled by |
| 3050 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). |
| 3051 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by |
| 3052 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: |
| 3053 | */ |
| 3054 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); |
| 3055 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); |
| 3056 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { |
| 3057 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
| 3058 | ttbr_select = 0; |
| 3059 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { |
| 3060 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
| 3061 | ttbr_select = 1; |
| 3062 | } else if (!t0sz) { |
| 3063 | /* ttbr0 region is "everything not in the ttbr1 region" */ |
| 3064 | ttbr_select = 0; |
| 3065 | } else if (!t1sz) { |
| 3066 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
| 3067 | ttbr_select = 1; |
| 3068 | } else { |
| 3069 | /* in the gap between the two regions, this is a Translation fault */ |
| 3070 | fault_type = translation_fault; |
| 3071 | goto do_fault; |
| 3072 | } |
| 3073 | |
| 3074 | /* Note that QEMU ignores shareability and cacheability attributes, |
| 3075 | * so we don't need to do anything with the SH, ORGN, IRGN fields |
| 3076 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| 3077 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| 3078 | * implement any ASID-like capability so we can ignore it (instead |
| 3079 | * we will always flush the TLB any time the ASID is changed). |
| 3080 | */ |
| 3081 | if (ttbr_select == 0) { |
| 3082 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
| 3083 | epd = extract32(env->cp15.c2_control, 7, 1); |
| 3084 | tsz = t0sz; |
| 3085 | } else { |
| 3086 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
| 3087 | epd = extract32(env->cp15.c2_control, 23, 1); |
| 3088 | tsz = t1sz; |
| 3089 | } |
| 3090 | |
| 3091 | if (epd) { |
| 3092 | /* Translation table walk disabled => Translation fault on TLB miss */ |
| 3093 | goto do_fault; |
| 3094 | } |
| 3095 | |
| 3096 | /* If the region is small enough we will skip straight to a 2nd level |
| 3097 | * lookup. This affects the number of bits of the address used in |
| 3098 | * combination with the TTBR to find the first descriptor. ('n' here |
| 3099 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are |
| 3100 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). |
| 3101 | */ |
| 3102 | if (tsz > 1) { |
| 3103 | level = 2; |
| 3104 | n = 14 - tsz; |
| 3105 | } else { |
| 3106 | n = 5 - tsz; |
| 3107 | } |
| 3108 | |
| 3109 | /* Clear the vaddr bits which aren't part of the within-region address, |
| 3110 | * so that we don't have to special case things when calculating the |
| 3111 | * first descriptor address. |
| 3112 | */ |
| 3113 | address &= (0xffffffffU >> tsz); |
| 3114 | |
| 3115 | /* Now we can extract the actual base address from the TTBR */ |
| 3116 | descaddr = extract64(ttbr, 0, 40); |
| 3117 | descaddr &= ~((1ULL << n) - 1); |
| 3118 | |
| 3119 | tableattrs = 0; |
| 3120 | for (;;) { |
| 3121 | uint64_t descriptor; |
| 3122 | |
| 3123 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); |
| 3124 | descriptor = ldq_phys(descaddr); |
| 3125 | if (!(descriptor & 1) || |
| 3126 | (!(descriptor & 2) && (level == 3))) { |
| 3127 | /* Invalid, or the Reserved level 3 encoding */ |
| 3128 | goto do_fault; |
| 3129 | } |
| 3130 | descaddr = descriptor & 0xfffffff000ULL; |
| 3131 | |
| 3132 | if ((descriptor & 2) && (level < 3)) { |
| 3133 | /* Table entry. The top five bits are attributes which may |
| 3134 | * propagate down through lower levels of the table (and |
| 3135 | * which are all arranged so that 0 means "no effect", so |
| 3136 | * we can gather them up by ORing in the bits at each level). |
| 3137 | */ |
| 3138 | tableattrs |= extract64(descriptor, 59, 5); |
| 3139 | level++; |
| 3140 | continue; |
| 3141 | } |
| 3142 | /* Block entry at level 1 or 2, or page entry at level 3. |
| 3143 | * These are basically the same thing, although the number |
| 3144 | * of bits we pull in from the vaddr varies. |
| 3145 | */ |
| 3146 | page_size = (1 << (39 - (9 * level))); |
| 3147 | descaddr |= (address & (page_size - 1)); |
| 3148 | /* Extract attributes from the descriptor and merge with table attrs */ |
| 3149 | attrs = extract64(descriptor, 2, 10) |
| 3150 | | (extract64(descriptor, 52, 12) << 10); |
| 3151 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
| 3152 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ |
| 3153 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| 3154 | * means "force PL1 access only", which means forcing AP[1] to 0. |
| 3155 | */ |
| 3156 | if (extract32(tableattrs, 2, 1)) { |
| 3157 | attrs &= ~(1 << 4); |
| 3158 | } |
| 3159 | /* Since we're always in the Non-secure state, NSTable is ignored. */ |
| 3160 | break; |
| 3161 | } |
| 3162 | /* Here descaddr is the final physical address, and attributes |
| 3163 | * are all in attrs. |
| 3164 | */ |
| 3165 | fault_type = access_fault; |
| 3166 | if ((attrs & (1 << 8)) == 0) { |
| 3167 | /* Access flag */ |
| 3168 | goto do_fault; |
| 3169 | } |
| 3170 | fault_type = permission_fault; |
| 3171 | if (is_user && !(attrs & (1 << 4))) { |
| 3172 | /* Unprivileged access not enabled */ |
| 3173 | goto do_fault; |
| 3174 | } |
| 3175 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
| 3176 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { |
| 3177 | /* XN or PXN */ |
| 3178 | if (access_type == 2) { |
| 3179 | goto do_fault; |
| 3180 | } |
| 3181 | *prot &= ~PAGE_EXEC0x0004; |
| 3182 | } |
| 3183 | if (attrs & (1 << 5)) { |
| 3184 | /* Write access forbidden */ |
| 3185 | if (access_type == 1) { |
| 3186 | goto do_fault; |
| 3187 | } |
| 3188 | *prot &= ~PAGE_WRITE0x0002; |
| 3189 | } |
| 3190 | |
| 3191 | *phys_ptr = descaddr; |
| 3192 | *page_size_ptr = page_size; |
| 3193 | return 0; |
| 3194 | |
| 3195 | do_fault: |
| 3196 | /* Long-descriptor format IFSR/DFSR value */ |
| 3197 | return (1 << 9) | (fault_type << 2) | level; |
| 3198 | } |
| 3199 | |
| 3200 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
| 3201 | int access_type, int is_user, |
| 3202 | hwaddr *phys_ptr, int *prot) |
| 3203 | { |
| 3204 | int n; |
| 3205 | uint32_t mask; |
| 3206 | uint32_t base; |
| 3207 | |
| 3208 | *phys_ptr = address; |
| 3209 | for (n = 7; n >= 0; n--) { |
| 3210 | base = env->cp15.c6_region[n]; |
| 3211 | if ((base & 1) == 0) |
| 3212 | continue; |
| 3213 | mask = 1 << ((base >> 1) & 0x1f); |
| 3214 | /* Keep this shift separate from the above to avoid an |
| 3215 | (undefined) << 32. */ |
| 3216 | mask = (mask << 1) - 1; |
| 3217 | if (((base ^ address) & ~mask) == 0) |
| 3218 | break; |
| 3219 | } |
| 3220 | if (n < 0) |
| 3221 | return 2; |
| 3222 | |
| 3223 | if (access_type == 2) { |
| 3224 | mask = env->cp15.c5_insn; |
| 3225 | } else { |
| 3226 | mask = env->cp15.c5_data; |
| 3227 | } |
| 3228 | mask = (mask >> (n * 4)) & 0xf; |
| 3229 | switch (mask) { |
| 3230 | case 0: |
| 3231 | return 1; |
| 3232 | case 1: |
| 3233 | if (is_user) |
| 3234 | return 1; |
| 3235 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 3236 | break; |
| 3237 | case 2: |
| 3238 | *prot = PAGE_READ0x0001; |
| 3239 | if (!is_user) |
| 3240 | *prot |= PAGE_WRITE0x0002; |
| 3241 | break; |
| 3242 | case 3: |
| 3243 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; |
| 3244 | break; |
| 3245 | case 5: |
| 3246 | if (is_user) |
| 3247 | return 1; |
| 3248 | *prot = PAGE_READ0x0001; |
| 3249 | break; |
| 3250 | case 6: |
| 3251 | *prot = PAGE_READ0x0001; |
| 3252 | break; |
| 3253 | default: |
| 3254 | /* Bad permission. */ |
| 3255 | return 1; |
| 3256 | } |
| 3257 | *prot |= PAGE_EXEC0x0004; |
| 3258 | return 0; |
| 3259 | } |
| 3260 | |
| 3261 | /* get_phys_addr - get the physical address for this virtual address |
| 3262 | * |
| 3263 | * Find the physical address corresponding to the given virtual address, |
| 3264 | * by doing a translation table walk on MMU based systems or using the |
| 3265 | * MPU state on MPU based systems. |
| 3266 | * |
| 3267 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, |
| 3268 | * prot and page_size are not filled in, and the return value provides |
| 3269 | * information on why the translation aborted, in the format of a |
| 3270 | * DFSR/IFSR fault register, with the following caveats: |
| 3271 | * * we honour the short vs long DFSR format differences. |
| 3272 | * * the WnR bit is never set (the caller must do this). |
| 3273 | * * for MPU based systems we don't bother to return a full FSR format |
| 3274 | * value. |
| 3275 | * |
| 3276 | * @env: CPUARMState |
| 3277 | * @address: virtual address to get physical address for |
| 3278 | * @access_type: 0 for read, 1 for write, 2 for execute |
| 3279 | * @is_user: 0 for privileged access, 1 for user |
| 3280 | * @phys_ptr: set to the physical address corresponding to the virtual address |
| 3281 | * @prot: set to the permissions for the page containing phys_ptr |
| 3282 | * @page_size: set to the size of the page containing phys_ptr |
| 3283 | */ |
| 3284 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| 3285 | int access_type, int is_user, |
| 3286 | hwaddr *phys_ptr, int *prot, |
| 3287 | target_ulong *page_size) |
| 3288 | { |
| 3289 | /* Fast Context Switch Extension. */ |
| 3290 | if (address < 0x02000000) |
| 3291 | address += env->cp15.c13_fcse; |
| 3292 | |
| 3293 | if ((env->cp15.c1_sys & 1) == 0) { |
| 3294 | /* MMU/MPU disabled. */ |
| 3295 | *phys_ptr = address; |
| 3296 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
| 3297 | *page_size = TARGET_PAGE_SIZE(1 << 12); |
| 3298 | return 0; |
| 3299 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
| 3300 | *page_size = TARGET_PAGE_SIZE(1 << 12); |
| 3301 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
| 3302 | prot); |
| 3303 | } else if (extended_addresses_enabled(env)) { |
| 3304 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, |
| 3305 | prot, page_size); |
| 3306 | } else if (env->cp15.c1_sys & (1 << 23)) { |
| 3307 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
| 3308 | prot, page_size); |
| 3309 | } else { |
| 3310 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
| 3311 | prot, page_size); |
| 3312 | } |
| 3313 | } |
| 3314 | |
| 3315 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
| 3316 | int access_type, int mmu_idx) |
| 3317 | { |
| 3318 | hwaddr phys_addr; |
| 3319 | target_ulong page_size; |
| 3320 | int prot; |
| 3321 | int ret, is_user; |
| 3322 | |
| 3323 | is_user = mmu_idx == MMU_USER_IDX1; |
| 3324 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
| 3325 | &page_size); |
| 3326 | if (ret == 0) { |
| 3327 | /* Map a single [sub]page. */ |
| 3328 | phys_addr &= ~(hwaddr)0x3ff; |
| 3329 | address &= ~(uint32_t)0x3ff; |
| 3330 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
| 3331 | return 0; |
| 3332 | } |
| 3333 | |
| 3334 | if (access_type == 2) { |
| 3335 | env->cp15.c5_insn = ret; |
| 3336 | env->cp15.c6_insn = address; |
| 3337 | env->exception_index = EXCP_PREFETCH_ABORT3; |
| 3338 | } else { |
| 3339 | env->cp15.c5_data = ret; |
| 3340 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
| 3341 | env->cp15.c5_data |= (1 << 11); |
| 3342 | env->cp15.c6_data = address; |
| 3343 | env->exception_index = EXCP_DATA_ABORT4; |
| 3344 | } |
| 3345 | return 1; |
| 3346 | } |
| 3347 | |
| 3348 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| 3349 | { |
| 3350 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 3350, __func__)); |
| 3351 | hwaddr phys_addr; |
| 3352 | target_ulong page_size; |
| 3353 | int prot; |
| 3354 | int ret; |
| 3355 | |
| 3356 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
| 3357 | |
| 3358 | if (ret != 0) { |
| 3359 | return -1; |
| 3360 | } |
| 3361 | |
| 3362 | return phys_addr; |
| 3363 | } |
| 3364 | |
| 3365 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) |
| 3366 | { |
| 3367 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { |
| 3368 | env->regs[13] = val; |
| 3369 | } else { |
| 3370 | env->banked_r13[bank_number(mode)] = val; |
| 3371 | } |
| 3372 | } |
| 3373 | |
| 3374 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) |
| 3375 | { |
| 3376 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { |
| 3377 | return env->regs[13]; |
| 3378 | } else { |
| 3379 | return env->banked_r13[bank_number(mode)]; |
| 3380 | } |
| 3381 | } |
| 3382 | |
| 3383 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) |
| 3384 | { |
| 3385 | switch (reg) { |
| 3386 | case 0: /* APSR */ |
| 3387 | return xpsr_read(env) & 0xf8000000; |
| 3388 | case 1: /* IAPSR */ |
| 3389 | return xpsr_read(env) & 0xf80001ff; |
| 3390 | case 2: /* EAPSR */ |
| 3391 | return xpsr_read(env) & 0xff00fc00; |
| 3392 | case 3: /* xPSR */ |
| 3393 | return xpsr_read(env) & 0xff00fdff; |
| 3394 | case 5: /* IPSR */ |
| 3395 | return xpsr_read(env) & 0x000001ff; |
| 3396 | case 6: /* EPSR */ |
| 3397 | return xpsr_read(env) & 0x0700fc00; |
| 3398 | case 7: /* IEPSR */ |
| 3399 | return xpsr_read(env) & 0x0700edff; |
| 3400 | case 8: /* MSP */ |
| 3401 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
| 3402 | case 9: /* PSP */ |
| 3403 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
| 3404 | case 16: /* PRIMASK */ |
| 3405 | return (env->uncached_cpsr & CPSR_I(1U << 7)) != 0; |
| 3406 | case 17: /* BASEPRI */ |
| 3407 | case 18: /* BASEPRI_MAX */ |
| 3408 | return env->v7m.basepri; |
| 3409 | case 19: /* FAULTMASK */ |
| 3410 | return (env->uncached_cpsr & CPSR_F(1U << 6)) != 0; |
| 3411 | case 20: /* CONTROL */ |
| 3412 | return env->v7m.control; |
| 3413 | default: |
| 3414 | /* ??? For debugging only. */ |
| 3415 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
| 3416 | return 0; |
| 3417 | } |
| 3418 | } |
| 3419 | |
| 3420 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) |
| 3421 | { |
| 3422 | switch (reg) { |
| 3423 | case 0: /* APSR */ |
| 3424 | xpsr_write(env, val, 0xf8000000); |
| 3425 | break; |
| 3426 | case 1: /* IAPSR */ |
| 3427 | xpsr_write(env, val, 0xf8000000); |
| 3428 | break; |
| 3429 | case 2: /* EAPSR */ |
| 3430 | xpsr_write(env, val, 0xfe00fc00); |
| 3431 | break; |
| 3432 | case 3: /* xPSR */ |
| 3433 | xpsr_write(env, val, 0xfe00fc00); |
| 3434 | break; |
| 3435 | case 5: /* IPSR */ |
| 3436 | /* IPSR bits are readonly. */ |
| 3437 | break; |
| 3438 | case 6: /* EPSR */ |
| 3439 | xpsr_write(env, val, 0x0600fc00); |
| 3440 | break; |
| 3441 | case 7: /* IEPSR */ |
| 3442 | xpsr_write(env, val, 0x0600fc00); |
| 3443 | break; |
| 3444 | case 8: /* MSP */ |
| 3445 | if (env->v7m.current_sp) |
| 3446 | env->v7m.other_sp = val; |
| 3447 | else |
| 3448 | env->regs[13] = val; |
| 3449 | break; |
| 3450 | case 9: /* PSP */ |
| 3451 | if (env->v7m.current_sp) |
| 3452 | env->regs[13] = val; |
| 3453 | else |
| 3454 | env->v7m.other_sp = val; |
| 3455 | break; |
| 3456 | case 16: /* PRIMASK */ |
| 3457 | if (val & 1) |
| 3458 | env->uncached_cpsr |= CPSR_I(1U << 7); |
| 3459 | else |
| 3460 | env->uncached_cpsr &= ~CPSR_I(1U << 7); |
| 3461 | break; |
| 3462 | case 17: /* BASEPRI */ |
| 3463 | env->v7m.basepri = val & 0xff; |
| 3464 | break; |
| 3465 | case 18: /* BASEPRI_MAX */ |
| 3466 | val &= 0xff; |
| 3467 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
| 3468 | env->v7m.basepri = val; |
| 3469 | break; |
| 3470 | case 19: /* FAULTMASK */ |
| 3471 | if (val & 1) |
| 3472 | env->uncached_cpsr |= CPSR_F(1U << 6); |
| 3473 | else |
| 3474 | env->uncached_cpsr &= ~CPSR_F(1U << 6); |
| 3475 | break; |
| 3476 | case 20: /* CONTROL */ |
| 3477 | env->v7m.control = val & 3; |
| 3478 | switch_v7m_sp(env, (val & 2) != 0); |
| 3479 | break; |
| 3480 | default: |
| 3481 | /* ??? For debugging only. */ |
| 3482 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
| 3483 | return; |
| 3484 | } |
| 3485 | } |
| 3486 | |
| 3487 | #endif |
| 3488 | |
| 3489 | /* Note that signed overflow is undefined in C. The following routines are |
| 3490 | careful to use unsigned types where modulo arithmetic is required. |
| 3491 | Failure to do so _will_ break on newer gcc. */ |
| 3492 | |
| 3493 | /* Signed saturating arithmetic. */ |
| 3494 | |
| 3495 | /* Perform 16-bit signed saturating addition. */ |
| 3496 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| 3497 | { |
| 3498 | uint16_t res; |
| 3499 | |
| 3500 | res = a + b; |
| 3501 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| 3502 | if (a & 0x8000) |
| 3503 | res = 0x8000; |
| 3504 | else |
| 3505 | res = 0x7fff; |
| 3506 | } |
| 3507 | return res; |
| 3508 | } |
| 3509 | |
| 3510 | /* Perform 8-bit signed saturating addition. */ |
| 3511 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| 3512 | { |
| 3513 | uint8_t res; |
| 3514 | |
| 3515 | res = a + b; |
| 3516 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| 3517 | if (a & 0x80) |
| 3518 | res = 0x80; |
| 3519 | else |
| 3520 | res = 0x7f; |
| 3521 | } |
| 3522 | return res; |
| 3523 | } |
| 3524 | |
| 3525 | /* Perform 16-bit signed saturating subtraction. */ |
| 3526 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| 3527 | { |
| 3528 | uint16_t res; |
| 3529 | |
| 3530 | res = a - b; |
| 3531 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| 3532 | if (a & 0x8000) |
| 3533 | res = 0x8000; |
| 3534 | else |
| 3535 | res = 0x7fff; |
| 3536 | } |
| 3537 | return res; |
| 3538 | } |
| 3539 | |
| 3540 | /* Perform 8-bit signed saturating subtraction. */ |
| 3541 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| 3542 | { |
| 3543 | uint8_t res; |
| 3544 | |
| 3545 | res = a - b; |
| 3546 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| 3547 | if (a & 0x80) |
| 3548 | res = 0x80; |
| 3549 | else |
| 3550 | res = 0x7f; |
| 3551 | } |
| 3552 | return res; |
| 3553 | } |
| 3554 | |
| 3555 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| 3556 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| 3557 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| 3558 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| 3559 | #define PFX q |
| 3560 | |
| 3561 | #include "op_addsub.h" |
| 3562 | |
| 3563 | /* Unsigned saturating arithmetic. */ |
| 3564 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| 3565 | { |
| 3566 | uint16_t res; |
| 3567 | res = a + b; |
| 3568 | if (res < a) |
| 3569 | res = 0xffff; |
| 3570 | return res; |
| 3571 | } |
| 3572 | |
| 3573 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| 3574 | { |
| 3575 | if (a > b) |
| 3576 | return a - b; |
| 3577 | else |
| 3578 | return 0; |
| 3579 | } |
| 3580 | |
| 3581 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| 3582 | { |
| 3583 | uint8_t res; |
| 3584 | res = a + b; |
| 3585 | if (res < a) |
| 3586 | res = 0xff; |
| 3587 | return res; |
| 3588 | } |
| 3589 | |
| 3590 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| 3591 | { |
| 3592 | if (a > b) |
| 3593 | return a - b; |
| 3594 | else |
| 3595 | return 0; |
| 3596 | } |
| 3597 | |
| 3598 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| 3599 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| 3600 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| 3601 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| 3602 | #define PFX uq |
| 3603 | |
| 3604 | #include "op_addsub.h" |
| 3605 | |
| 3606 | /* Signed modulo arithmetic. */ |
| 3607 | #define SARITH16(a, b, n, op)do { int32_t sum; sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) do { \ |
| 3608 | int32_t sum; \ |
| 3609 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| 3610 | RESULT(sum, n, 16); \ |
| 3611 | if (sum >= 0) \ |
| 3612 | ge |= 3 << (n * 2); \ |
| 3613 | } while(0) |
| 3614 | |
| 3615 | #define SARITH8(a, b, n, op)do { int32_t sum; sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) do { \ |
| 3616 | int32_t sum; \ |
| 3617 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| 3618 | RESULT(sum, n, 8); \ |
| 3619 | if (sum >= 0) \ |
| 3620 | ge |= 1 << n; \ |
| 3621 | } while(0) |
| 3622 | |
| 3623 | |
| 3624 | #define ADD16(a, b, n) SARITH16(a, b, n, +)do { int32_t sum; sum = (int32_t)(int16_t)(a) + (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) |
| 3625 | #define SUB16(a, b, n) SARITH16(a, b, n, -)do { int32_t sum; sum = (int32_t)(int16_t)(a) - (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) |
| 3626 | #define ADD8(a, b, n) SARITH8(a, b, n, +)do { int32_t sum; sum = (int32_t)(int8_t)(a) + (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) |
| 3627 | #define SUB8(a, b, n) SARITH8(a, b, n, -)do { int32_t sum; sum = (int32_t)(int8_t)(a) - (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) |
| 3628 | #define PFX s |
| 3629 | #define ARITH_GE |
| 3630 | |
| 3631 | #include "op_addsub.h" |
| 3632 | |
| 3633 | /* Unsigned modulo arithmetic. */ |
| 3634 | #define ADD16(a, b, n) do { \ |
| 3635 | uint32_t sum; \ |
| 3636 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| 3637 | RESULT(sum, n, 16); \ |
| 3638 | if ((sum >> 16) == 1) \ |
| 3639 | ge |= 3 << (n * 2); \ |
| 3640 | } while(0) |
| 3641 | |
| 3642 | #define ADD8(a, b, n) do { \ |
| 3643 | uint32_t sum; \ |
| 3644 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| 3645 | RESULT(sum, n, 8); \ |
| 3646 | if ((sum >> 8) == 1) \ |
| 3647 | ge |= 1 << n; \ |
| 3648 | } while(0) |
| 3649 | |
| 3650 | #define SUB16(a, b, n) do { \ |
| 3651 | uint32_t sum; \ |
| 3652 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| 3653 | RESULT(sum, n, 16); \ |
| 3654 | if ((sum >> 16) == 0) \ |
| 3655 | ge |= 3 << (n * 2); \ |
| 3656 | } while(0) |
| 3657 | |
| 3658 | #define SUB8(a, b, n) do { \ |
| 3659 | uint32_t sum; \ |
| 3660 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| 3661 | RESULT(sum, n, 8); \ |
| 3662 | if ((sum >> 8) == 0) \ |
| 3663 | ge |= 1 << n; \ |
| 3664 | } while(0) |
| 3665 | |
| 3666 | #define PFX u |
| 3667 | #define ARITH_GE |
| 3668 | |
| 3669 | #include "op_addsub.h" |
| 3670 | |
| 3671 | /* Halved signed arithmetic. */ |
| 3672 | #define ADD16(a, b, n) \ |
| 3673 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| 3674 | #define SUB16(a, b, n) \ |
| 3675 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| 3676 | #define ADD8(a, b, n) \ |
| 3677 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| 3678 | #define SUB8(a, b, n) \ |
| 3679 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| 3680 | #define PFX sh |
| 3681 | |
| 3682 | #include "op_addsub.h" |
| 3683 | |
| 3684 | /* Halved unsigned arithmetic. */ |
| 3685 | #define ADD16(a, b, n) \ |
| 3686 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| 3687 | #define SUB16(a, b, n) \ |
| 3688 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| 3689 | #define ADD8(a, b, n) \ |
| 3690 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| 3691 | #define SUB8(a, b, n) \ |
| 3692 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| 3693 | #define PFX uh |
| 3694 | |
| 3695 | #include "op_addsub.h" |
| 3696 | |
| 3697 | static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| 3698 | { |
| 3699 | if (a > b) |
| 3700 | return a - b; |
| 3701 | else |
| 3702 | return b - a; |
| 3703 | } |
| 3704 | |
| 3705 | /* Unsigned sum of absolute byte differences. */ |
| 3706 | uint32_t HELPER(usad8)helper_usad8(uint32_t a, uint32_t b) |
| 3707 | { |
| 3708 | uint32_t sum; |
| 3709 | sum = do_usad(a, b); |
| 3710 | sum += do_usad(a >> 8, b >> 8); |
| 3711 | sum += do_usad(a >> 16, b >>16); |
| 3712 | sum += do_usad(a >> 24, b >> 24); |
| 3713 | return sum; |
| 3714 | } |
| 3715 | |
| 3716 | /* For ARMv6 SEL instruction. */ |
| 3717 | uint32_t HELPER(sel_flags)helper_sel_flags(uint32_t flags, uint32_t a, uint32_t b) |
| 3718 | { |
| 3719 | uint32_t mask; |
| 3720 | |
| 3721 | mask = 0; |
| 3722 | if (flags & 1) |
| 3723 | mask |= 0xff; |
| 3724 | if (flags & 2) |
| 3725 | mask |= 0xff00; |
| 3726 | if (flags & 4) |
| 3727 | mask |= 0xff0000; |
| 3728 | if (flags & 8) |
| 3729 | mask |= 0xff000000; |
| 3730 | return (a & mask) | (b & ~mask); |
| 3731 | } |
| 3732 | |
| 3733 | /* VFP support. We follow the convention used for VFP instructions: |
| 3734 | Single precision routines have a "s" suffix, double precision a |
| 3735 | "d" suffix. */ |
| 3736 | |
| 3737 | /* Convert host exception flags to vfp form. */ |
| 3738 | static inline int vfp_exceptbits_from_host(int host_bits) |
| 3739 | { |
| 3740 | int target_bits = 0; |
| 3741 | |
| 3742 | if (host_bits & float_flag_invalid) |
| 3743 | target_bits |= 1; |
| 3744 | if (host_bits & float_flag_divbyzero) |
| 3745 | target_bits |= 2; |
| 3746 | if (host_bits & float_flag_overflow) |
| 3747 | target_bits |= 4; |
| 3748 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
| 3749 | target_bits |= 8; |
| 3750 | if (host_bits & float_flag_inexact) |
| 3751 | target_bits |= 0x10; |
| 3752 | if (host_bits & float_flag_input_denormal) |
| 3753 | target_bits |= 0x80; |
| 3754 | return target_bits; |
| 3755 | } |
| 3756 | |
| 3757 | uint32_t HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(CPUARMState *env) |
| 3758 | { |
| 3759 | int i; |
| 3760 | uint32_t fpscr; |
| 3761 | |
| 3762 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR1] & 0xffc8ffff) |
| 3763 | | (env->vfp.vec_len << 16) |
| 3764 | | (env->vfp.vec_stride << 20); |
| 3765 | i = get_float_exception_flags(&env->vfp.fp_status); |
| 3766 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| 3767 | fpscr |= vfp_exceptbits_from_host(i); |
| 3768 | return fpscr; |
| 3769 | } |
| 3770 | |
| 3771 | uint32_t vfp_get_fpscr(CPUARMState *env) |
| 3772 | { |
| 3773 | return HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(env); |
| 3774 | } |
| 3775 | |
| 3776 | /* Convert vfp exception flags to target form. */ |
| 3777 | static inline int vfp_exceptbits_to_host(int target_bits) |
| 3778 | { |
| 3779 | int host_bits = 0; |
| 3780 | |
| 3781 | if (target_bits & 1) |
| 3782 | host_bits |= float_flag_invalid; |
| 3783 | if (target_bits & 2) |
| 3784 | host_bits |= float_flag_divbyzero; |
| 3785 | if (target_bits & 4) |
| 3786 | host_bits |= float_flag_overflow; |
| 3787 | if (target_bits & 8) |
| 3788 | host_bits |= float_flag_underflow; |
| 3789 | if (target_bits & 0x10) |
| 3790 | host_bits |= float_flag_inexact; |
| 3791 | if (target_bits & 0x80) |
| 3792 | host_bits |= float_flag_input_denormal; |
| 3793 | return host_bits; |
| 3794 | } |
| 3795 | |
| 3796 | void HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| 3797 | { |
| 3798 | int i; |
| 3799 | uint32_t changed; |
| 3800 | |
| 3801 | changed = env->vfp.xregs[ARM_VFP_FPSCR1]; |
| 3802 | env->vfp.xregs[ARM_VFP_FPSCR1] = (val & 0xffc8ffff); |
| 3803 | env->vfp.vec_len = (val >> 16) & 7; |
| 3804 | env->vfp.vec_stride = (val >> 20) & 3; |
| 3805 | |
| 3806 | changed ^= val; |
| 3807 | if (changed & (3 << 22)) { |
| 3808 | i = (val >> 22) & 3; |
| 3809 | switch (i) { |
| 3810 | case FPROUNDING_TIEEVEN: |
| 3811 | i = float_round_nearest_even; |
| 3812 | break; |
| 3813 | case FPROUNDING_POSINF: |
| 3814 | i = float_round_up; |
| 3815 | break; |
| 3816 | case FPROUNDING_NEGINF: |
| 3817 | i = float_round_down; |
| 3818 | break; |
| 3819 | case FPROUNDING_ZERO: |
| 3820 | i = float_round_to_zero; |
| 3821 | break; |
| 3822 | } |
| 3823 | set_float_rounding_mode(i, &env->vfp.fp_status); |
| 3824 | } |
| 3825 | if (changed & (1 << 24)) { |
| 3826 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| 3827 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| 3828 | } |
| 3829 | if (changed & (1 << 25)) |
| 3830 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
| 3831 | |
| 3832 | i = vfp_exceptbits_to_host(val); |
| 3833 | set_float_exception_flags(i, &env->vfp.fp_status); |
| 3834 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| 3835 | } |
| 3836 | |
| 3837 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| 3838 | { |
| 3839 | HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(env, val); |
| 3840 | } |
| 3841 | |
| 3842 | #define VFP_HELPER(name, p)helper_vfp_namep HELPER(glue(glue(vfp_,name),p))helper_vfp_namep |
| 3843 | |
| 3844 | #define VFP_BINOP(name) \ |
| 3845 | float32 VFP_HELPER(name, s)helper_vfp_names(float32 a, float32 b, void *fpstp) \ |
| 3846 | { \ |
| 3847 | float_status *fpst = fpstp; \ |
| 3848 | return float32_ ## name(a, b, fpst); \ |
| 3849 | } \ |
| 3850 | float64 VFP_HELPER(name, d)helper_vfp_named(float64 a, float64 b, void *fpstp) \ |
| 3851 | { \ |
| 3852 | float_status *fpst = fpstp; \ |
| 3853 | return float64_ ## name(a, b, fpst); \ |
| 3854 | } |
| 3855 | VFP_BINOP(add) |
| 3856 | VFP_BINOP(sub) |
| 3857 | VFP_BINOP(mul) |
| 3858 | VFP_BINOP(div) |
| 3859 | VFP_BINOP(min) |
| 3860 | VFP_BINOP(max) |
| 3861 | VFP_BINOP(minnum) |
| 3862 | VFP_BINOP(maxnum) |
| 3863 | #undef VFP_BINOP |
| 3864 | |
| 3865 | float32 VFP_HELPER(neg, s)helper_vfp_negs(float32 a) |
| 3866 | { |
| 3867 | return float32_chs(a); |
| 3868 | } |
| 3869 | |
| 3870 | float64 VFP_HELPER(neg, d)helper_vfp_negd(float64 a) |
| 3871 | { |
| 3872 | return float64_chs(a); |
| 3873 | } |
| 3874 | |
| 3875 | float32 VFP_HELPER(abs, s)helper_vfp_abss(float32 a) |
| 3876 | { |
| 3877 | return float32_abs(a); |
| 3878 | } |
| 3879 | |
| 3880 | float64 VFP_HELPER(abs, d)helper_vfp_absd(float64 a) |
| 3881 | { |
| 3882 | return float64_abs(a); |
| 3883 | } |
| 3884 | |
| 3885 | float32 VFP_HELPER(sqrt, s)helper_vfp_sqrts(float32 a, CPUARMState *env) |
| 3886 | { |
| 3887 | return float32_sqrt(a, &env->vfp.fp_status); |
| 3888 | } |
| 3889 | |
| 3890 | float64 VFP_HELPER(sqrt, d)helper_vfp_sqrtd(float64 a, CPUARMState *env) |
| 3891 | { |
| 3892 | return float64_sqrt(a, &env->vfp.fp_status); |
| 3893 | } |
| 3894 | |
| 3895 | /* XXX: check quiet/signaling case */ |
| 3896 | #define DO_VFP_cmp(p, type) \ |
| 3897 | void VFP_HELPER(cmp, p)helper_vfp_cmpp(type a, type b, CPUARMState *env) \ |
| 3898 | { \ |
| 3899 | uint32_t flags; \ |
| 3900 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
| 3901 | case 0: flags = 0x6; break; \ |
| 3902 | case -1: flags = 0x8; break; \ |
| 3903 | case 1: flags = 0x2; break; \ |
| 3904 | default: case 2: flags = 0x3; break; \ |
| 3905 | } \ |
| 3906 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ |
| 3907 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ |
| 3908 | } \ |
| 3909 | void VFP_HELPER(cmpe, p)helper_vfp_cmpep(type a, type b, CPUARMState *env) \ |
| 3910 | { \ |
| 3911 | uint32_t flags; \ |
| 3912 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
| 3913 | case 0: flags = 0x6; break; \ |
| 3914 | case -1: flags = 0x8; break; \ |
| 3915 | case 1: flags = 0x2; break; \ |
| 3916 | default: case 2: flags = 0x3; break; \ |
| 3917 | } \ |
| 3918 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ |
| 3919 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ |
| 3920 | } |
| 3921 | DO_VFP_cmp(s, float32) |
| 3922 | DO_VFP_cmp(d, float64) |
| 3923 | #undef DO_VFP_cmp |
| 3924 | |
| 3925 | /* Integer to float and float to integer conversions */ |
| 3926 | |
| 3927 | #define CONV_ITOF(name, fsz, sign) \ |
| 3928 | float##fsz HELPER(name)helper_name(uint32_t x, void *fpstp) \ |
| 3929 | { \ |
| 3930 | float_status *fpst = fpstp; \ |
| 3931 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| 3932 | } |
| 3933 | |
| 3934 | #define CONV_FTOI(name, fsz, sign, round) \ |
| 3935 | uint32_t HELPER(name)helper_name(float##fsz x, void *fpstp) \ |
| 3936 | { \ |
| 3937 | float_status *fpst = fpstp; \ |
| 3938 | if (float##fsz##_is_any_nan(x)) { \ |
| 3939 | float_raise(float_flag_invalid, fpst); \ |
| 3940 | return 0; \ |
| 3941 | } \ |
| 3942 | return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| 3943 | } |
| 3944 | |
| 3945 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
| 3946 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
| 3947 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
| 3948 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
| 3949 | |
| 3950 | FLOAT_CONVS(si, s, 32, ) |
| 3951 | FLOAT_CONVS(si, d, 64, ) |
| 3952 | FLOAT_CONVS(ui, s, 32, u) |
| 3953 | FLOAT_CONVS(ui, d, 64, u) |
| 3954 | |
| 3955 | #undef CONV_ITOF |
| 3956 | #undef CONV_FTOI |
| 3957 | #undef FLOAT_CONVS |
| 3958 | |
| 3959 | /* floating point conversion */ |
| 3960 | float64 VFP_HELPER(fcvtd, s)helper_vfp_fcvtds(float32 x, CPUARMState *env) |
| 3961 | { |
| 3962 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
| 3963 | /* ARM requires that S<->D conversion of any kind of NaN generates |
| 3964 | * a quiet NaN by forcing the most significant frac bit to 1. |
| 3965 | */ |
| 3966 | return float64_maybe_silence_nan(r); |
| 3967 | } |
| 3968 | |
| 3969 | float32 VFP_HELPER(fcvts, d)helper_vfp_fcvtsd(float64 x, CPUARMState *env) |
| 3970 | { |
| 3971 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
| 3972 | /* ARM requires that S<->D conversion of any kind of NaN generates |
| 3973 | * a quiet NaN by forcing the most significant frac bit to 1. |
| 3974 | */ |
| 3975 | return float32_maybe_silence_nan(r); |
| 3976 | } |
| 3977 | |
| 3978 | /* VFP3 fixed point conversion. */ |
| 3979 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| 3980 | float##fsz HELPER(vfp_##name##to##p)helper_vfp_##name##to##p(uint##isz##_t x, uint32_t shift, \ |
| 3981 | void *fpstp) \ |
| 3982 | { \ |
| 3983 | float_status *fpst = fpstp; \ |
| 3984 | float##fsz tmp; \ |
| 3985 | tmp = itype##_to_##float##fsz(x, fpst); \ |
| 3986 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
| 3987 | } |
| 3988 | |
| 3989 | /* Notice that we want only input-denormal exception flags from the |
| 3990 | * scalbn operation: the other possible flags (overflow+inexact if |
| 3991 | * we overflow to infinity, output-denormal) aren't correct for the |
| 3992 | * complete scale-and-convert operation. |
| 3993 | */ |
| 3994 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
| 3995 | uint##isz##_t HELPER(vfp_to##name##p##round)helper_vfp_to##name##p##round(float##fsz x, \ |
| 3996 | uint32_t shift, \ |
| 3997 | void *fpstp) \ |
| 3998 | { \ |
| 3999 | float_status *fpst = fpstp; \ |
| 4000 | int old_exc_flags = get_float_exception_flags(fpst); \ |
| 4001 | float##fsz tmp; \ |
| 4002 | if (float##fsz##_is_any_nan(x)) { \ |
| 4003 | float_raise(float_flag_invalid, fpst); \ |
| 4004 | return 0; \ |
| 4005 | } \ |
| 4006 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
| 4007 | old_exc_flags |= get_float_exception_flags(fpst) \ |
| 4008 | & float_flag_input_denormal; \ |
| 4009 | set_float_exception_flags(old_exc_flags, fpst); \ |
| 4010 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
| 4011 | } |
| 4012 | |
| 4013 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
| 4014 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| 4015 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
| 4016 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| 4017 | |
| 4018 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) VFP_CONV_FLOAT_FIX_ROUND (name, p, fsz, isz, itype, ) \ |
| 4019 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| 4020 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| 4021 | |
| 4022 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
| 4023 | VFP_CONV_FIX(sl, d, 64, 64, int32) |
| 4024 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64)VFP_CONV_FIX_FLOAT(sq, d, 64, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, d, 64, 64, int64, ) |
| 4025 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
| 4026 | VFP_CONV_FIX(ul, d, 64, 64, uint32) |
| 4027 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)VFP_CONV_FIX_FLOAT(uq, d, 64, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, d, 64, 64, uint64, ) |
| 4028 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
| 4029 | VFP_CONV_FIX(sl, s, 32, 32, int32) |
| 4030 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64)VFP_CONV_FIX_FLOAT(sq, s, 32, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, s, 32, 64, int64, ) |
| 4031 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
| 4032 | VFP_CONV_FIX(ul, s, 32, 32, uint32) |
| 4033 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)VFP_CONV_FIX_FLOAT(uq, s, 32, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, s, 32, 64, uint64, ) |
| 4034 | #undef VFP_CONV_FIX |
| 4035 | #undef VFP_CONV_FIX_FLOAT |
| 4036 | #undef VFP_CONV_FLOAT_FIX_ROUND |
| 4037 | |
| 4038 | /* Set the current fp rounding mode and return the old one. |
| 4039 | * The argument is a softfloat float_round_ value. |
| 4040 | */ |
| 4041 | uint32_t HELPER(set_rmode)helper_set_rmode(uint32_t rmode, CPUARMState *env) |
| 4042 | { |
| 4043 | float_status *fp_status = &env->vfp.fp_status; |
| 4044 | |
| 4045 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| 4046 | set_float_rounding_mode(rmode, fp_status); |
| 4047 | |
| 4048 | return prev_rmode; |
| 4049 | } |
| 4050 | |
| 4051 | /* Half precision conversions. */ |
| 4052 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
| 4053 | { |
| 4054 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
| 4055 | float32 r = float16_to_float32(make_float16(a)(a), ieee, s); |
| 4056 | if (ieee) { |
| 4057 | return float32_maybe_silence_nan(r); |
| 4058 | } |
| 4059 | return r; |
| 4060 | } |
| 4061 | |
| 4062 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
| 4063 | { |
| 4064 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
| 4065 | float16 r = float32_to_float16(a, ieee, s); |
| 4066 | if (ieee) { |
| 4067 | r = float16_maybe_silence_nan(r); |
| 4068 | } |
| 4069 | return float16_val(r)(r); |
| 4070 | } |
| 4071 | |
| 4072 | float32 HELPER(neon_fcvt_f16_to_f32)helper_neon_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) |
| 4073 | { |
| 4074 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
| 4075 | } |
| 4076 | |
| 4077 | uint32_t HELPER(neon_fcvt_f32_to_f16)helper_neon_fcvt_f32_to_f16(float32 a, CPUARMState *env) |
| 4078 | { |
| 4079 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
| 4080 | } |
| 4081 | |
| 4082 | float32 HELPER(vfp_fcvt_f16_to_f32)helper_vfp_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) |
| 4083 | { |
| 4084 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
| 4085 | } |
| 4086 | |
| 4087 | uint32_t HELPER(vfp_fcvt_f32_to_f16)helper_vfp_fcvt_f32_to_f16(float32 a, CPUARMState *env) |
| 4088 | { |
| 4089 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
| 4090 | } |
| 4091 | |
| 4092 | float64 HELPER(vfp_fcvt_f16_to_f64)helper_vfp_fcvt_f16_to_f64(uint32_t a, CPUARMState *env) |
| 4093 | { |
| 4094 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
| 4095 | float64 r = float16_to_float64(make_float16(a)(a), ieee, &env->vfp.fp_status); |
| 4096 | if (ieee) { |
| 4097 | return float64_maybe_silence_nan(r); |
| 4098 | } |
| 4099 | return r; |
| 4100 | } |
| 4101 | |
| 4102 | uint32_t HELPER(vfp_fcvt_f64_to_f16)helper_vfp_fcvt_f64_to_f16(float64 a, CPUARMState *env) |
| 4103 | { |
| 4104 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
| 4105 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); |
| 4106 | if (ieee) { |
| 4107 | r = float16_maybe_silence_nan(r); |
| 4108 | } |
| 4109 | return float16_val(r)(r); |
| 4110 | } |
| 4111 | |
| 4112 | #define float32_two(0x40000000) make_float32(0x40000000)(0x40000000) |
| 4113 | #define float32_three(0x40400000) make_float32(0x40400000)(0x40400000) |
| 4114 | #define float32_one_point_five(0x3fc00000) make_float32(0x3fc00000)(0x3fc00000) |
| 4115 | |
| 4116 | float32 HELPER(recps_f32)helper_recps_f32(float32 a, float32 b, CPUARMState *env) |
| 4117 | { |
| 4118 | float_status *s = &env->vfp.standard_fp_status; |
| 4119 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| 4120 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| 4121 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| 4122 | float_raise(float_flag_input_denormal, s); |
| 4123 | } |
| 4124 | return float32_two(0x40000000); |
| 4125 | } |
| 4126 | return float32_sub(float32_two(0x40000000), float32_mul(a, b, s), s); |
| 4127 | } |
| 4128 | |
| 4129 | float32 HELPER(rsqrts_f32)helper_rsqrts_f32(float32 a, float32 b, CPUARMState *env) |
| 4130 | { |
| 4131 | float_status *s = &env->vfp.standard_fp_status; |
| 4132 | float32 product; |
| 4133 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| 4134 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| 4135 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| 4136 | float_raise(float_flag_input_denormal, s); |
| 4137 | } |
| 4138 | return float32_one_point_five(0x3fc00000); |
| 4139 | } |
| 4140 | product = float32_mul(a, b, s); |
| 4141 | return float32_div(float32_sub(float32_three(0x40400000), product, s), float32_two(0x40000000), s); |
| 4142 | } |
| 4143 | |
| 4144 | /* NEON helpers. */ |
| 4145 | |
| 4146 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| 4147 | * int->float conversions at run-time. */ |
| 4148 | #define float64_256(0x4070000000000000LL) make_float64(0x4070000000000000LL)(0x4070000000000000LL) |
| 4149 | #define float64_512(0x4080000000000000LL) make_float64(0x4080000000000000LL)(0x4080000000000000LL) |
| 4150 | |
| 4151 | /* The algorithm that must be used to calculate the estimate |
| 4152 | * is specified by the ARM ARM. |
| 4153 | */ |
| 4154 | static float64 recip_estimate(float64 a, CPUARMState *env) |
| 4155 | { |
| 4156 | /* These calculations mustn't set any fp exception flags, |
| 4157 | * so we use a local copy of the fp_status. |
| 4158 | */ |
| 4159 | float_status dummy_status = env->vfp.standard_fp_status; |
| 4160 | float_status *s = &dummy_status; |
| 4161 | /* q = (int)(a * 512.0) */ |
| 4162 | float64 q = float64_mul(float64_512(0x4080000000000000LL), a, s); |
| 4163 | int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| 4164 | |
| 4165 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
| 4166 | q = int64_to_float64(q_int, s); |
| 4167 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
| 4168 | q = float64_div(q, float64_512(0x4080000000000000LL), s); |
| 4169 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
| 4170 | |
| 4171 | /* s = (int)(256.0 * r + 0.5) */ |
| 4172 | q = float64_mul(q, float64_256(0x4070000000000000LL), s); |
| 4173 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
| 4174 | q_int = float64_to_int64_round_to_zero(q, s); |
| 4175 | |
| 4176 | /* return (double)s / 256.0 */ |
| 4177 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); |
| 4178 | } |
| 4179 | |
| 4180 | float32 HELPER(recpe_f32)helper_recpe_f32(float32 a, CPUARMState *env) |
| 4181 | { |
| 4182 | float_status *s = &env->vfp.standard_fp_status; |
| 4183 | float64 f64; |
| 4184 | uint32_t val32 = float32_val(a)(a); |
| 4185 | |
| 4186 | int result_exp; |
| 4187 | int a_exp = (val32 & 0x7f800000) >> 23; |
| 4188 | int sign = val32 & 0x80000000; |
| 4189 | |
| 4190 | if (float32_is_any_nan(a)) { |
| 4191 | if (float32_is_signaling_nan(a)) { |
| 4192 | float_raise(float_flag_invalid, s); |
| 4193 | } |
| 4194 | return float32_default_nan; |
| 4195 | } else if (float32_is_infinity(a)) { |
| 4196 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); |
| 4197 | } else if (float32_is_zero_or_denormal(a)) { |
| 4198 | if (!float32_is_zero(a)) { |
| 4199 | float_raise(float_flag_input_denormal, s); |
| 4200 | } |
| 4201 | float_raise(float_flag_divbyzero, s); |
| 4202 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); |
| 4203 | } else if (a_exp >= 253) { |
| 4204 | float_raise(float_flag_underflow, s); |
| 4205 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); |
| 4206 | } |
| 4207 | |
| 4208 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)) |
| 4209 | | ((int64_t)(val32 & 0x7fffff) << 29))((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)); |
| 4210 | |
| 4211 | result_exp = 253 - a_exp; |
| 4212 | |
| 4213 | f64 = recip_estimate(f64, env); |
| 4214 | |
| 4215 | val32 = sign |
| 4216 | | ((result_exp & 0xff) << 23) |
| 4217 | | ((float64_val(f64)(f64) >> 29) & 0x7fffff); |
| 4218 | return make_float32(val32)(val32); |
| 4219 | } |
| 4220 | |
| 4221 | /* The algorithm that must be used to calculate the estimate |
| 4222 | * is specified by the ARM ARM. |
| 4223 | */ |
| 4224 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
| 4225 | { |
| 4226 | /* These calculations mustn't set any fp exception flags, |
| 4227 | * so we use a local copy of the fp_status. |
| 4228 | */ |
| 4229 | float_status dummy_status = env->vfp.standard_fp_status; |
| 4230 | float_status *s = &dummy_status; |
| 4231 | float64 q; |
| 4232 | int64_t q_int; |
| 4233 | |
| 4234 | if (float64_lt(a, float64_half(0x3fe0000000000000LL), s)) { |
| 4235 | /* range 0.25 <= a < 0.5 */ |
| 4236 | |
| 4237 | /* a in units of 1/512 rounded down */ |
| 4238 | /* q0 = (int)(a * 512.0); */ |
| 4239 | q = float64_mul(float64_512(0x4080000000000000LL), a, s); |
| 4240 | q_int = float64_to_int64_round_to_zero(q, s); |
| 4241 | |
| 4242 | /* reciprocal root r */ |
| 4243 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
| 4244 | q = int64_to_float64(q_int, s); |
| 4245 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
| 4246 | q = float64_div(q, float64_512(0x4080000000000000LL), s); |
| 4247 | q = float64_sqrt(q, s); |
| 4248 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
| 4249 | } else { |
| 4250 | /* range 0.5 <= a < 1.0 */ |
| 4251 | |
| 4252 | /* a in units of 1/256 rounded down */ |
| 4253 | /* q1 = (int)(a * 256.0); */ |
| 4254 | q = float64_mul(float64_256(0x4070000000000000LL), a, s); |
| 4255 | int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| 4256 | |
| 4257 | /* reciprocal root r */ |
| 4258 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
| 4259 | q = int64_to_float64(q_int, s); |
| 4260 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
| 4261 | q = float64_div(q, float64_256(0x4070000000000000LL), s); |
| 4262 | q = float64_sqrt(q, s); |
| 4263 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
| 4264 | } |
| 4265 | /* r in units of 1/256 rounded to nearest */ |
| 4266 | /* s = (int)(256.0 * r + 0.5); */ |
| 4267 | |
| 4268 | q = float64_mul(q, float64_256(0x4070000000000000LL),s ); |
| 4269 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
| 4270 | q_int = float64_to_int64_round_to_zero(q, s); |
| 4271 | |
| 4272 | /* return (double)s / 256.0;*/ |
| 4273 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); |
| 4274 | } |
| 4275 | |
| 4276 | float32 HELPER(rsqrte_f32)helper_rsqrte_f32(float32 a, CPUARMState *env) |
| 4277 | { |
| 4278 | float_status *s = &env->vfp.standard_fp_status; |
| 4279 | int result_exp; |
| 4280 | float64 f64; |
| 4281 | uint32_t val; |
| 4282 | uint64_t val64; |
| 4283 | |
| 4284 | val = float32_val(a)(a); |
| 4285 | |
| 4286 | if (float32_is_any_nan(a)) { |
| 4287 | if (float32_is_signaling_nan(a)) { |
| 4288 | float_raise(float_flag_invalid, s); |
| 4289 | } |
| 4290 | return float32_default_nan; |
| 4291 | } else if (float32_is_zero_or_denormal(a)) { |
| 4292 | if (!float32_is_zero(a)) { |
| 4293 | float_raise(float_flag_input_denormal, s); |
| 4294 | } |
| 4295 | float_raise(float_flag_divbyzero, s); |
| 4296 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); |
| 4297 | } else if (float32_is_neg(a)) { |
| 4298 | float_raise(float_flag_invalid, s); |
| 4299 | return float32_default_nan; |
| 4300 | } else if (float32_is_infinity(a)) { |
| 4301 | return float32_zero(0); |
| 4302 | } |
| 4303 | |
| 4304 | /* Normalize to a double-precision value between 0.25 and 1.0, |
| 4305 | * preserving the parity of the exponent. */ |
| 4306 | if ((val & 0x800000) == 0) { |
| 4307 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
| 4308 | | (0x3feULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
| 4309 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); |
| 4310 | } else { |
| 4311 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
| 4312 | | (0x3fdULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
| 4313 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); |
| 4314 | } |
| 4315 | |
| 4316 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; |
| 4317 | |
| 4318 | f64 = recip_sqrt_estimate(f64, env); |
| 4319 | |
| 4320 | val64 = float64_val(f64)(f64); |
| 4321 | |
| 4322 | val = ((result_exp & 0xff) << 23) |
| 4323 | | ((val64 >> 29) & 0x7fffff); |
| 4324 | return make_float32(val)(val); |
| 4325 | } |
| 4326 | |
| 4327 | uint32_t HELPER(recpe_u32)helper_recpe_u32(uint32_t a, CPUARMState *env) |
| 4328 | { |
| 4329 | float64 f64; |
| 4330 | |
| 4331 | if ((a & 0x80000000) == 0) { |
| 4332 | return 0xffffffff; |
| 4333 | } |
| 4334 | |
| 4335 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)) |
| 4336 | | ((int64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); |
| 4337 | |
| 4338 | f64 = recip_estimate (f64, env); |
| 4339 | |
| 4340 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); |
| 4341 | } |
| 4342 | |
| 4343 | uint32_t HELPER(rsqrte_u32)helper_rsqrte_u32(uint32_t a, CPUARMState *env) |
| 4344 | { |
| 4345 | float64 f64; |
| 4346 | |
| 4347 | if ((a & 0xc0000000) == 0) { |
| 4348 | return 0xffffffff; |
| 4349 | } |
| 4350 | |
| 4351 | if (a & 0x80000000) { |
| 4352 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)) |
| 4353 | | ((uint64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); |
| 4354 | } else { /* bits 31-30 == '01' */ |
| 4355 | f64 = make_float64((0x3fdULL << 52)((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)) |
| 4356 | | ((uint64_t)(a & 0x3fffffff) << 22))((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); |
| 4357 | } |
| 4358 | |
| 4359 | f64 = recip_sqrt_estimate(f64, env); |
| 4360 | |
| 4361 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); |
| 4362 | } |
| 4363 | |
| 4364 | /* VFPv4 fused multiply-accumulate */ |
| 4365 | float32 VFP_HELPER(muladd, s)helper_vfp_muladds(float32 a, float32 b, float32 c, void *fpstp) |
| 4366 | { |
| 4367 | float_status *fpst = fpstp; |
| 4368 | return float32_muladd(a, b, c, 0, fpst); |
| 4369 | } |
| 4370 | |
| 4371 | float64 VFP_HELPER(muladd, d)helper_vfp_muladdd(float64 a, float64 b, float64 c, void *fpstp) |
| 4372 | { |
| 4373 | float_status *fpst = fpstp; |
| 4374 | return float64_muladd(a, b, c, 0, fpst); |
| 4375 | } |
| 4376 | |
| 4377 | /* ARMv8 round to integral */ |
| 4378 | float32 HELPER(rints_exact)helper_rints_exact(float32 x, void *fp_status) |
| 4379 | { |
| 4380 | return float32_round_to_int(x, fp_status); |
| 4381 | } |
| 4382 | |
| 4383 | float64 HELPER(rintd_exact)helper_rintd_exact(float64 x, void *fp_status) |
| 4384 | { |
| 4385 | return float64_round_to_int(x, fp_status); |
| 4386 | } |
| 4387 | |
| 4388 | float32 HELPER(rints)helper_rints(float32 x, void *fp_status) |
| 4389 | { |
| 4390 | int old_flags = get_float_exception_flags(fp_status), new_flags; |
| 4391 | float32 ret; |
| 4392 | |
| 4393 | ret = float32_round_to_int(x, fp_status); |
| 4394 | |
| 4395 | /* Suppress any inexact exceptions the conversion produced */ |
| 4396 | if (!(old_flags & float_flag_inexact)) { |
| 4397 | new_flags = get_float_exception_flags(fp_status); |
| 4398 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| 4399 | } |
| 4400 | |
| 4401 | return ret; |
| 4402 | } |
| 4403 | |
| 4404 | float64 HELPER(rintd)helper_rintd(float64 x, void *fp_status) |
| 4405 | { |
| 4406 | int old_flags = get_float_exception_flags(fp_status), new_flags; |
| 4407 | float64 ret; |
| 4408 | |
| 4409 | ret = float64_round_to_int(x, fp_status); |
| 4410 | |
| 4411 | new_flags = get_float_exception_flags(fp_status); |
Value stored to 'new_flags' is never read | |
| 4412 | |
| 4413 | /* Suppress any inexact exceptions the conversion produced */ |
| 4414 | if (!(old_flags & float_flag_inexact)) { |
| 4415 | new_flags = get_float_exception_flags(fp_status); |
| 4416 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| 4417 | } |
| 4418 | |
| 4419 | return ret; |
| 4420 | } |