File: | target-arm/helper.c |
Location: | line 3362, column 5 |
Description: | Undefined or garbage value returned to caller |
1 | #include "cpu.h" | |||
2 | #include "exec/gdbstub.h" | |||
3 | #include "helper.h" | |||
4 | #include "qemu/host-utils.h" | |||
5 | #include "sysemu/arch_init.h" | |||
6 | #include "sysemu/sysemu.h" | |||
7 | #include "qemu/bitops.h" | |||
8 | ||||
9 | #ifndef CONFIG_USER_ONLY | |||
10 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |||
11 | int access_type, int is_user, | |||
12 | hwaddr *phys_ptr, int *prot, | |||
13 | target_ulong *page_size); | |||
14 | #endif | |||
15 | ||||
16 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | |||
17 | { | |||
18 | int nregs; | |||
19 | ||||
20 | /* VFP data registers are always little-endian. */ | |||
21 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |||
22 | if (reg < nregs) { | |||
23 | stfq_le_p(buf, env->vfp.regs[reg]); | |||
24 | return 8; | |||
25 | } | |||
26 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |||
27 | /* Aliases for Q regs. */ | |||
28 | nregs += 16; | |||
29 | if (reg < nregs) { | |||
30 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |||
31 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |||
32 | return 16; | |||
33 | } | |||
34 | } | |||
35 | switch (reg - nregs) { | |||
36 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID])stl_le_p(buf, env->vfp.xregs[0]); return 4; | |||
37 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR])stl_le_p(buf, env->vfp.xregs[1]); return 4; | |||
38 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC])stl_le_p(buf, env->vfp.xregs[8]); return 4; | |||
39 | } | |||
40 | return 0; | |||
41 | } | |||
42 | ||||
43 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |||
44 | { | |||
45 | int nregs; | |||
46 | ||||
47 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |||
48 | if (reg < nregs) { | |||
49 | env->vfp.regs[reg] = ldfq_le_p(buf); | |||
50 | return 8; | |||
51 | } | |||
52 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |||
53 | nregs += 16; | |||
54 | if (reg < nregs) { | |||
55 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |||
56 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |||
57 | return 16; | |||
58 | } | |||
59 | } | |||
60 | switch (reg - nregs) { | |||
61 | case 0: env->vfp.xregs[ARM_VFP_FPSID0] = ldl_p(buf)ldl_le_p(buf); return 4; | |||
62 | case 1: env->vfp.xregs[ARM_VFP_FPSCR1] = ldl_p(buf)ldl_le_p(buf); return 4; | |||
63 | case 2: env->vfp.xregs[ARM_VFP_FPEXC8] = ldl_p(buf)ldl_le_p(buf) & (1 << 30); return 4; | |||
64 | } | |||
65 | return 0; | |||
66 | } | |||
67 | ||||
68 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | |||
69 | { | |||
70 | switch (reg) { | |||
71 | case 0 ... 31: | |||
72 | /* 128 bit FP register */ | |||
73 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |||
74 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |||
75 | return 16; | |||
76 | case 32: | |||
77 | /* FPSR */ | |||
78 | stl_p(buf, vfp_get_fpsr(env))stl_le_p(buf, vfp_get_fpsr(env)); | |||
79 | return 4; | |||
80 | case 33: | |||
81 | /* FPCR */ | |||
82 | stl_p(buf, vfp_get_fpcr(env))stl_le_p(buf, vfp_get_fpcr(env)); | |||
83 | return 4; | |||
84 | default: | |||
85 | return 0; | |||
86 | } | |||
87 | } | |||
88 | ||||
89 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |||
90 | { | |||
91 | switch (reg) { | |||
92 | case 0 ... 31: | |||
93 | /* 128 bit FP register */ | |||
94 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |||
95 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |||
96 | return 16; | |||
97 | case 32: | |||
98 | /* FPSR */ | |||
99 | vfp_set_fpsr(env, ldl_p(buf)ldl_le_p(buf)); | |||
100 | return 4; | |||
101 | case 33: | |||
102 | /* FPCR */ | |||
103 | vfp_set_fpcr(env, ldl_p(buf)ldl_le_p(buf)); | |||
104 | return 4; | |||
105 | default: | |||
106 | return 0; | |||
107 | } | |||
108 | } | |||
109 | ||||
110 | static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
111 | uint64_t *value) | |||
112 | { | |||
113 | if (ri->type & ARM_CP_64BIT4) { | |||
114 | *value = CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)); | |||
115 | } else { | |||
116 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); | |||
117 | } | |||
118 | return 0; | |||
119 | } | |||
120 | ||||
121 | static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
122 | uint64_t value) | |||
123 | { | |||
124 | if (ri->type & ARM_CP_64BIT4) { | |||
125 | CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) = value; | |||
126 | } else { | |||
127 | CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) = value; | |||
128 | } | |||
129 | return 0; | |||
130 | } | |||
131 | ||||
132 | static bool_Bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | |||
133 | uint64_t *v) | |||
134 | { | |||
135 | /* Raw read of a coprocessor register (as needed for migration, etc) | |||
136 | * return true on success, false if the read is impossible for some reason. | |||
137 | */ | |||
138 | if (ri->type & ARM_CP_CONST2) { | |||
139 | *v = ri->resetvalue; | |||
140 | } else if (ri->raw_readfn) { | |||
141 | return (ri->raw_readfn(env, ri, v) == 0); | |||
142 | } else if (ri->readfn) { | |||
143 | return (ri->readfn(env, ri, v) == 0); | |||
144 | } else { | |||
145 | raw_read(env, ri, v); | |||
146 | } | |||
147 | return true1; | |||
148 | } | |||
149 | ||||
150 | static bool_Bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | |||
151 | int64_t v) | |||
152 | { | |||
153 | /* Raw write of a coprocessor register (as needed for migration, etc). | |||
154 | * Return true on success, false if the write is impossible for some reason. | |||
155 | * Note that constant registers are treated as write-ignored; the | |||
156 | * caller should check for success by whether a readback gives the | |||
157 | * value written. | |||
158 | */ | |||
159 | if (ri->type & ARM_CP_CONST2) { | |||
160 | return true1; | |||
161 | } else if (ri->raw_writefn) { | |||
162 | return (ri->raw_writefn(env, ri, v) == 0); | |||
163 | } else if (ri->writefn) { | |||
164 | return (ri->writefn(env, ri, v) == 0); | |||
165 | } else { | |||
166 | raw_write(env, ri, v); | |||
167 | } | |||
168 | return true1; | |||
169 | } | |||
170 | ||||
171 | bool_Bool write_cpustate_to_list(ARMCPU *cpu) | |||
172 | { | |||
173 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |||
174 | int i; | |||
175 | bool_Bool ok = true1; | |||
176 | ||||
177 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |||
178 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |||
179 | const ARMCPRegInfo *ri; | |||
180 | uint64_t v; | |||
181 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |||
182 | if (!ri) { | |||
183 | ok = false0; | |||
184 | continue; | |||
185 | } | |||
186 | if (ri->type & ARM_CP_NO_MIGRATE32) { | |||
187 | continue; | |||
188 | } | |||
189 | if (!read_raw_cp_reg(&cpu->env, ri, &v)) { | |||
190 | ok = false0; | |||
191 | continue; | |||
192 | } | |||
193 | cpu->cpreg_values[i] = v; | |||
194 | } | |||
195 | return ok; | |||
196 | } | |||
197 | ||||
198 | bool_Bool write_list_to_cpustate(ARMCPU *cpu) | |||
199 | { | |||
200 | int i; | |||
201 | bool_Bool ok = true1; | |||
202 | ||||
203 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |||
204 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |||
205 | uint64_t v = cpu->cpreg_values[i]; | |||
206 | uint64_t readback; | |||
207 | const ARMCPRegInfo *ri; | |||
208 | ||||
209 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |||
210 | if (!ri) { | |||
211 | ok = false0; | |||
212 | continue; | |||
213 | } | |||
214 | if (ri->type & ARM_CP_NO_MIGRATE32) { | |||
215 | continue; | |||
216 | } | |||
217 | /* Write value and confirm it reads back as written | |||
218 | * (to catch read-only registers and partially read-only | |||
219 | * registers where the incoming migration value doesn't match) | |||
220 | */ | |||
221 | if (!write_raw_cp_reg(&cpu->env, ri, v) || | |||
222 | !read_raw_cp_reg(&cpu->env, ri, &readback) || | |||
223 | readback != v) { | |||
224 | ok = false0; | |||
225 | } | |||
226 | } | |||
227 | return ok; | |||
228 | } | |||
229 | ||||
230 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |||
231 | { | |||
232 | ARMCPU *cpu = opaque; | |||
233 | uint64_t regidx; | |||
234 | const ARMCPRegInfo *ri; | |||
235 | ||||
236 | regidx = *(uint32_t *)key; | |||
237 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |||
238 | ||||
239 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { | |||
240 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |||
241 | /* The value array need not be initialized at this point */ | |||
242 | cpu->cpreg_array_len++; | |||
243 | } | |||
244 | } | |||
245 | ||||
246 | static void count_cpreg(gpointer key, gpointer opaque) | |||
247 | { | |||
248 | ARMCPU *cpu = opaque; | |||
249 | uint64_t regidx; | |||
250 | const ARMCPRegInfo *ri; | |||
251 | ||||
252 | regidx = *(uint32_t *)key; | |||
253 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |||
254 | ||||
255 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { | |||
256 | cpu->cpreg_array_len++; | |||
257 | } | |||
258 | } | |||
259 | ||||
260 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |||
261 | { | |||
262 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); | |||
263 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |||
264 | ||||
265 | if (aidx > bidx) { | |||
266 | return 1; | |||
267 | } | |||
268 | if (aidx < bidx) { | |||
269 | return -1; | |||
270 | } | |||
271 | return 0; | |||
272 | } | |||
273 | ||||
274 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) | |||
275 | { | |||
276 | GList **plist = udata; | |||
277 | ||||
278 | *plist = g_list_prepend(*plist, key); | |||
279 | } | |||
280 | ||||
281 | void init_cpreg_list(ARMCPU *cpu) | |||
282 | { | |||
283 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |||
284 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |||
285 | */ | |||
286 | GList *keys = NULL((void*)0); | |||
287 | int arraylen; | |||
288 | ||||
289 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); | |||
290 | ||||
291 | keys = g_list_sort(keys, cpreg_key_compare); | |||
292 | ||||
293 | cpu->cpreg_array_len = 0; | |||
294 | ||||
295 | g_list_foreach(keys, count_cpreg, cpu); | |||
296 | ||||
297 | arraylen = cpu->cpreg_array_len; | |||
298 | cpu->cpreg_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); | |||
299 | cpu->cpreg_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); | |||
300 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); | |||
301 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); | |||
302 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |||
303 | cpu->cpreg_array_len = 0; | |||
304 | ||||
305 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |||
306 | ||||
307 | assert(cpu->cpreg_array_len == arraylen)((cpu->cpreg_array_len == arraylen) ? (void) (0) : __assert_fail ("cpu->cpreg_array_len == arraylen", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 307, __PRETTY_FUNCTION__)); | |||
308 | ||||
309 | g_list_free(keys); | |||
310 | } | |||
311 | ||||
312 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
313 | { | |||
314 | env->cp15.c3 = value; | |||
315 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |||
316 | return 0; | |||
317 | } | |||
318 | ||||
319 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
320 | { | |||
321 | if (env->cp15.c13_fcse != value) { | |||
322 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |||
323 | * not modified virtual addresses, so this causes a TLB flush. | |||
324 | */ | |||
325 | tlb_flush(env, 1); | |||
326 | env->cp15.c13_fcse = value; | |||
327 | } | |||
328 | return 0; | |||
329 | } | |||
330 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
331 | uint64_t value) | |||
332 | { | |||
333 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |||
334 | /* For VMSA (when not using the LPAE long descriptor page table | |||
335 | * format) this register includes the ASID, so do a TLB flush. | |||
336 | * For PMSA it is purely a process ID and no action is needed. | |||
337 | */ | |||
338 | tlb_flush(env, 1); | |||
339 | } | |||
340 | env->cp15.c13_context = value; | |||
341 | return 0; | |||
342 | } | |||
343 | ||||
344 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
345 | uint64_t value) | |||
346 | { | |||
347 | /* Invalidate all (TLBIALL) */ | |||
348 | tlb_flush(env, 1); | |||
349 | return 0; | |||
350 | } | |||
351 | ||||
352 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
353 | uint64_t value) | |||
354 | { | |||
355 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |||
356 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 10) - 1)); | |||
357 | return 0; | |||
358 | } | |||
359 | ||||
360 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
361 | uint64_t value) | |||
362 | { | |||
363 | /* Invalidate by ASID (TLBIASID) */ | |||
364 | tlb_flush(env, value == 0); | |||
365 | return 0; | |||
366 | } | |||
367 | ||||
368 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
369 | uint64_t value) | |||
370 | { | |||
371 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |||
372 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 10) - 1)); | |||
373 | return 0; | |||
374 | } | |||
375 | ||||
376 | static const ARMCPRegInfo cp_reginfo[] = { | |||
377 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |||
378 | * version" bits will read as a reserved value, which should cause | |||
379 | * Linux to not try to use the debug hardware. | |||
380 | */ | |||
381 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
382 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
383 | /* MMU Domain access control / MPU write buffer control */ | |||
384 | { .name = "DACR", .cp = 15, | |||
385 | .crn = 3, .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, | |||
386 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c3)__builtin_offsetof(CPUARMState, cp15.c3), | |||
387 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, | |||
388 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
389 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse)__builtin_offsetof(CPUARMState, cp15.c13_fcse), | |||
390 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |||
391 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
392 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_context)__builtin_offsetof(CPUARMState, cp15.c13_context), | |||
393 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |||
394 | /* ??? This covers not just the impdef TLB lockdown registers but also | |||
395 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |||
396 | */ | |||
397 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY0xff, | |||
398 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
399 | /* MMU TLB control. Note that the wildcarding means we cover not just | |||
400 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |||
401 | */ | |||
402 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY0xff, | |||
403 | .opc1 = CP_ANY0xff, .opc2 = 0, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiall_write, | |||
404 | .type = ARM_CP_NO_MIGRATE32 }, | |||
405 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, | |||
406 | .opc1 = CP_ANY0xff, .opc2 = 1, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimva_write, | |||
407 | .type = ARM_CP_NO_MIGRATE32 }, | |||
408 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY0xff, | |||
409 | .opc1 = CP_ANY0xff, .opc2 = 2, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiasid_write, | |||
410 | .type = ARM_CP_NO_MIGRATE32 }, | |||
411 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, | |||
412 | .opc1 = CP_ANY0xff, .opc2 = 3, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimvaa_write, | |||
413 | .type = ARM_CP_NO_MIGRATE32 }, | |||
414 | /* Cache maintenance ops; some of this space may be overridden later. */ | |||
415 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, | |||
416 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), | |||
417 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 }, | |||
418 | REGINFO_SENTINEL{ .type = 0xffff } | |||
419 | }; | |||
420 | ||||
421 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { | |||
422 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |||
423 | * over-broad. | |||
424 | */ | |||
425 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |||
426 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, | |||
427 | REGINFO_SENTINEL{ .type = 0xffff } | |||
428 | }; | |||
429 | ||||
430 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |||
431 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |||
432 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |||
433 | */ | |||
434 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |||
435 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, | |||
436 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice | |||
437 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |||
438 | * OMAPCP will override this space. | |||
439 | */ | |||
440 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
441 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_data)__builtin_offsetof(CPUARMState, cp15.c9_data), | |||
442 | .resetvalue = 0 }, | |||
443 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
444 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_insn)__builtin_offsetof(CPUARMState, cp15.c9_insn), | |||
445 | .resetvalue = 0 }, | |||
446 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ | |||
447 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY0xff, | |||
448 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, | |||
449 | .resetvalue = 0 }, | |||
450 | REGINFO_SENTINEL{ .type = 0xffff } | |||
451 | }; | |||
452 | ||||
453 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
454 | { | |||
455 | if (env->cp15.c1_coproc != value) { | |||
456 | env->cp15.c1_coproc = value; | |||
457 | /* ??? Is this safe when called from within a TB? */ | |||
458 | tb_flush(env); | |||
459 | } | |||
460 | return 0; | |||
461 | } | |||
462 | ||||
463 | static const ARMCPRegInfo v6_cp_reginfo[] = { | |||
464 | /* prefetch by MVA in v6, NOP in v7 */ | |||
465 | { .name = "MVA_prefetch", | |||
466 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |||
467 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
468 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |||
469 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
470 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, | |||
471 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
472 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, | |||
473 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
474 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
475 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_insn)__builtin_offsetof(CPUARMState, cp15.c6_insn), | |||
476 | .resetvalue = 0, }, | |||
477 | /* Watchpoint Fault Address Register : should actually only be present | |||
478 | * for 1136, 1176, 11MPCore. | |||
479 | */ | |||
480 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
481 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, .resetvalue = 0, }, | |||
482 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
483 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc)__builtin_offsetof(CPUARMState, cp15.c1_coproc), | |||
484 | .resetvalue = 0, .writefn = cpacr_write }, | |||
485 | REGINFO_SENTINEL{ .type = 0xffff } | |||
486 | }; | |||
487 | ||||
488 | ||||
489 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
490 | uint64_t *value) | |||
491 | { | |||
492 | /* Generic performance monitor register read function for where | |||
493 | * user access may be allowed by PMUSERENR. | |||
494 | */ | |||
495 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
496 | return EXCP_UDEF1; | |||
497 | } | |||
498 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); | |||
499 | return 0; | |||
500 | } | |||
501 | ||||
502 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
503 | uint64_t value) | |||
504 | { | |||
505 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
506 | return EXCP_UDEF1; | |||
507 | } | |||
508 | /* only the DP, X, D and E bits are writable */ | |||
509 | env->cp15.c9_pmcr &= ~0x39; | |||
510 | env->cp15.c9_pmcr |= (value & 0x39); | |||
511 | return 0; | |||
512 | } | |||
513 | ||||
514 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
515 | uint64_t value) | |||
516 | { | |||
517 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
518 | return EXCP_UDEF1; | |||
519 | } | |||
520 | value &= (1 << 31); | |||
521 | env->cp15.c9_pmcnten |= value; | |||
522 | return 0; | |||
523 | } | |||
524 | ||||
525 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
526 | uint64_t value) | |||
527 | { | |||
528 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
529 | return EXCP_UDEF1; | |||
530 | } | |||
531 | value &= (1 << 31); | |||
532 | env->cp15.c9_pmcnten &= ~value; | |||
533 | return 0; | |||
534 | } | |||
535 | ||||
536 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
537 | uint64_t value) | |||
538 | { | |||
539 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
540 | return EXCP_UDEF1; | |||
541 | } | |||
542 | env->cp15.c9_pmovsr &= ~value; | |||
543 | return 0; | |||
544 | } | |||
545 | ||||
546 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
547 | uint64_t value) | |||
548 | { | |||
549 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |||
550 | return EXCP_UDEF1; | |||
551 | } | |||
552 | env->cp15.c9_pmxevtyper = value & 0xff; | |||
553 | return 0; | |||
554 | } | |||
555 | ||||
556 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
557 | uint64_t value) | |||
558 | { | |||
559 | env->cp15.c9_pmuserenr = value & 1; | |||
560 | return 0; | |||
561 | } | |||
562 | ||||
563 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
564 | uint64_t value) | |||
565 | { | |||
566 | /* We have no event counters so only the C bit can be changed */ | |||
567 | value &= (1 << 31); | |||
568 | env->cp15.c9_pminten |= value; | |||
569 | return 0; | |||
570 | } | |||
571 | ||||
572 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
573 | uint64_t value) | |||
574 | { | |||
575 | value &= (1 << 31); | |||
576 | env->cp15.c9_pminten &= ~value; | |||
577 | return 0; | |||
578 | } | |||
579 | ||||
580 | static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
581 | uint64_t value) | |||
582 | { | |||
583 | env->cp15.c12_vbar = value & ~0x1Ful; | |||
584 | return 0; | |||
585 | } | |||
586 | ||||
587 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
588 | uint64_t *value) | |||
589 | { | |||
590 | ARMCPU *cpu = arm_env_get_cpu(env); | |||
591 | *value = cpu->ccsidr[env->cp15.c0_cssel]; | |||
592 | return 0; | |||
593 | } | |||
594 | ||||
595 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
596 | uint64_t value) | |||
597 | { | |||
598 | env->cp15.c0_cssel = value & 0xf; | |||
599 | return 0; | |||
600 | } | |||
601 | ||||
602 | static const ARMCPRegInfo v7_cp_reginfo[] = { | |||
603 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |||
604 | * debug components | |||
605 | */ | |||
606 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
607 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
608 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
610 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ | |||
611 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |||
612 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
613 | /* Performance monitors are implementation defined in v7, | |||
614 | * but with an ARM recommended set of registers, which we | |||
615 | * follow (although we don't actually implement any counters) | |||
616 | * | |||
617 | * Performance registers fall into three categories: | |||
618 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |||
619 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |||
620 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |||
621 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |||
622 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |||
623 | */ | |||
624 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |||
625 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = 0, | |||
626 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), | |||
627 | .readfn = pmreg_read, .writefn = pmcntenset_write, | |||
628 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |||
629 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, | |||
630 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), | |||
631 | .readfn = pmreg_read, .writefn = pmcntenclr_write, | |||
632 | .type = ARM_CP_NO_MIGRATE32 }, | |||
633 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, | |||
634 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr)__builtin_offsetof(CPUARMState, cp15.c9_pmovsr), | |||
635 | .readfn = pmreg_read, .writefn = pmovsr_write, | |||
636 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |||
637 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should | |||
638 | * respect PMUSERENR. | |||
639 | */ | |||
640 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | |||
641 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
642 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | |||
643 | * We choose to RAZ/WI. XXX should respect PMUSERENR. | |||
644 | */ | |||
645 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |||
646 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
647 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |||
648 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | |||
649 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
650 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | |||
651 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), | |||
652 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper)__builtin_offsetof(CPUARMState, cp15.c9_pmxevtyper), | |||
653 | .readfn = pmreg_read, .writefn = pmxevtyper_write, | |||
654 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |||
655 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |||
656 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | |||
657 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
658 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | |||
659 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))) | PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
660 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr)__builtin_offsetof(CPUARMState, cp15.c9_pmuserenr), | |||
661 | .resetvalue = 0, | |||
662 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |||
663 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, | |||
664 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
665 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), | |||
666 | .resetvalue = 0, | |||
667 | .writefn = pmintenset_write, .raw_writefn = raw_write }, | |||
668 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, | |||
669 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, | |||
670 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), | |||
671 | .resetvalue = 0, .writefn = pmintenclr_write, }, | |||
672 | { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
673 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vbar_write, | |||
674 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar)__builtin_offsetof(CPUARMState, cp15.c12_vbar), | |||
675 | .resetvalue = 0 }, | |||
676 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, | |||
677 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_scr)__builtin_offsetof(CPUARMState, cp15.c1_scr), | |||
678 | .resetvalue = 0, }, | |||
679 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |||
680 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE32 }, | |||
681 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |||
682 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel)__builtin_offsetof(CPUARMState, cp15.c0_cssel), | |||
683 | .writefn = csselr_write, .resetvalue = 0 }, | |||
684 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |||
685 | * just RAZ for all cores: | |||
686 | */ | |||
687 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |||
688 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
689 | REGINFO_SENTINEL{ .type = 0xffff } | |||
690 | }; | |||
691 | ||||
692 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
693 | { | |||
694 | value &= 1; | |||
695 | env->teecr = value; | |||
696 | return 0; | |||
697 | } | |||
698 | ||||
699 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
700 | uint64_t *value) | |||
701 | { | |||
702 | /* This is a helper function because the user access rights | |||
703 | * depend on the value of the TEECR. | |||
704 | */ | |||
705 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |||
706 | return EXCP_UDEF1; | |||
707 | } | |||
708 | *value = env->teehbr; | |||
709 | return 0; | |||
710 | } | |||
711 | ||||
712 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
713 | uint64_t value) | |||
714 | { | |||
715 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |||
716 | return EXCP_UDEF1; | |||
717 | } | |||
718 | env->teehbr = value; | |||
719 | return 0; | |||
720 | } | |||
721 | ||||
722 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |||
723 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |||
724 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, teecr)__builtin_offsetof(CPUARMState, teecr), | |||
725 | .resetvalue = 0, | |||
726 | .writefn = teecr_write }, | |||
727 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |||
728 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, teehbr)__builtin_offsetof(CPUARMState, teehbr), | |||
729 | .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
730 | .readfn = teehbr_read, .writefn = teehbr_write }, | |||
731 | REGINFO_SENTINEL{ .type = 0xffff } | |||
732 | }; | |||
733 | ||||
734 | static const ARMCPRegInfo v6k_cp_reginfo[] = { | |||
735 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, | |||
736 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |||
737 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), | |||
738 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |||
739 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
740 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), | |||
741 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), | |||
742 | .resetfn = arm_cp_reset_ignore }, | |||
743 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |||
744 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |||
745 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), | |||
746 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |||
747 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | |||
748 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), | |||
749 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), | |||
750 | .resetfn = arm_cp_reset_ignore }, | |||
751 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |||
752 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |||
753 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
754 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1)__builtin_offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, | |||
755 | REGINFO_SENTINEL{ .type = 0xffff } | |||
756 | }; | |||
757 | ||||
758 | #ifndef CONFIG_USER_ONLY | |||
759 | ||||
760 | static uint64_t gt_get_countervalue(CPUARMState *env) | |||
761 | { | |||
762 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE16; | |||
763 | } | |||
764 | ||||
765 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |||
766 | { | |||
767 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |||
768 | ||||
769 | if (gt->ctl & 1) { | |||
770 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |||
771 | * reset timer to when ISTATUS next has to change | |||
772 | */ | |||
773 | uint64_t count = gt_get_countervalue(&cpu->env); | |||
774 | /* Note that this must be unsigned 64 bit arithmetic: */ | |||
775 | int istatus = count >= gt->cval; | |||
776 | uint64_t nexttick; | |||
777 | ||||
778 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |||
779 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |||
780 | (istatus && !(gt->ctl & 2))); | |||
781 | if (istatus) { | |||
782 | /* Next transition is when count rolls back over to zero */ | |||
783 | nexttick = UINT64_MAX(18446744073709551615UL); | |||
784 | } else { | |||
785 | /* Next transition is when we hit cval */ | |||
786 | nexttick = gt->cval; | |||
787 | } | |||
788 | /* Note that the desired next expiry time might be beyond the | |||
789 | * signed-64-bit range of a QEMUTimer -- in this case we just | |||
790 | * set the timer for as far in the future as possible. When the | |||
791 | * timer expires we will reset the timer for any remaining period. | |||
792 | */ | |||
793 | if (nexttick > INT64_MAX(9223372036854775807L) / GTIMER_SCALE16) { | |||
794 | nexttick = INT64_MAX(9223372036854775807L) / GTIMER_SCALE16; | |||
795 | } | |||
796 | timer_mod(cpu->gt_timer[timeridx], nexttick); | |||
797 | } else { | |||
798 | /* Timer disabled: ISTATUS and timer output always clear */ | |||
799 | gt->ctl &= ~4; | |||
800 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |||
801 | timer_del(cpu->gt_timer[timeridx]); | |||
802 | } | |||
803 | } | |||
804 | ||||
805 | static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
806 | uint64_t *value) | |||
807 | { | |||
808 | /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |||
809 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |||
810 | return EXCP_UDEF1; | |||
811 | } | |||
812 | *value = env->cp15.c14_cntfrq; | |||
813 | return 0; | |||
814 | } | |||
815 | ||||
816 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |||
817 | { | |||
818 | ARMCPU *cpu = arm_env_get_cpu(env); | |||
819 | int timeridx = ri->opc1 & 1; | |||
820 | ||||
821 | timer_del(cpu->gt_timer[timeridx]); | |||
822 | } | |||
823 | ||||
824 | static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
825 | uint64_t *value) | |||
826 | { | |||
827 | int timeridx = ri->opc1 & 1; | |||
828 | ||||
829 | if (arm_current_pl(env) == 0 && | |||
830 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |||
831 | return EXCP_UDEF1; | |||
832 | } | |||
833 | *value = gt_get_countervalue(env); | |||
834 | return 0; | |||
835 | } | |||
836 | ||||
837 | static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
838 | uint64_t *value) | |||
839 | { | |||
840 | int timeridx = ri->opc1 & 1; | |||
841 | ||||
842 | if (arm_current_pl(env) == 0 && | |||
843 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |||
844 | return EXCP_UDEF1; | |||
845 | } | |||
846 | *value = env->cp15.c14_timer[timeridx].cval; | |||
847 | return 0; | |||
848 | } | |||
849 | ||||
850 | static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
851 | uint64_t value) | |||
852 | { | |||
853 | int timeridx = ri->opc1 & 1; | |||
854 | ||||
855 | env->cp15.c14_timer[timeridx].cval = value; | |||
856 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |||
857 | return 0; | |||
858 | } | |||
859 | static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
860 | uint64_t *value) | |||
861 | { | |||
862 | int timeridx = ri->crm & 1; | |||
863 | ||||
864 | if (arm_current_pl(env) == 0 && | |||
865 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |||
866 | return EXCP_UDEF1; | |||
867 | } | |||
868 | *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval - | |||
869 | gt_get_countervalue(env)); | |||
870 | return 0; | |||
871 | } | |||
872 | ||||
873 | static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
874 | uint64_t value) | |||
875 | { | |||
876 | int timeridx = ri->crm & 1; | |||
877 | ||||
878 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |||
879 | + sextract64(value, 0, 32); | |||
880 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |||
881 | return 0; | |||
882 | } | |||
883 | ||||
884 | static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
885 | uint64_t *value) | |||
886 | { | |||
887 | int timeridx = ri->crm & 1; | |||
888 | ||||
889 | if (arm_current_pl(env) == 0 && | |||
890 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |||
891 | return EXCP_UDEF1; | |||
892 | } | |||
893 | *value = env->cp15.c14_timer[timeridx].ctl; | |||
894 | return 0; | |||
895 | } | |||
896 | ||||
897 | static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
898 | uint64_t value) | |||
899 | { | |||
900 | ARMCPU *cpu = arm_env_get_cpu(env); | |||
901 | int timeridx = ri->crm & 1; | |||
902 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |||
903 | ||||
904 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |||
905 | if ((oldval ^ value) & 1) { | |||
906 | /* Enable toggled */ | |||
907 | gt_recalc_timer(cpu, timeridx); | |||
908 | } else if ((oldval & value) & 2) { | |||
909 | /* IMASK toggled: don't need to recalculate, | |||
910 | * just set the interrupt line based on ISTATUS | |||
911 | */ | |||
912 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |||
913 | (oldval & 4) && (value & 2)); | |||
914 | } | |||
915 | return 0; | |||
916 | } | |||
917 | ||||
918 | void arm_gt_ptimer_cb(void *opaque) | |||
919 | { | |||
920 | ARMCPU *cpu = opaque; | |||
921 | ||||
922 | gt_recalc_timer(cpu, GTIMER_PHYS0); | |||
923 | } | |||
924 | ||||
925 | void arm_gt_vtimer_cb(void *opaque) | |||
926 | { | |||
927 | ARMCPU *cpu = opaque; | |||
928 | ||||
929 | gt_recalc_timer(cpu, GTIMER_VIRT1); | |||
930 | } | |||
931 | ||||
932 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |||
933 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |||
934 | * of software; writing it doesn't actually change the timer frequency. | |||
935 | * Our reset value matches the fixed frequency we implement the timer at. | |||
936 | */ | |||
937 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
938 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
939 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq)__builtin_offsetof(CPUARMState, cp15.c14_cntfrq), | |||
940 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE16, | |||
941 | .readfn = gt_cntfrq_read, .raw_readfn = raw_read, | |||
942 | }, | |||
943 | /* overall control: mostly access permissions */ | |||
944 | { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0, | |||
945 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
946 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl)__builtin_offsetof(CPUARMState, cp15.c14_cntkctl), | |||
947 | .resetvalue = 0, | |||
948 | }, | |||
949 | /* per-timer control */ | |||
950 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |||
951 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
952 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].ctl), | |||
953 | .resetvalue = 0, | |||
954 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, | |||
955 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
956 | }, | |||
957 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |||
958 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
959 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].ctl), | |||
960 | .resetvalue = 0, | |||
961 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, | |||
962 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
963 | }, | |||
964 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |||
965 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |||
966 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
967 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |||
968 | }, | |||
969 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, | |||
970 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
971 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |||
972 | }, | |||
973 | /* The counter itself */ | |||
974 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |||
975 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, | |||
976 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |||
977 | }, | |||
978 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |||
979 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, | |||
980 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |||
981 | }, | |||
982 | /* Comparison value, indicating when the timer goes off */ | |||
983 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |||
984 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
985 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, | |||
986 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].cval), | |||
987 | .resetvalue = 0, | |||
988 | .readfn = gt_cval_read, .writefn = gt_cval_write, | |||
989 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
990 | }, | |||
991 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |||
992 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), | |||
993 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, | |||
994 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].cval), | |||
995 | .resetvalue = 0, | |||
996 | .readfn = gt_cval_read, .writefn = gt_cval_write, | |||
997 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
998 | }, | |||
999 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1000 | }; | |||
1001 | ||||
1002 | #else | |||
1003 | /* In user-mode none of the generic timer registers are accessible, | |||
1004 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, | |||
1005 | * so instead just don't register any of them. | |||
1006 | */ | |||
1007 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |||
1008 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1009 | }; | |||
1010 | ||||
1011 | #endif | |||
1012 | ||||
1013 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
1014 | { | |||
1015 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |||
1016 | env->cp15.c7_par = value; | |||
1017 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |||
1018 | env->cp15.c7_par = value & 0xfffff6ff; | |||
1019 | } else { | |||
1020 | env->cp15.c7_par = value & 0xfffff1ff; | |||
1021 | } | |||
1022 | return 0; | |||
1023 | } | |||
1024 | ||||
1025 | #ifndef CONFIG_USER_ONLY | |||
1026 | /* get_phys_addr() isn't present for user-mode-only targets */ | |||
1027 | ||||
1028 | /* Return true if extended addresses are enabled, ie this is an | |||
1029 | * LPAE implementation and we are using the long-descriptor translation | |||
1030 | * table format because the TTBCR EAE bit is set. | |||
1031 | */ | |||
1032 | static inline bool_Bool extended_addresses_enabled(CPUARMState *env) | |||
1033 | { | |||
1034 | return arm_feature(env, ARM_FEATURE_LPAE) | |||
1035 | && (env->cp15.c2_control & (1U << 31)); | |||
1036 | } | |||
1037 | ||||
1038 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
1039 | { | |||
1040 | hwaddr phys_addr; | |||
1041 | target_ulong page_size; | |||
1042 | int prot; | |||
1043 | int ret, is_user = ri->opc2 & 2; | |||
1044 | int access_type = ri->opc2 & 1; | |||
1045 | ||||
1046 | if (ri->opc2 & 4) { | |||
1047 | /* Other states are only available with TrustZone */ | |||
1048 | return EXCP_UDEF1; | |||
1049 | } | |||
1050 | ret = get_phys_addr(env, value, access_type, is_user, | |||
1051 | &phys_addr, &prot, &page_size); | |||
1052 | if (extended_addresses_enabled(env)) { | |||
1053 | /* ret is a DFSR/IFSR value for the long descriptor | |||
1054 | * translation table format, but with WnR always clear. | |||
1055 | * Convert it to a 64-bit PAR. | |||
1056 | */ | |||
1057 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |||
1058 | if (ret == 0) { | |||
1059 | par64 |= phys_addr & ~0xfffULL; | |||
1060 | /* We don't set the ATTR or SH fields in the PAR. */ | |||
1061 | } else { | |||
1062 | par64 |= 1; /* F */ | |||
1063 | par64 |= (ret & 0x3f) << 1; /* FS */ | |||
1064 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |||
1065 | * implement virtualization and therefore there can't be a stage 2 | |||
1066 | * fault. | |||
1067 | */ | |||
1068 | } | |||
1069 | env->cp15.c7_par = par64; | |||
1070 | env->cp15.c7_par_hi = par64 >> 32; | |||
1071 | } else { | |||
1072 | /* ret is a DFSR/IFSR value for the short descriptor | |||
1073 | * translation table format (with WnR always clear). | |||
1074 | * Convert it to a 32-bit PAR. | |||
1075 | */ | |||
1076 | if (ret == 0) { | |||
1077 | /* We do not set any attribute bits in the PAR */ | |||
1078 | if (page_size == (1 << 24) | |||
1079 | && arm_feature(env, ARM_FEATURE_V7)) { | |||
1080 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |||
1081 | } else { | |||
1082 | env->cp15.c7_par = phys_addr & 0xfffff000; | |||
1083 | } | |||
1084 | } else { | |||
1085 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | | |||
1086 | ((ret & (12 << 1)) >> 6) | | |||
1087 | ((ret & 0xf) << 1) | 1; | |||
1088 | } | |||
1089 | env->cp15.c7_par_hi = 0; | |||
1090 | } | |||
1091 | return 0; | |||
1092 | } | |||
1093 | #endif | |||
1094 | ||||
1095 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |||
1096 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |||
1097 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, | |||
1098 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par)__builtin_offsetof(CPUARMState, cp15.c7_par), | |||
1099 | .writefn = par_write }, | |||
1100 | #ifndef CONFIG_USER_ONLY | |||
1101 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1102 | .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = ats_write, .type = ARM_CP_NO_MIGRATE32 }, | |||
1103 | #endif | |||
1104 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1105 | }; | |||
1106 | ||||
1107 | /* Return basic MPU access permission bits. */ | |||
1108 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |||
1109 | { | |||
1110 | uint32_t ret; | |||
1111 | uint32_t mask; | |||
1112 | int i; | |||
1113 | ret = 0; | |||
1114 | mask = 3; | |||
1115 | for (i = 0; i < 16; i += 2) { | |||
1116 | ret |= (val >> i) & mask; | |||
1117 | mask <<= 2; | |||
1118 | } | |||
1119 | return ret; | |||
1120 | } | |||
1121 | ||||
1122 | /* Pad basic MPU access permission bits to extended format. */ | |||
1123 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |||
1124 | { | |||
1125 | uint32_t ret; | |||
1126 | uint32_t mask; | |||
1127 | int i; | |||
1128 | ret = 0; | |||
1129 | mask = 3; | |||
1130 | for (i = 0; i < 16; i += 2) { | |||
1131 | ret |= (val & mask) << i; | |||
1132 | mask <<= 2; | |||
1133 | } | |||
1134 | return ret; | |||
1135 | } | |||
1136 | ||||
1137 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1138 | uint64_t value) | |||
1139 | { | |||
1140 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |||
1141 | return 0; | |||
1142 | } | |||
1143 | ||||
1144 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1145 | uint64_t *value) | |||
1146 | { | |||
1147 | *value = simple_mpu_ap_bits(env->cp15.c5_data); | |||
1148 | return 0; | |||
1149 | } | |||
1150 | ||||
1151 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1152 | uint64_t value) | |||
1153 | { | |||
1154 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |||
1155 | return 0; | |||
1156 | } | |||
1157 | ||||
1158 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1159 | uint64_t *value) | |||
1160 | { | |||
1161 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); | |||
1162 | return 0; | |||
1163 | } | |||
1164 | ||||
1165 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1166 | uint64_t *value) | |||
1167 | { | |||
1168 | if (ri->crm >= 8) { | |||
1169 | return EXCP_UDEF1; | |||
1170 | } | |||
1171 | *value = env->cp15.c6_region[ri->crm]; | |||
1172 | return 0; | |||
1173 | } | |||
1174 | ||||
1175 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1176 | uint64_t value) | |||
1177 | { | |||
1178 | if (ri->crm >= 8) { | |||
1179 | return EXCP_UDEF1; | |||
1180 | } | |||
1181 | env->cp15.c6_region[ri->crm] = value; | |||
1182 | return 0; | |||
1183 | } | |||
1184 | ||||
1185 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |||
1186 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1187 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, | |||
1188 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, | |||
1189 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |||
1190 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1191 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, | |||
1192 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, | |||
1193 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |||
1194 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
1195 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1196 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |||
1197 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |||
1198 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1199 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |||
1200 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1201 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1202 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data)__builtin_offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |||
1203 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1204 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1205 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn)__builtin_offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |||
1206 | /* Protection region base and size registers */ | |||
1207 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY0xff, .opc1 = 0, | |||
1208 | .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1209 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, | |||
1210 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1211 | }; | |||
1212 | ||||
1213 | static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1214 | uint64_t value) | |||
1215 | { | |||
1216 | int maskshift = extract32(value, 0, 3); | |||
1217 | ||||
1218 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { | |||
1219 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |||
1220 | } else { | |||
1221 | value &= 7; | |||
1222 | } | |||
1223 | /* Note that we always calculate c2_mask and c2_base_mask, but | |||
1224 | * they are only used for short-descriptor tables (ie if EAE is 0); | |||
1225 | * for long-descriptor tables the TTBCR fields are used differently | |||
1226 | * and the c2_mask and c2_base_mask values are meaningless. | |||
1227 | */ | |||
1228 | env->cp15.c2_control = value; | |||
1229 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |||
1230 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |||
1231 | return 0; | |||
1232 | } | |||
1233 | ||||
1234 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1235 | uint64_t value) | |||
1236 | { | |||
1237 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |||
1238 | /* With LPAE the TTBCR could result in a change of ASID | |||
1239 | * via the TTBCR.A1 bit, so do a TLB flush. | |||
1240 | */ | |||
1241 | tlb_flush(env, 1); | |||
1242 | } | |||
1243 | return vmsa_ttbcr_raw_write(env, ri, value); | |||
1244 | } | |||
1245 | ||||
1246 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |||
1247 | { | |||
1248 | env->cp15.c2_base_mask = 0xffffc000u; | |||
1249 | env->cp15.c2_control = 0; | |||
1250 | env->cp15.c2_mask = 0; | |||
1251 | } | |||
1252 | ||||
1253 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |||
1254 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1255 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1256 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |||
1257 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1258 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1259 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |||
1260 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1261 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1262 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0)__builtin_offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, | |||
1263 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1264 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1265 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1)__builtin_offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, | |||
1266 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
1267 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vmsa_ttbcr_write, | |||
1268 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, | |||
1269 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control)__builtin_offsetof(CPUARMState, cp15.c2_control) }, | |||
1270 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1271 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_data)__builtin_offsetof(CPUARMState, cp15.c6_data), | |||
1272 | .resetvalue = 0, }, | |||
1273 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1274 | }; | |||
1275 | ||||
1276 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1277 | uint64_t value) | |||
1278 | { | |||
1279 | env->cp15.c15_ticonfig = value & 0xe7; | |||
1280 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |||
1281 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |||
1282 | ARM_CPUID_TI915T0x54029152 : ARM_CPUID_TI925T0x54029252; | |||
1283 | return 0; | |||
1284 | } | |||
1285 | ||||
1286 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1287 | uint64_t value) | |||
1288 | { | |||
1289 | env->cp15.c15_threadid = value & 0xffff; | |||
1290 | return 0; | |||
1291 | } | |||
1292 | ||||
1293 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1294 | uint64_t value) | |||
1295 | { | |||
1296 | /* Wait-for-interrupt (deprecated) */ | |||
1297 | cpu_interrupt(CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1297, __func__)), CPU_INTERRUPT_HALT0x0020); | |||
1298 | return 0; | |||
1299 | } | |||
1300 | ||||
1301 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1302 | uint64_t value) | |||
1303 | { | |||
1304 | /* On OMAP there are registers indicating the max/min index of dcache lines | |||
1305 | * containing a dirty line; cache flush operations have to reset these. | |||
1306 | */ | |||
1307 | env->cp15.c15_i_max = 0x000; | |||
1308 | env->cp15.c15_i_min = 0xff0; | |||
1309 | return 0; | |||
1310 | } | |||
1311 | ||||
1312 | static const ARMCPRegInfo omap_cp_reginfo[] = { | |||
1313 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY0xff, | |||
1314 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_OVERRIDE16, | |||
1315 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |||
1316 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1317 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, | |||
1318 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |||
1319 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1320 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig)__builtin_offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |||
1321 | .writefn = omap_ticonfig_write }, | |||
1322 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |||
1323 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1324 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max)__builtin_offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |||
1325 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |||
1326 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0xff0, | |||
1327 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min)__builtin_offsetof(CPUARMState, cp15.c15_i_min) }, | |||
1328 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |||
1329 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1330 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid)__builtin_offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |||
1331 | .writefn = omap_threadid_write }, | |||
1332 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |||
1333 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1334 | .type = ARM_CP_NO_MIGRATE32, | |||
1335 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, | |||
1336 | /* TODO: Peripheral port remap register: | |||
1337 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |||
1338 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |||
1339 | * when MMU is off. | |||
1340 | */ | |||
1341 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, | |||
1342 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), | |||
1343 | .type = ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32, | |||
1344 | .writefn = omap_cachemaint_write }, | |||
1345 | { .name = "C9", .cp = 15, .crn = 9, | |||
1346 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1347 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, .resetvalue = 0 }, | |||
1348 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1349 | }; | |||
1350 | ||||
1351 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1352 | uint64_t value) | |||
1353 | { | |||
1354 | value &= 0x3fff; | |||
1355 | if (env->cp15.c15_cpar != value) { | |||
1356 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |||
1357 | tb_flush(env); | |||
1358 | env->cp15.c15_cpar = value; | |||
1359 | } | |||
1360 | return 0; | |||
1361 | } | |||
1362 | ||||
1363 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |||
1364 | { .name = "XSCALE_CPAR", | |||
1365 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1366 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar)__builtin_offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |||
1367 | .writefn = xscale_cpar_write, }, | |||
1368 | { .name = "XSCALE_AUXCR", | |||
1369 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1370 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr)__builtin_offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |||
1371 | .resetvalue = 0, }, | |||
1372 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1373 | }; | |||
1374 | ||||
1375 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |||
1376 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |||
1377 | * implementation of this implementation-defined space. | |||
1378 | * Ideally this should eventually disappear in favour of actually | |||
1379 | * implementing the correct behaviour for all cores. | |||
1380 | */ | |||
1381 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |||
1382 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, | |||
1383 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), | |||
1384 | .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32 | ARM_CP_OVERRIDE16, | |||
1385 | .resetvalue = 0 }, | |||
1386 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1387 | }; | |||
1388 | ||||
1389 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { | |||
1390 | /* Cache status: RAZ because we have no cache so it's always clean */ | |||
1391 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |||
1392 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, | |||
1393 | .resetvalue = 0 }, | |||
1394 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1395 | }; | |||
1396 | ||||
1397 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |||
1398 | /* We never have a a block transfer operation in progress */ | |||
1399 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |||
1400 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, | |||
1401 | .resetvalue = 0 }, | |||
1402 | /* The cache ops themselves: these all NOP for QEMU */ | |||
1403 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |||
1404 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1405 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |||
1406 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1407 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |||
1408 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1409 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |||
1410 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1411 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |||
1412 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1413 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |||
1414 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, | |||
1415 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1416 | }; | |||
1417 | ||||
1418 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |||
1419 | /* The cache test-and-clean instructions always return (1 << 30) | |||
1420 | * to indicate that there are no dirty cache lines. | |||
1421 | */ | |||
1422 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |||
1423 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, | |||
1424 | .resetvalue = (1 << 30) }, | |||
1425 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, | |||
1426 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, | |||
1427 | .resetvalue = (1 << 30) }, | |||
1428 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1429 | }; | |||
1430 | ||||
1431 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { | |||
1432 | /* Ignore ReadBuffer accesses */ | |||
1433 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |||
1434 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, | |||
1435 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, | |||
1436 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32 }, | |||
1437 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1438 | }; | |||
1439 | ||||
1440 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1441 | uint64_t *value) | |||
1442 | { | |||
1443 | CPUState *cs = CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1443, __func__)); | |||
1444 | uint32_t mpidr = cs->cpu_index; | |||
1445 | /* We don't support setting cluster ID ([8..11]) | |||
1446 | * so these bits always RAZ. | |||
1447 | */ | |||
1448 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |||
1449 | mpidr |= (1U << 31); | |||
1450 | /* Cores which are uniprocessor (non-coherent) | |||
1451 | * but still implement the MP extensions set | |||
1452 | * bit 30. (For instance, A9UP.) However we do | |||
1453 | * not currently model any of those cores. | |||
1454 | */ | |||
1455 | } | |||
1456 | *value = mpidr; | |||
1457 | return 0; | |||
1458 | } | |||
1459 | ||||
1460 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |||
1461 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |||
1462 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE32 }, | |||
1463 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1464 | }; | |||
1465 | ||||
1466 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) | |||
1467 | { | |||
1468 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; | |||
1469 | return 0; | |||
1470 | } | |||
1471 | ||||
1472 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
1473 | { | |||
1474 | env->cp15.c7_par_hi = value >> 32; | |||
1475 | env->cp15.c7_par = value; | |||
1476 | return 0; | |||
1477 | } | |||
1478 | ||||
1479 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |||
1480 | { | |||
1481 | env->cp15.c7_par_hi = 0; | |||
1482 | env->cp15.c7_par = 0; | |||
1483 | } | |||
1484 | ||||
1485 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1486 | uint64_t *value) | |||
1487 | { | |||
1488 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |||
1489 | return 0; | |||
1490 | } | |||
1491 | ||||
1492 | static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1493 | uint64_t value) | |||
1494 | { | |||
1495 | env->cp15.c2_base0_hi = value >> 32; | |||
1496 | env->cp15.c2_base0 = value; | |||
1497 | return 0; | |||
1498 | } | |||
1499 | ||||
1500 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1501 | uint64_t value) | |||
1502 | { | |||
1503 | /* Writes to the 64 bit format TTBRs may change the ASID */ | |||
1504 | tlb_flush(env, 1); | |||
1505 | return ttbr064_raw_write(env, ri, value); | |||
1506 | } | |||
1507 | ||||
1508 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |||
1509 | { | |||
1510 | env->cp15.c2_base0_hi = 0; | |||
1511 | env->cp15.c2_base0 = 0; | |||
1512 | } | |||
1513 | ||||
1514 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1515 | uint64_t *value) | |||
1516 | { | |||
1517 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |||
1518 | return 0; | |||
1519 | } | |||
1520 | ||||
1521 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1522 | uint64_t value) | |||
1523 | { | |||
1524 | env->cp15.c2_base1_hi = value >> 32; | |||
1525 | env->cp15.c2_base1 = value; | |||
1526 | return 0; | |||
1527 | } | |||
1528 | ||||
1529 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |||
1530 | { | |||
1531 | env->cp15.c2_base1_hi = 0; | |||
1532 | env->cp15.c2_base1 = 0; | |||
1533 | } | |||
1534 | ||||
1535 | static const ARMCPRegInfo lpae_cp_reginfo[] = { | |||
1536 | /* NOP AMAIR0/1: the override is because these clash with the rather | |||
1537 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. | |||
1538 | */ | |||
1539 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |||
1540 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, | |||
1541 | .resetvalue = 0 }, | |||
1542 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | |||
1543 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, | |||
1544 | .resetvalue = 0 }, | |||
1545 | /* 64 bit access versions of the (dummy) debug registers */ | |||
1546 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |||
1547 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, | |||
1548 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |||
1549 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, | |||
1550 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, | |||
1551 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, | |||
1552 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |||
1553 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |||
1554 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr064_read, | |||
1555 | .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, | |||
1556 | .resetfn = ttbr064_reset }, | |||
1557 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, | |||
1558 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr164_read, | |||
1559 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, | |||
1560 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1561 | }; | |||
1562 | ||||
1563 | static int aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1564 | uint64_t *value) | |||
1565 | { | |||
1566 | *value = vfp_get_fpcr(env); | |||
1567 | return 0; | |||
1568 | } | |||
1569 | ||||
1570 | static int aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1571 | uint64_t value) | |||
1572 | { | |||
1573 | vfp_set_fpcr(env, value); | |||
1574 | return 0; | |||
1575 | } | |||
1576 | ||||
1577 | static int aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1578 | uint64_t *value) | |||
1579 | { | |||
1580 | *value = vfp_get_fpsr(env); | |||
1581 | return 0; | |||
1582 | } | |||
1583 | ||||
1584 | static int aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |||
1585 | uint64_t value) | |||
1586 | { | |||
1587 | vfp_set_fpsr(env, value); | |||
1588 | return 0; | |||
1589 | } | |||
1590 | ||||
1591 | static const ARMCPRegInfo v8_cp_reginfo[] = { | |||
1592 | /* Minimal set of EL0-visible registers. This will need to be expanded | |||
1593 | * significantly for system emulation of AArch64 CPUs. | |||
1594 | */ | |||
1595 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |||
1596 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |||
1597 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_NZCV(1 | (3 << 8)) }, | |||
1598 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, | |||
1599 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |||
1600 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |||
1601 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |||
1602 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |||
1603 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |||
1604 | /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache. | |||
1605 | * It will eventually need to have a CPU-specified reset value. | |||
1606 | */ | |||
1607 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |||
1608 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |||
1609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, | |||
1610 | .resetvalue = 0x80030003 }, | |||
1611 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. | |||
1612 | * For system mode the DZP bit here will need to be computed, not constant. | |||
1613 | */ | |||
1614 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, | |||
1615 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |||
1616 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, | |||
1617 | .resetvalue = 0x10 }, | |||
1618 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1619 | }; | |||
1620 | ||||
1621 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |||
1622 | { | |||
1623 | env->cp15.c1_sys = value; | |||
1624 | /* ??? Lots of these bits are not implemented. */ | |||
1625 | /* This may enable/disable the MMU, so do a TLB flush. */ | |||
1626 | tlb_flush(env, 1); | |||
1627 | return 0; | |||
1628 | } | |||
1629 | ||||
1630 | void register_cp_regs_for_features(ARMCPU *cpu) | |||
1631 | { | |||
1632 | /* Register all the coprocessor registers based on feature bits */ | |||
1633 | CPUARMState *env = &cpu->env; | |||
1634 | if (arm_feature(env, ARM_FEATURE_M)) { | |||
1635 | /* M profile has no coprocessor registers */ | |||
1636 | return; | |||
1637 | } | |||
1638 | ||||
1639 | define_arm_cp_regs(cpu, cp_reginfo); | |||
1640 | if (arm_feature(env, ARM_FEATURE_V6)) { | |||
1641 | /* The ID registers all have impdef reset values */ | |||
1642 | ARMCPRegInfo v6_idregs[] = { | |||
1643 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |||
1644 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1645 | .resetvalue = cpu->id_pfr0 }, | |||
1646 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |||
1647 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1648 | .resetvalue = cpu->id_pfr1 }, | |||
1649 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |||
1650 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1651 | .resetvalue = cpu->id_dfr0 }, | |||
1652 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |||
1653 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1654 | .resetvalue = cpu->id_afr0 }, | |||
1655 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |||
1656 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1657 | .resetvalue = cpu->id_mmfr0 }, | |||
1658 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |||
1659 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1660 | .resetvalue = cpu->id_mmfr1 }, | |||
1661 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |||
1662 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1663 | .resetvalue = cpu->id_mmfr2 }, | |||
1664 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |||
1665 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1666 | .resetvalue = cpu->id_mmfr3 }, | |||
1667 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |||
1668 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1669 | .resetvalue = cpu->id_isar0 }, | |||
1670 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |||
1671 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1672 | .resetvalue = cpu->id_isar1 }, | |||
1673 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |||
1674 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1675 | .resetvalue = cpu->id_isar2 }, | |||
1676 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |||
1677 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1678 | .resetvalue = cpu->id_isar3 }, | |||
1679 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |||
1680 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1681 | .resetvalue = cpu->id_isar4 }, | |||
1682 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |||
1683 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1684 | .resetvalue = cpu->id_isar5 }, | |||
1685 | /* 6..7 are as yet unallocated and must RAZ */ | |||
1686 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |||
1687 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1688 | .resetvalue = 0 }, | |||
1689 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |||
1690 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, | |||
1691 | .resetvalue = 0 }, | |||
1692 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1693 | }; | |||
1694 | define_arm_cp_regs(cpu, v6_idregs); | |||
1695 | define_arm_cp_regs(cpu, v6_cp_reginfo); | |||
1696 | } else { | |||
1697 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |||
1698 | } | |||
1699 | if (arm_feature(env, ARM_FEATURE_V6K)) { | |||
1700 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |||
1701 | } | |||
1702 | if (arm_feature(env, ARM_FEATURE_V7)) { | |||
1703 | /* v7 performance monitor control register: same implementor | |||
1704 | * field as main ID register, and we implement no event counters. | |||
1705 | */ | |||
1706 | ARMCPRegInfo pmcr = { | |||
1707 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |||
1708 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = cpu->midr & 0xff000000, | |||
1709 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr)__builtin_offsetof(CPUARMState, cp15.c9_pmcr), | |||
1710 | .readfn = pmreg_read, .writefn = pmcr_write, | |||
1711 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |||
1712 | }; | |||
1713 | ARMCPRegInfo clidr = { | |||
1714 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |||
1715 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->clidr | |||
1716 | }; | |||
1717 | define_one_arm_cp_reg(cpu, &pmcr); | |||
1718 | define_one_arm_cp_reg(cpu, &clidr); | |||
1719 | define_arm_cp_regs(cpu, v7_cp_reginfo); | |||
1720 | } else { | |||
1721 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |||
1722 | } | |||
1723 | if (arm_feature(env, ARM_FEATURE_V8)) { | |||
1724 | define_arm_cp_regs(cpu, v8_cp_reginfo); | |||
1725 | } | |||
1726 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |||
1727 | /* These are the MPU registers prior to PMSAv6. Any new | |||
1728 | * PMSA core later than the ARM946 will require that we | |||
1729 | * implement the PMSAv6 or PMSAv7 registers, which are | |||
1730 | * completely different. | |||
1731 | */ | |||
1732 | assert(!arm_feature(env, ARM_FEATURE_V6))((!arm_feature(env, ARM_FEATURE_V6)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_V6)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1732, __PRETTY_FUNCTION__)); | |||
1733 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |||
1734 | } else { | |||
1735 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |||
1736 | } | |||
1737 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { | |||
1738 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |||
1739 | } | |||
1740 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { | |||
1741 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |||
1742 | } | |||
1743 | if (arm_feature(env, ARM_FEATURE_VAPA)) { | |||
1744 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |||
1745 | } | |||
1746 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { | |||
1747 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |||
1748 | } | |||
1749 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |||
1750 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |||
1751 | } | |||
1752 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |||
1753 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |||
1754 | } | |||
1755 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { | |||
1756 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |||
1757 | } | |||
1758 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { | |||
1759 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |||
1760 | } | |||
1761 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |||
1762 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |||
1763 | } | |||
1764 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |||
1765 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |||
1766 | } | |||
1767 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |||
1768 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |||
1769 | } | |||
1770 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of | |||
1771 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |||
1772 | * be read-only (ie write causes UNDEF exception). | |||
1773 | */ | |||
1774 | { | |||
1775 | ARMCPRegInfo id_cp_reginfo[] = { | |||
1776 | /* Note that the MIDR isn't a simple constant register because | |||
1777 | * of the TI925 behaviour where writes to another register can | |||
1778 | * cause the MIDR value to change. | |||
1779 | * | |||
1780 | * Unimplemented registers in the c15 0 0 0 space default to | |||
1781 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |||
1782 | * and friends override accordingly. | |||
1783 | */ | |||
1784 | { .name = "MIDR", | |||
1785 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1786 | .access = PL1_R(0x08 | (0x20 | 0x80)), .resetvalue = cpu->midr, | |||
1787 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, | |||
1788 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid)__builtin_offsetof(CPUARMState, cp15.c0_cpuid), | |||
1789 | .type = ARM_CP_OVERRIDE16 }, | |||
1790 | { .name = "CTR", | |||
1791 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1792 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->ctr }, | |||
1793 | { .name = "TCMTR", | |||
1794 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |||
1795 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1796 | { .name = "TLBTR", | |||
1797 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |||
1798 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1799 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |||
1800 | { .name = "DUMMY", | |||
1801 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1802 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1803 | { .name = "DUMMY", | |||
1804 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1805 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1806 | { .name = "DUMMY", | |||
1807 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1808 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1809 | { .name = "DUMMY", | |||
1810 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1811 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1812 | { .name = "DUMMY", | |||
1813 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY0xff, | |||
1814 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, | |||
1815 | REGINFO_SENTINEL{ .type = 0xffff } | |||
1816 | }; | |||
1817 | ARMCPRegInfo crn0_wi_reginfo = { | |||
1818 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY0xff, | |||
1819 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), | |||
1820 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 | |||
1821 | }; | |||
1822 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |||
1823 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |||
1824 | ARMCPRegInfo *r; | |||
1825 | /* Register the blanket "writes ignored" value first to cover the | |||
1826 | * whole space. Then update the specific ID registers to allow write | |||
1827 | * access, so that they ignore writes rather than causing them to | |||
1828 | * UNDEF. | |||
1829 | */ | |||
1830 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |||
1831 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL0xffff; r++) { | |||
1832 | r->access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); | |||
1833 | } | |||
1834 | } | |||
1835 | define_arm_cp_regs(cpu, id_cp_reginfo); | |||
1836 | } | |||
1837 | ||||
1838 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { | |||
1839 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |||
1840 | } | |||
1841 | ||||
1842 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { | |||
1843 | ARMCPRegInfo auxcr = { | |||
1844 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |||
1845 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, | |||
1846 | .resetvalue = cpu->reset_auxcr | |||
1847 | }; | |||
1848 | define_one_arm_cp_reg(cpu, &auxcr); | |||
1849 | } | |||
1850 | ||||
1851 | if (arm_feature(env, ARM_FEATURE_CBAR)) { | |||
1852 | ARMCPRegInfo cbar = { | |||
1853 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |||
1854 | .access = PL1_R(0x08 | (0x20 | 0x80))|PL3_W0x40, .resetvalue = cpu->reset_cbar, | |||
1855 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)__builtin_offsetof(CPUARMState, cp15.c15_config_base_address) | |||
1856 | }; | |||
1857 | define_one_arm_cp_reg(cpu, &cbar); | |||
1858 | } | |||
1859 | ||||
1860 | /* Generic registers whose values depend on the implementation */ | |||
1861 | { | |||
1862 | ARMCPRegInfo sctlr = { | |||
1863 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |||
1864 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_sys)__builtin_offsetof(CPUARMState, cp15.c1_sys), | |||
1865 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, | |||
1866 | .raw_writefn = raw_write, | |||
1867 | }; | |||
1868 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |||
1869 | /* Normally we would always end the TB on an SCTLR write, but Linux | |||
1870 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |||
1871 | * an MMU enable to execute from cache. Imitate this behaviour. | |||
1872 | */ | |||
1873 | sctlr.type |= ARM_CP_SUPPRESS_TB_END8; | |||
1874 | } | |||
1875 | define_one_arm_cp_reg(cpu, &sctlr); | |||
1876 | } | |||
1877 | } | |||
1878 | ||||
1879 | ARMCPU *cpu_arm_init(const char *cpu_model) | |||
1880 | { | |||
1881 | ARMCPU *cpu; | |||
1882 | ObjectClass *oc; | |||
1883 | ||||
1884 | oc = cpu_class_by_name(TYPE_ARM_CPU"arm-cpu", cpu_model); | |||
1885 | if (!oc) { | |||
1886 | return NULL((void*)0); | |||
1887 | } | |||
1888 | cpu = ARM_CPU(object_new(object_class_get_name(oc)))((ARMCPU *)object_dynamic_cast_assert(((Object *)((object_new (object_class_get_name(oc))))), ("arm-cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1888, __func__)); | |||
1889 | ||||
1890 | /* TODO this should be set centrally, once possible */ | |||
1891 | object_property_set_bool(OBJECT(cpu)((Object *)(cpu)), true1, "realized", NULL((void*)0)); | |||
1892 | ||||
1893 | return cpu; | |||
1894 | } | |||
1895 | ||||
1896 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |||
1897 | { | |||
1898 | CPUState *cs = CPU(cpu)((CPUState *)object_dynamic_cast_assert(((Object *)((cpu))), ( "cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1898, __func__)); | |||
1899 | CPUARMState *env = &cpu->env; | |||
1900 | ||||
1901 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |||
1902 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |||
1903 | aarch64_fpu_gdb_set_reg, | |||
1904 | 34, "aarch64-fpu.xml", 0); | |||
1905 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |||
1906 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |||
1907 | 51, "arm-neon.xml", 0); | |||
1908 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |||
1909 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |||
1910 | 35, "arm-vfp3.xml", 0); | |||
1911 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |||
1912 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |||
1913 | 19, "arm-vfp.xml", 0); | |||
1914 | } | |||
1915 | } | |||
1916 | ||||
1917 | /* Sort alphabetically by type name, except for "any". */ | |||
1918 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |||
1919 | { | |||
1920 | ObjectClass *class_a = (ObjectClass *)a; | |||
1921 | ObjectClass *class_b = (ObjectClass *)b; | |||
1922 | const char *name_a, *name_b; | |||
1923 | ||||
1924 | name_a = object_class_get_name(class_a); | |||
1925 | name_b = object_class_get_name(class_b); | |||
1926 | if (strcmp(name_a, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { | |||
1927 | return 1; | |||
1928 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { | |||
1929 | return -1; | |||
1930 | } else { | |||
1931 | return strcmp(name_a, name_b); | |||
1932 | } | |||
1933 | } | |||
1934 | ||||
1935 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) | |||
1936 | { | |||
1937 | ObjectClass *oc = data; | |||
1938 | CPUListState *s = user_data; | |||
1939 | const char *typename; | |||
1940 | char *name; | |||
1941 | ||||
1942 | typename = object_class_get_name(oc); | |||
1943 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); | |||
1944 | (*s->cpu_fprintf)(s->file, " %s\n", | |||
1945 | name); | |||
1946 | g_free(name); | |||
1947 | } | |||
1948 | ||||
1949 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |||
1950 | { | |||
1951 | CPUListState s = { | |||
1952 | .file = f, | |||
1953 | .cpu_fprintf = cpu_fprintf, | |||
1954 | }; | |||
1955 | GSList *list; | |||
1956 | ||||
1957 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); | |||
1958 | list = g_slist_sort(list, arm_cpu_list_compare); | |||
1959 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |||
1960 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |||
1961 | g_slist_free(list); | |||
1962 | #ifdef CONFIG_KVM | |||
1963 | /* The 'host' CPU type is dynamically registered only if KVM is | |||
1964 | * enabled, so we have to special-case it here: | |||
1965 | */ | |||
1966 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |||
1967 | #endif | |||
1968 | } | |||
1969 | ||||
1970 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) | |||
1971 | { | |||
1972 | ObjectClass *oc = data; | |||
1973 | CpuDefinitionInfoList **cpu_listarm_cpu_list = user_data; | |||
1974 | CpuDefinitionInfoList *entry; | |||
1975 | CpuDefinitionInfo *info; | |||
1976 | const char *typename; | |||
1977 | ||||
1978 | typename = object_class_get_name(oc); | |||
1979 | info = g_malloc0(sizeof(*info)); | |||
1980 | info->name = g_strndup(typename, | |||
1981 | strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); | |||
1982 | ||||
1983 | entry = g_malloc0(sizeof(*entry)); | |||
1984 | entry->value = info; | |||
1985 | entry->next = *cpu_listarm_cpu_list; | |||
1986 | *cpu_listarm_cpu_list = entry; | |||
1987 | } | |||
1988 | ||||
1989 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |||
1990 | { | |||
1991 | CpuDefinitionInfoList *cpu_listarm_cpu_list = NULL((void*)0); | |||
1992 | GSList *list; | |||
1993 | ||||
1994 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); | |||
1995 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_listarm_cpu_list); | |||
1996 | g_slist_free(list); | |||
1997 | ||||
1998 | return cpu_listarm_cpu_list; | |||
1999 | } | |||
2000 | ||||
2001 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, | |||
2002 | void *opaque, int state, | |||
2003 | int crm, int opc1, int opc2) | |||
2004 | { | |||
2005 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |||
2006 | * add a single reginfo struct to the hash table. | |||
2007 | */ | |||
2008 | uint32_t *key = g_new(uint32_t, 1)((uint32_t *) g_malloc_n ((1), sizeof (uint32_t))); | |||
2009 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |||
2010 | int is64 = (r->type & ARM_CP_64BIT4) ? 1 : 0; | |||
2011 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { | |||
2012 | /* The AArch32 view of a shared register sees the lower 32 bits | |||
2013 | * of a 64 bit backing field. It is not migratable as the AArch64 | |||
2014 | * view handles that. AArch64 also handles reset. | |||
2015 | * We assume it is a cp15 register. | |||
2016 | */ | |||
2017 | r2->cp = 15; | |||
2018 | r2->type |= ARM_CP_NO_MIGRATE32; | |||
2019 | r2->resetfn = arm_cp_reset_ignore; | |||
2020 | #ifdef HOST_WORDS_BIGENDIAN | |||
2021 | if (r2->fieldoffset) { | |||
2022 | r2->fieldoffset += sizeof(uint32_t); | |||
2023 | } | |||
2024 | #endif | |||
2025 | } | |||
2026 | if (state == ARM_CP_STATE_AA64) { | |||
2027 | /* To allow abbreviation of ARMCPRegInfo | |||
2028 | * definitions, we treat cp == 0 as equivalent to | |||
2029 | * the value for "standard guest-visible sysreg". | |||
2030 | */ | |||
2031 | if (r->cp == 0) { | |||
2032 | r2->cp = CP_REG_ARM64_SYSREG_CP((0x0013 << 16) >> 16); | |||
2033 | } | |||
2034 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)) | |||
2035 | r2->opc0, opc1, opc2)((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)); | |||
2036 | } else { | |||
2037 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2)(((r2->cp) << 16) | ((is64) << 15) | ((r2-> crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)); | |||
2038 | } | |||
2039 | if (opaque) { | |||
2040 | r2->opaque = opaque; | |||
2041 | } | |||
2042 | /* Make sure reginfo passed to helpers for wildcarded regs | |||
2043 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |||
2044 | */ | |||
2045 | r2->crm = crm; | |||
2046 | r2->opc1 = opc1; | |||
2047 | r2->opc2 = opc2; | |||
2048 | /* By convention, for wildcarded registers only the first | |||
2049 | * entry is used for migration; the others are marked as | |||
2050 | * NO_MIGRATE so we don't try to transfer the register | |||
2051 | * multiple times. Special registers (ie NOP/WFI) are | |||
2052 | * never migratable. | |||
2053 | */ | |||
2054 | if ((r->type & ARM_CP_SPECIAL1) || | |||
2055 | ((r->crm == CP_ANY0xff) && crm != 0) || | |||
2056 | ((r->opc1 == CP_ANY0xff) && opc1 != 0) || | |||
2057 | ((r->opc2 == CP_ANY0xff) && opc2 != 0)) { | |||
2058 | r2->type |= ARM_CP_NO_MIGRATE32; | |||
2059 | } | |||
2060 | ||||
2061 | /* Overriding of an existing definition must be explicitly | |||
2062 | * requested. | |||
2063 | */ | |||
2064 | if (!(r->type & ARM_CP_OVERRIDE16)) { | |||
2065 | ARMCPRegInfo *oldreg; | |||
2066 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |||
2067 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE16)) { | |||
2068 | fprintf(stderrstderr, "Register redefined: cp=%d %d bit " | |||
2069 | "crn=%d crm=%d opc1=%d opc2=%d, " | |||
2070 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |||
2071 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |||
2072 | oldreg->name, r2->name); | |||
2073 | g_assert_not_reached()do { g_assertion_message (((gchar*) 0), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2073, ((const char*) (__PRETTY_FUNCTION__)), ((void*)0)); } while (0); | |||
2074 | } | |||
2075 | } | |||
2076 | g_hash_table_insert(cpu->cp_regs, key, r2); | |||
2077 | } | |||
2078 | ||||
2079 | ||||
2080 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |||
2081 | const ARMCPRegInfo *r, void *opaque) | |||
2082 | { | |||
2083 | /* Define implementations of coprocessor registers. | |||
2084 | * We store these in a hashtable because typically | |||
2085 | * there are less than 150 registers in a space which | |||
2086 | * is 16*16*16*8*8 = 262144 in size. | |||
2087 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |||
2088 | * If a register is defined twice then the second definition is | |||
2089 | * used, so this can be used to define some generic registers and | |||
2090 | * then override them with implementation specific variations. | |||
2091 | * At least one of the original and the second definition should | |||
2092 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |||
2093 | * against accidental use. | |||
2094 | * | |||
2095 | * The state field defines whether the register is to be | |||
2096 | * visible in the AArch32 or AArch64 execution state. If the | |||
2097 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |||
2098 | * reginfo structure for the AArch32 view, which sees the lower | |||
2099 | * 32 bits of the 64 bit register. | |||
2100 | * | |||
2101 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |||
2102 | * be wildcarded. AArch64 registers are always considered to be 64 | |||
2103 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |||
2104 | * the register, if any. | |||
2105 | */ | |||
2106 | int crm, opc1, opc2, state; | |||
2107 | int crmmin = (r->crm == CP_ANY0xff) ? 0 : r->crm; | |||
2108 | int crmmax = (r->crm == CP_ANY0xff) ? 15 : r->crm; | |||
2109 | int opc1min = (r->opc1 == CP_ANY0xff) ? 0 : r->opc1; | |||
2110 | int opc1max = (r->opc1 == CP_ANY0xff) ? 7 : r->opc1; | |||
2111 | int opc2min = (r->opc2 == CP_ANY0xff) ? 0 : r->opc2; | |||
2112 | int opc2max = (r->opc2 == CP_ANY0xff) ? 7 : r->opc2; | |||
2113 | /* 64 bit registers have only CRm and Opc1 fields */ | |||
2114 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)))((!((r->type & 4) && (r->opc2 || r->crn) )) ? (void) (0) : __assert_fail ("!((r->type & 4) && (r->opc2 || r->crn))" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2114 , __PRETTY_FUNCTION__)); | |||
2115 | /* op0 only exists in the AArch64 encodings */ | |||
2116 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0))(((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)) ? ( void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2116 , __PRETTY_FUNCTION__)); | |||
2117 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |||
2118 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT))(((r->state != ARM_CP_STATE_AA64) || !(r->type & 4) ) ? (void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA64) || !(r->type & 4)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2118 , __PRETTY_FUNCTION__)); | |||
2119 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |||
2120 | * encodes a minimum access level for the register. We roll this | |||
2121 | * runtime check into our general permission check code, so check | |||
2122 | * here that the reginfo's specified permissions are strict enough | |||
2123 | * to encompass the generic architectural permission check. | |||
2124 | */ | |||
2125 | if (r->state != ARM_CP_STATE_AA32) { | |||
2126 | int mask = 0; | |||
2127 | switch (r->opc1) { | |||
2128 | case 0: case 1: case 2: | |||
2129 | /* min_EL EL1 */ | |||
2130 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); | |||
2131 | break; | |||
2132 | case 3: | |||
2133 | /* min_EL EL0 */ | |||
2134 | mask = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))); | |||
2135 | break; | |||
2136 | case 4: | |||
2137 | /* min_EL EL2 */ | |||
2138 | mask = PL2_RW((0x20 | 0x80) | (0x10 | 0x40)); | |||
2139 | break; | |||
2140 | case 5: | |||
2141 | /* unallocated encoding, so not possible */ | |||
2142 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2142, __PRETTY_FUNCTION__)); | |||
2143 | break; | |||
2144 | case 6: | |||
2145 | /* min_EL EL3 */ | |||
2146 | mask = PL3_RW(0x80 | 0x40); | |||
2147 | break; | |||
2148 | case 7: | |||
2149 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |||
2150 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); | |||
2151 | break; | |||
2152 | default: | |||
2153 | /* broken reginfo with out-of-range opc1 */ | |||
2154 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2154, __PRETTY_FUNCTION__)); | |||
2155 | break; | |||
2156 | } | |||
2157 | /* assert our permissions are not too lax (stricter is fine) */ | |||
2158 | assert((r->access & ~mask) == 0)(((r->access & ~mask) == 0) ? (void) (0) : __assert_fail ("(r->access & ~mask) == 0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2158, __PRETTY_FUNCTION__)); | |||
2159 | } | |||
2160 | ||||
2161 | /* Check that the register definition has enough info to handle | |||
2162 | * reads and writes if they are permitted. | |||
2163 | */ | |||
2164 | if (!(r->type & (ARM_CP_SPECIAL1|ARM_CP_CONST2))) { | |||
2165 | if (r->access & PL3_R0x80) { | |||
2166 | assert(r->fieldoffset || r->readfn)((r->fieldoffset || r->readfn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->readfn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2166, __PRETTY_FUNCTION__)); | |||
2167 | } | |||
2168 | if (r->access & PL3_W0x40) { | |||
2169 | assert(r->fieldoffset || r->writefn)((r->fieldoffset || r->writefn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->writefn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2169, __PRETTY_FUNCTION__)); | |||
2170 | } | |||
2171 | } | |||
2172 | /* Bad type field probably means missing sentinel at end of reg list */ | |||
2173 | assert(cptype_valid(r->type))((cptype_valid(r->type)) ? (void) (0) : __assert_fail ("cptype_valid(r->type)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2173 , __PRETTY_FUNCTION__)); | |||
2174 | for (crm = crmmin; crm <= crmmax; crm++) { | |||
2175 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |||
2176 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |||
2177 | for (state = ARM_CP_STATE_AA32; | |||
2178 | state <= ARM_CP_STATE_AA64; state++) { | |||
2179 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |||
2180 | continue; | |||
2181 | } | |||
2182 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |||
2183 | crm, opc1, opc2); | |||
2184 | } | |||
2185 | } | |||
2186 | } | |||
2187 | } | |||
2188 | } | |||
2189 | ||||
2190 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |||
2191 | const ARMCPRegInfo *regs, void *opaque) | |||
2192 | { | |||
2193 | /* Define a whole list of registers */ | |||
2194 | const ARMCPRegInfo *r; | |||
2195 | for (r = regs; r->type != ARM_CP_SENTINEL0xffff; r++) { | |||
2196 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |||
2197 | } | |||
2198 | } | |||
2199 | ||||
2200 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) | |||
2201 | { | |||
2202 | return g_hash_table_lookup(cpregs, &encoded_cp); | |||
2203 | } | |||
2204 | ||||
2205 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | |||
2206 | uint64_t value) | |||
2207 | { | |||
2208 | /* Helper coprocessor write function for write-ignore registers */ | |||
2209 | return 0; | |||
2210 | } | |||
2211 | ||||
2212 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) | |||
2213 | { | |||
2214 | /* Helper coprocessor write function for read-as-zero registers */ | |||
2215 | *value = 0; | |||
2216 | return 0; | |||
2217 | } | |||
2218 | ||||
2219 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) | |||
2220 | { | |||
2221 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |||
2222 | } | |||
2223 | ||||
2224 | static int bad_mode_switch(CPUARMState *env, int mode) | |||
2225 | { | |||
2226 | /* Return true if it is not valid for us to switch to | |||
2227 | * this CPU mode (ie all the UNPREDICTABLE cases in | |||
2228 | * the ARM ARM CPSRWriteByInstr pseudocode). | |||
2229 | */ | |||
2230 | switch (mode) { | |||
2231 | case ARM_CPU_MODE_USR: | |||
2232 | case ARM_CPU_MODE_SYS: | |||
2233 | case ARM_CPU_MODE_SVC: | |||
2234 | case ARM_CPU_MODE_ABT: | |||
2235 | case ARM_CPU_MODE_UND: | |||
2236 | case ARM_CPU_MODE_IRQ: | |||
2237 | case ARM_CPU_MODE_FIQ: | |||
2238 | return 0; | |||
2239 | default: | |||
2240 | return 1; | |||
2241 | } | |||
2242 | } | |||
2243 | ||||
2244 | uint32_t cpsr_read(CPUARMState *env) | |||
2245 | { | |||
2246 | int ZF; | |||
2247 | ZF = (env->ZF == 0); | |||
2248 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |||
2249 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | |||
2250 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |||
2251 | | ((env->condexec_bits & 0xfc) << 8) | |||
2252 | | (env->GE << 16); | |||
2253 | } | |||
2254 | ||||
2255 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |||
2256 | { | |||
2257 | if (mask & CPSR_NZCV((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))) { | |||
2258 | env->ZF = (~val) & CPSR_Z(1U << 30); | |||
2259 | env->NF = val; | |||
2260 | env->CF = (val >> 29) & 1; | |||
2261 | env->VF = (val << 3) & 0x80000000; | |||
2262 | } | |||
2263 | if (mask & CPSR_Q(1U << 27)) | |||
2264 | env->QF = ((val & CPSR_Q(1U << 27)) != 0); | |||
2265 | if (mask & CPSR_T(1U << 5)) | |||
2266 | env->thumb = ((val & CPSR_T(1U << 5)) != 0); | |||
2267 | if (mask & CPSR_IT_0_1(3U << 25)) { | |||
2268 | env->condexec_bits &= ~3; | |||
2269 | env->condexec_bits |= (val >> 25) & 3; | |||
2270 | } | |||
2271 | if (mask & CPSR_IT_2_7(0xfc00U)) { | |||
2272 | env->condexec_bits &= 3; | |||
2273 | env->condexec_bits |= (val >> 8) & 0xfc; | |||
2274 | } | |||
2275 | if (mask & CPSR_GE(0xfU << 16)) { | |||
2276 | env->GE = (val >> 16) & 0xf; | |||
2277 | } | |||
2278 | ||||
2279 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M(0x1fU)) { | |||
2280 | if (bad_mode_switch(env, val & CPSR_M(0x1fU))) { | |||
2281 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |||
2282 | * We choose to ignore the attempt and leave the CPSR M field | |||
2283 | * untouched. | |||
2284 | */ | |||
2285 | mask &= ~CPSR_M(0x1fU); | |||
2286 | } else { | |||
2287 | switch_mode(env, val & CPSR_M(0x1fU)); | |||
2288 | } | |||
2289 | } | |||
2290 | mask &= ~CACHED_CPSR_BITS((1U << 5) | (0xfU << 16) | ((3U << 25) | ( 0xfc00U)) | (1U << 27) | ((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))); | |||
2291 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |||
2292 | } | |||
2293 | ||||
2294 | /* Sign/zero extend */ | |||
2295 | uint32_t HELPER(sxtb16)helper_sxtb16(uint32_t x) | |||
2296 | { | |||
2297 | uint32_t res; | |||
2298 | res = (uint16_t)(int8_t)x; | |||
2299 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |||
2300 | return res; | |||
2301 | } | |||
2302 | ||||
2303 | uint32_t HELPER(uxtb16)helper_uxtb16(uint32_t x) | |||
2304 | { | |||
2305 | uint32_t res; | |||
2306 | res = (uint16_t)(uint8_t)x; | |||
2307 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |||
2308 | return res; | |||
2309 | } | |||
2310 | ||||
2311 | uint32_t HELPER(clz)helper_clz(uint32_t x) | |||
2312 | { | |||
2313 | return clz32(x); | |||
2314 | } | |||
2315 | ||||
2316 | int32_t HELPER(sdiv)helper_sdiv(int32_t num, int32_t den) | |||
2317 | { | |||
2318 | if (den == 0) | |||
2319 | return 0; | |||
2320 | if (num == INT_MIN(-2147483647 -1) && den == -1) | |||
2321 | return INT_MIN(-2147483647 -1); | |||
2322 | return num / den; | |||
2323 | } | |||
2324 | ||||
2325 | uint32_t HELPER(udiv)helper_udiv(uint32_t num, uint32_t den) | |||
2326 | { | |||
2327 | if (den == 0) | |||
2328 | return 0; | |||
2329 | return num / den; | |||
2330 | } | |||
2331 | ||||
2332 | uint32_t HELPER(rbit)helper_rbit(uint32_t x) | |||
2333 | { | |||
2334 | x = ((x & 0xff000000) >> 24) | |||
2335 | | ((x & 0x00ff0000) >> 8) | |||
2336 | | ((x & 0x0000ff00) << 8) | |||
2337 | | ((x & 0x000000ff) << 24); | |||
2338 | x = ((x & 0xf0f0f0f0) >> 4) | |||
2339 | | ((x & 0x0f0f0f0f) << 4); | |||
2340 | x = ((x & 0x88888888) >> 3) | |||
2341 | | ((x & 0x44444444) >> 1) | |||
2342 | | ((x & 0x22222222) << 1) | |||
2343 | | ((x & 0x11111111) << 3); | |||
2344 | return x; | |||
2345 | } | |||
2346 | ||||
2347 | #if defined(CONFIG_USER_ONLY) | |||
2348 | ||||
2349 | void arm_cpu_do_interrupt(CPUState *cs) | |||
2350 | { | |||
2351 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2351, __func__)); | |||
2352 | CPUARMState *env = &cpu->env; | |||
2353 | ||||
2354 | env->exception_index = -1; | |||
2355 | } | |||
2356 | ||||
2357 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, | |||
2358 | int mmu_idx) | |||
2359 | { | |||
2360 | if (rw == 2) { | |||
2361 | env->exception_index = EXCP_PREFETCH_ABORT3; | |||
2362 | env->cp15.c6_insn = address; | |||
2363 | } else { | |||
2364 | env->exception_index = EXCP_DATA_ABORT4; | |||
2365 | env->cp15.c6_data = address; | |||
2366 | } | |||
2367 | return 1; | |||
2368 | } | |||
2369 | ||||
2370 | /* These should probably raise undefined insn exceptions. */ | |||
2371 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) | |||
2372 | { | |||
2373 | cpu_abort(env, "v7m_mrs %d\n", reg); | |||
2374 | } | |||
2375 | ||||
2376 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) | |||
2377 | { | |||
2378 | cpu_abort(env, "v7m_mrs %d\n", reg); | |||
2379 | return 0; | |||
2380 | } | |||
2381 | ||||
2382 | void switch_mode(CPUARMState *env, int mode) | |||
2383 | { | |||
2384 | if (mode != ARM_CPU_MODE_USR) | |||
2385 | cpu_abort(env, "Tried to switch out of user mode\n"); | |||
2386 | } | |||
2387 | ||||
2388 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) | |||
2389 | { | |||
2390 | cpu_abort(env, "banked r13 write\n"); | |||
2391 | } | |||
2392 | ||||
2393 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) | |||
2394 | { | |||
2395 | cpu_abort(env, "banked r13 read\n"); | |||
2396 | return 0; | |||
2397 | } | |||
2398 | ||||
2399 | #else | |||
2400 | ||||
2401 | /* Map CPU modes onto saved register banks. */ | |||
2402 | int bank_number(int mode) | |||
2403 | { | |||
2404 | switch (mode) { | |||
2405 | case ARM_CPU_MODE_USR: | |||
2406 | case ARM_CPU_MODE_SYS: | |||
2407 | return 0; | |||
2408 | case ARM_CPU_MODE_SVC: | |||
2409 | return 1; | |||
2410 | case ARM_CPU_MODE_ABT: | |||
2411 | return 2; | |||
2412 | case ARM_CPU_MODE_UND: | |||
2413 | return 3; | |||
2414 | case ARM_CPU_MODE_IRQ: | |||
2415 | return 4; | |||
2416 | case ARM_CPU_MODE_FIQ: | |||
2417 | return 5; | |||
2418 | } | |||
2419 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); | |||
2420 | } | |||
2421 | ||||
2422 | void switch_mode(CPUARMState *env, int mode) | |||
2423 | { | |||
2424 | int old_mode; | |||
2425 | int i; | |||
2426 | ||||
2427 | old_mode = env->uncached_cpsr & CPSR_M(0x1fU); | |||
2428 | if (mode == old_mode) | |||
2429 | return; | |||
2430 | ||||
2431 | if (old_mode == ARM_CPU_MODE_FIQ) { | |||
2432 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |||
2433 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | |||
2434 | } else if (mode == ARM_CPU_MODE_FIQ) { | |||
2435 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |||
2436 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | |||
2437 | } | |||
2438 | ||||
2439 | i = bank_number(old_mode); | |||
2440 | env->banked_r13[i] = env->regs[13]; | |||
2441 | env->banked_r14[i] = env->regs[14]; | |||
2442 | env->banked_spsr[i] = env->spsr; | |||
2443 | ||||
2444 | i = bank_number(mode); | |||
2445 | env->regs[13] = env->banked_r13[i]; | |||
2446 | env->regs[14] = env->banked_r14[i]; | |||
2447 | env->spsr = env->banked_spsr[i]; | |||
2448 | } | |||
2449 | ||||
2450 | static void v7m_push(CPUARMState *env, uint32_t val) | |||
2451 | { | |||
2452 | env->regs[13] -= 4; | |||
2453 | stl_phys(env->regs[13], val); | |||
2454 | } | |||
2455 | ||||
2456 | static uint32_t v7m_pop(CPUARMState *env) | |||
2457 | { | |||
2458 | uint32_t val; | |||
2459 | val = ldl_phys(env->regs[13]); | |||
2460 | env->regs[13] += 4; | |||
2461 | return val; | |||
2462 | } | |||
2463 | ||||
2464 | /* Switch to V7M main or process stack pointer. */ | |||
2465 | static void switch_v7m_sp(CPUARMState *env, int process) | |||
2466 | { | |||
2467 | uint32_t tmp; | |||
2468 | if (env->v7m.current_sp != process) { | |||
2469 | tmp = env->v7m.other_sp; | |||
2470 | env->v7m.other_sp = env->regs[13]; | |||
2471 | env->regs[13] = tmp; | |||
2472 | env->v7m.current_sp = process; | |||
2473 | } | |||
2474 | } | |||
2475 | ||||
2476 | static void do_v7m_exception_exit(CPUARMState *env) | |||
2477 | { | |||
2478 | uint32_t type; | |||
2479 | uint32_t xpsr; | |||
2480 | ||||
2481 | type = env->regs[15]; | |||
2482 | if (env->v7m.exception != 0) | |||
2483 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); | |||
2484 | ||||
2485 | /* Switch to the target stack. */ | |||
2486 | switch_v7m_sp(env, (type & 4) != 0); | |||
2487 | /* Pop registers. */ | |||
2488 | env->regs[0] = v7m_pop(env); | |||
2489 | env->regs[1] = v7m_pop(env); | |||
2490 | env->regs[2] = v7m_pop(env); | |||
2491 | env->regs[3] = v7m_pop(env); | |||
2492 | env->regs[12] = v7m_pop(env); | |||
2493 | env->regs[14] = v7m_pop(env); | |||
2494 | env->regs[15] = v7m_pop(env); | |||
2495 | xpsr = v7m_pop(env); | |||
2496 | xpsr_write(env, xpsr, 0xfffffdff); | |||
2497 | /* Undo stack alignment. */ | |||
2498 | if (xpsr & 0x200) | |||
2499 | env->regs[13] |= 4; | |||
2500 | /* ??? The exception return type specifies Thread/Handler mode. However | |||
2501 | this is also implied by the xPSR value. Not sure what to do | |||
2502 | if there is a mismatch. */ | |||
2503 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |||
2504 | pointer. */ | |||
2505 | } | |||
2506 | ||||
2507 | /* Exception names for debug logging; note that not all of these | |||
2508 | * precisely correspond to architectural exceptions. | |||
2509 | */ | |||
2510 | static const char * const excnames[] = { | |||
2511 | [EXCP_UDEF1] = "Undefined Instruction", | |||
2512 | [EXCP_SWI2] = "SVC", | |||
2513 | [EXCP_PREFETCH_ABORT3] = "Prefetch Abort", | |||
2514 | [EXCP_DATA_ABORT4] = "Data Abort", | |||
2515 | [EXCP_IRQ5] = "IRQ", | |||
2516 | [EXCP_FIQ6] = "FIQ", | |||
2517 | [EXCP_BKPT7] = "Breakpoint", | |||
2518 | [EXCP_EXCEPTION_EXIT8] = "QEMU v7M exception exit", | |||
2519 | [EXCP_KERNEL_TRAP9] = "QEMU intercept of kernel commpage", | |||
2520 | [EXCP_STREX10] = "QEMU intercept of STREX", | |||
2521 | }; | |||
2522 | ||||
2523 | static inline void arm_log_exception(int idx) | |||
2524 | { | |||
2525 | if (qemu_loglevel_mask(CPU_LOG_INT(1 << 4))) { | |||
2526 | const char *exc = NULL((void*)0); | |||
2527 | ||||
2528 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)(sizeof(excnames) / sizeof((excnames)[0]))) { | |||
2529 | exc = excnames[idx]; | |||
2530 | } | |||
2531 | if (!exc) { | |||
2532 | exc = "unknown"; | |||
2533 | } | |||
2534 | qemu_log_mask(CPU_LOG_INT(1 << 4), "Taking exception %d [%s]\n", idx, exc); | |||
2535 | } | |||
2536 | } | |||
2537 | ||||
2538 | void arm_v7m_cpu_do_interrupt(CPUState *cs) | |||
2539 | { | |||
2540 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2540, __func__)); | |||
2541 | CPUARMState *env = &cpu->env; | |||
2542 | uint32_t xpsr = xpsr_read(env); | |||
2543 | uint32_t lr; | |||
2544 | uint32_t addr; | |||
2545 | ||||
2546 | arm_log_exception(env->exception_index); | |||
2547 | ||||
2548 | lr = 0xfffffff1; | |||
2549 | if (env->v7m.current_sp) | |||
2550 | lr |= 4; | |||
2551 | if (env->v7m.exception == 0) | |||
2552 | lr |= 8; | |||
2553 | ||||
2554 | /* For exceptions we just mark as pending on the NVIC, and let that | |||
2555 | handle it. */ | |||
2556 | /* TODO: Need to escalate if the current priority is higher than the | |||
2557 | one we're raising. */ | |||
2558 | switch (env->exception_index) { | |||
2559 | case EXCP_UDEF1: | |||
2560 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE6); | |||
2561 | return; | |||
2562 | case EXCP_SWI2: | |||
2563 | /* The PC already points to the next instruction. */ | |||
2564 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC11); | |||
2565 | return; | |||
2566 | case EXCP_PREFETCH_ABORT3: | |||
2567 | case EXCP_DATA_ABORT4: | |||
2568 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM4); | |||
2569 | return; | |||
2570 | case EXCP_BKPT7: | |||
2571 | if (semihosting_enabled) { | |||
2572 | int nr; | |||
2573 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | |||
2574 | if (nr == 0xab) { | |||
2575 | env->regs[15] += 2; | |||
2576 | env->regs[0] = do_arm_semihosting(env); | |||
2577 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); | |||
2578 | return; | |||
2579 | } | |||
2580 | } | |||
2581 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG12); | |||
2582 | return; | |||
2583 | case EXCP_IRQ5: | |||
2584 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); | |||
2585 | break; | |||
2586 | case EXCP_EXCEPTION_EXIT8: | |||
2587 | do_v7m_exception_exit(env); | |||
2588 | return; | |||
2589 | default: | |||
2590 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |||
2591 | return; /* Never happens. Keep compiler happy. */ | |||
2592 | } | |||
2593 | ||||
2594 | /* Align stack pointer. */ | |||
2595 | /* ??? Should only do this if Configuration Control Register | |||
2596 | STACKALIGN bit is set. */ | |||
2597 | if (env->regs[13] & 4) { | |||
2598 | env->regs[13] -= 4; | |||
2599 | xpsr |= 0x200; | |||
2600 | } | |||
2601 | /* Switch to the handler mode. */ | |||
2602 | v7m_push(env, xpsr); | |||
2603 | v7m_push(env, env->regs[15]); | |||
2604 | v7m_push(env, env->regs[14]); | |||
2605 | v7m_push(env, env->regs[12]); | |||
2606 | v7m_push(env, env->regs[3]); | |||
2607 | v7m_push(env, env->regs[2]); | |||
2608 | v7m_push(env, env->regs[1]); | |||
2609 | v7m_push(env, env->regs[0]); | |||
2610 | switch_v7m_sp(env, 0); | |||
2611 | /* Clear IT bits */ | |||
2612 | env->condexec_bits = 0; | |||
2613 | env->regs[14] = lr; | |||
2614 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); | |||
2615 | env->regs[15] = addr & 0xfffffffe; | |||
2616 | env->thumb = addr & 1; | |||
2617 | } | |||
2618 | ||||
2619 | /* Handle a CPU exception. */ | |||
2620 | void arm_cpu_do_interrupt(CPUState *cs) | |||
2621 | { | |||
2622 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2622, __func__)); | |||
2623 | CPUARMState *env = &cpu->env; | |||
2624 | uint32_t addr; | |||
2625 | uint32_t mask; | |||
2626 | int new_mode; | |||
2627 | uint32_t offset; | |||
2628 | ||||
2629 | assert(!IS_M(env))((!arm_feature(env, ARM_FEATURE_M)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_M)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2629, __PRETTY_FUNCTION__)); | |||
2630 | ||||
2631 | arm_log_exception(env->exception_index); | |||
2632 | ||||
2633 | /* TODO: Vectored interrupt controller. */ | |||
2634 | switch (env->exception_index) { | |||
2635 | case EXCP_UDEF1: | |||
2636 | new_mode = ARM_CPU_MODE_UND; | |||
2637 | addr = 0x04; | |||
2638 | mask = CPSR_I(1U << 7); | |||
2639 | if (env->thumb) | |||
2640 | offset = 2; | |||
2641 | else | |||
2642 | offset = 4; | |||
2643 | break; | |||
2644 | case EXCP_SWI2: | |||
2645 | if (semihosting_enabled) { | |||
2646 | /* Check for semihosting interrupt. */ | |||
2647 | if (env->thumb) { | |||
2648 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) | |||
2649 | & 0xff; | |||
2650 | } else { | |||
2651 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) | |||
2652 | & 0xffffff; | |||
2653 | } | |||
2654 | /* Only intercept calls from privileged modes, to provide some | |||
2655 | semblance of security. */ | |||
2656 | if (((mask == 0x123456 && !env->thumb) | |||
2657 | || (mask == 0xab && env->thumb)) | |||
2658 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { | |||
2659 | env->regs[0] = do_arm_semihosting(env); | |||
2660 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); | |||
2661 | return; | |||
2662 | } | |||
2663 | } | |||
2664 | new_mode = ARM_CPU_MODE_SVC; | |||
2665 | addr = 0x08; | |||
2666 | mask = CPSR_I(1U << 7); | |||
2667 | /* The PC already points to the next instruction. */ | |||
2668 | offset = 0; | |||
2669 | break; | |||
2670 | case EXCP_BKPT7: | |||
2671 | /* See if this is a semihosting syscall. */ | |||
2672 | if (env->thumb && semihosting_enabled) { | |||
2673 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | |||
2674 | if (mask == 0xab | |||
2675 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { | |||
2676 | env->regs[15] += 2; | |||
2677 | env->regs[0] = do_arm_semihosting(env); | |||
2678 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); | |||
2679 | return; | |||
2680 | } | |||
2681 | } | |||
2682 | env->cp15.c5_insn = 2; | |||
2683 | /* Fall through to prefetch abort. */ | |||
2684 | case EXCP_PREFETCH_ABORT3: | |||
2685 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with IFSR 0x%x IFAR 0x%x\n", | |||
2686 | env->cp15.c5_insn, env->cp15.c6_insn); | |||
2687 | new_mode = ARM_CPU_MODE_ABT; | |||
2688 | addr = 0x0c; | |||
2689 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); | |||
2690 | offset = 4; | |||
2691 | break; | |||
2692 | case EXCP_DATA_ABORT4: | |||
2693 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with DFSR 0x%x DFAR 0x%x\n", | |||
2694 | env->cp15.c5_data, env->cp15.c6_data); | |||
2695 | new_mode = ARM_CPU_MODE_ABT; | |||
2696 | addr = 0x10; | |||
2697 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); | |||
2698 | offset = 8; | |||
2699 | break; | |||
2700 | case EXCP_IRQ5: | |||
2701 | new_mode = ARM_CPU_MODE_IRQ; | |||
2702 | addr = 0x18; | |||
2703 | /* Disable IRQ and imprecise data aborts. */ | |||
2704 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); | |||
2705 | offset = 4; | |||
2706 | break; | |||
2707 | case EXCP_FIQ6: | |||
2708 | new_mode = ARM_CPU_MODE_FIQ; | |||
2709 | addr = 0x1c; | |||
2710 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |||
2711 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7) | CPSR_F(1U << 6); | |||
2712 | offset = 4; | |||
2713 | break; | |||
2714 | default: | |||
2715 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |||
2716 | return; /* Never happens. Keep compiler happy. */ | |||
2717 | } | |||
2718 | /* High vectors. */ | |||
2719 | if (env->cp15.c1_sys & (1 << 13)) { | |||
2720 | /* when enabled, base address cannot be remapped. */ | |||
2721 | addr += 0xffff0000; | |||
2722 | } else { | |||
2723 | /* ARM v7 architectures provide a vector base address register to remap | |||
2724 | * the interrupt vector table. | |||
2725 | * This register is only followed in non-monitor mode, and has a secure | |||
2726 | * and un-secure copy. Since the cpu is always in a un-secure operation | |||
2727 | * and is never in monitor mode this feature is always active. | |||
2728 | * Note: only bits 31:5 are valid. | |||
2729 | */ | |||
2730 | addr += env->cp15.c12_vbar; | |||
2731 | } | |||
2732 | switch_mode (env, new_mode); | |||
2733 | env->spsr = cpsr_read(env); | |||
2734 | /* Clear IT bits. */ | |||
2735 | env->condexec_bits = 0; | |||
2736 | /* Switch to the new mode, and to the correct instruction set. */ | |||
2737 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M(0x1fU)) | new_mode; | |||
2738 | env->uncached_cpsr |= mask; | |||
2739 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares | |||
2740 | * and we should just guard the thumb mode on V4 */ | |||
2741 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |||
2742 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; | |||
2743 | } | |||
2744 | env->regs[14] = env->regs[15] + offset; | |||
2745 | env->regs[15] = addr; | |||
2746 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB0x0004; | |||
2747 | } | |||
2748 | ||||
2749 | /* Check section/page access permissions. | |||
2750 | Returns the page protection flags, or zero if the access is not | |||
2751 | permitted. */ | |||
2752 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, | |||
2753 | int access_type, int is_user) | |||
2754 | { | |||
2755 | int prot_ro; | |||
2756 | ||||
2757 | if (domain_prot == 3) { | |||
2758 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
2759 | } | |||
2760 | ||||
2761 | if (access_type == 1) | |||
2762 | prot_ro = 0; | |||
2763 | else | |||
2764 | prot_ro = PAGE_READ0x0001; | |||
2765 | ||||
2766 | switch (ap) { | |||
2767 | case 0: | |||
2768 | if (access_type == 1) | |||
2769 | return 0; | |||
2770 | switch ((env->cp15.c1_sys >> 8) & 3) { | |||
2771 | case 1: | |||
2772 | return is_user ? 0 : PAGE_READ0x0001; | |||
2773 | case 2: | |||
2774 | return PAGE_READ0x0001; | |||
2775 | default: | |||
2776 | return 0; | |||
2777 | } | |||
2778 | case 1: | |||
2779 | return is_user ? 0 : PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
2780 | case 2: | |||
2781 | if (is_user) | |||
2782 | return prot_ro; | |||
2783 | else | |||
2784 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
2785 | case 3: | |||
2786 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
2787 | case 4: /* Reserved. */ | |||
2788 | return 0; | |||
2789 | case 5: | |||
2790 | return is_user ? 0 : prot_ro; | |||
2791 | case 6: | |||
2792 | return prot_ro; | |||
2793 | case 7: | |||
2794 | if (!arm_feature (env, ARM_FEATURE_V6K)) | |||
2795 | return 0; | |||
2796 | return prot_ro; | |||
2797 | default: | |||
2798 | abort(); | |||
2799 | } | |||
2800 | } | |||
2801 | ||||
2802 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) | |||
2803 | { | |||
2804 | uint32_t table; | |||
2805 | ||||
2806 | if (address & env->cp15.c2_mask) | |||
2807 | table = env->cp15.c2_base1 & 0xffffc000; | |||
2808 | else | |||
2809 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; | |||
2810 | ||||
2811 | table |= (address >> 18) & 0x3ffc; | |||
2812 | return table; | |||
2813 | } | |||
2814 | ||||
2815 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, | |||
2816 | int is_user, hwaddr *phys_ptr, | |||
2817 | int *prot, target_ulong *page_size) | |||
2818 | { | |||
2819 | int code; | |||
2820 | uint32_t table; | |||
2821 | uint32_t desc; | |||
2822 | int type; | |||
2823 | int ap; | |||
2824 | int domain; | |||
2825 | int domain_prot; | |||
2826 | hwaddr phys_addr; | |||
2827 | ||||
2828 | /* Pagetable walk. */ | |||
2829 | /* Lookup l1 descriptor. */ | |||
2830 | table = get_level1_table_address(env, address); | |||
2831 | desc = ldl_phys(table); | |||
2832 | type = (desc & 3); | |||
2833 | domain = (desc >> 5) & 0x0f; | |||
2834 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |||
2835 | if (type == 0) { | |||
2836 | /* Section translation fault. */ | |||
2837 | code = 5; | |||
2838 | goto do_fault; | |||
2839 | } | |||
2840 | if (domain_prot == 0 || domain_prot == 2) { | |||
2841 | if (type == 2) | |||
2842 | code = 9; /* Section domain fault. */ | |||
2843 | else | |||
2844 | code = 11; /* Page domain fault. */ | |||
2845 | goto do_fault; | |||
2846 | } | |||
2847 | if (type == 2) { | |||
2848 | /* 1Mb section. */ | |||
2849 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |||
2850 | ap = (desc >> 10) & 3; | |||
2851 | code = 13; | |||
2852 | *page_size = 1024 * 1024; | |||
2853 | } else { | |||
2854 | /* Lookup l2 entry. */ | |||
2855 | if (type == 1) { | |||
2856 | /* Coarse pagetable. */ | |||
2857 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |||
2858 | } else { | |||
2859 | /* Fine pagetable. */ | |||
2860 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |||
2861 | } | |||
2862 | desc = ldl_phys(table); | |||
2863 | switch (desc & 3) { | |||
2864 | case 0: /* Page translation fault. */ | |||
2865 | code = 7; | |||
2866 | goto do_fault; | |||
2867 | case 1: /* 64k page. */ | |||
2868 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |||
2869 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |||
2870 | *page_size = 0x10000; | |||
2871 | break; | |||
2872 | case 2: /* 4k page. */ | |||
2873 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |||
2874 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |||
2875 | *page_size = 0x1000; | |||
2876 | break; | |||
2877 | case 3: /* 1k page. */ | |||
2878 | if (type == 1) { | |||
2879 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |||
2880 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |||
2881 | } else { | |||
2882 | /* Page translation fault. */ | |||
2883 | code = 7; | |||
2884 | goto do_fault; | |||
2885 | } | |||
2886 | } else { | |||
2887 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |||
2888 | } | |||
2889 | ap = (desc >> 4) & 3; | |||
2890 | *page_size = 0x400; | |||
2891 | break; | |||
2892 | default: | |||
2893 | /* Never happens, but compiler isn't smart enough to tell. */ | |||
2894 | abort(); | |||
2895 | } | |||
2896 | code = 15; | |||
2897 | } | |||
2898 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); | |||
2899 | if (!*prot) { | |||
2900 | /* Access permission fault. */ | |||
2901 | goto do_fault; | |||
2902 | } | |||
2903 | *prot |= PAGE_EXEC0x0004; | |||
2904 | *phys_ptr = phys_addr; | |||
2905 | return 0; | |||
2906 | do_fault: | |||
2907 | return code | (domain << 4); | |||
2908 | } | |||
2909 | ||||
2910 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, | |||
2911 | int is_user, hwaddr *phys_ptr, | |||
2912 | int *prot, target_ulong *page_size) | |||
2913 | { | |||
2914 | int code; | |||
2915 | uint32_t table; | |||
2916 | uint32_t desc; | |||
2917 | uint32_t xn; | |||
2918 | uint32_t pxn = 0; | |||
2919 | int type; | |||
2920 | int ap; | |||
2921 | int domain = 0; | |||
2922 | int domain_prot; | |||
2923 | hwaddr phys_addr; | |||
2924 | ||||
2925 | /* Pagetable walk. */ | |||
2926 | /* Lookup l1 descriptor. */ | |||
2927 | table = get_level1_table_address(env, address); | |||
2928 | desc = ldl_phys(table); | |||
2929 | type = (desc & 3); | |||
2930 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { | |||
2931 | /* Section translation fault, or attempt to use the encoding | |||
2932 | * which is Reserved on implementations without PXN. | |||
2933 | */ | |||
2934 | code = 5; | |||
2935 | goto do_fault; | |||
2936 | } | |||
2937 | if ((type == 1) || !(desc & (1 << 18))) { | |||
2938 | /* Page or Section. */ | |||
2939 | domain = (desc >> 5) & 0x0f; | |||
2940 | } | |||
2941 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |||
2942 | if (domain_prot == 0 || domain_prot == 2) { | |||
2943 | if (type != 1) { | |||
2944 | code = 9; /* Section domain fault. */ | |||
2945 | } else { | |||
2946 | code = 11; /* Page domain fault. */ | |||
2947 | } | |||
2948 | goto do_fault; | |||
2949 | } | |||
2950 | if (type != 1) { | |||
2951 | if (desc & (1 << 18)) { | |||
2952 | /* Supersection. */ | |||
2953 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |||
2954 | *page_size = 0x1000000; | |||
2955 | } else { | |||
2956 | /* Section. */ | |||
2957 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |||
2958 | *page_size = 0x100000; | |||
2959 | } | |||
2960 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); | |||
2961 | xn = desc & (1 << 4); | |||
2962 | pxn = desc & 1; | |||
2963 | code = 13; | |||
2964 | } else { | |||
2965 | if (arm_feature(env, ARM_FEATURE_PXN)) { | |||
2966 | pxn = (desc >> 2) & 1; | |||
2967 | } | |||
2968 | /* Lookup l2 entry. */ | |||
2969 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |||
2970 | desc = ldl_phys(table); | |||
2971 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | |||
2972 | switch (desc & 3) { | |||
2973 | case 0: /* Page translation fault. */ | |||
2974 | code = 7; | |||
2975 | goto do_fault; | |||
2976 | case 1: /* 64k page. */ | |||
2977 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |||
2978 | xn = desc & (1 << 15); | |||
2979 | *page_size = 0x10000; | |||
2980 | break; | |||
2981 | case 2: case 3: /* 4k page. */ | |||
2982 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |||
2983 | xn = desc & 1; | |||
2984 | *page_size = 0x1000; | |||
2985 | break; | |||
2986 | default: | |||
2987 | /* Never happens, but compiler isn't smart enough to tell. */ | |||
2988 | abort(); | |||
2989 | } | |||
2990 | code = 15; | |||
2991 | } | |||
2992 | if (domain_prot == 3) { | |||
2993 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; | |||
2994 | } else { | |||
2995 | if (pxn && !is_user) { | |||
2996 | xn = 1; | |||
2997 | } | |||
2998 | if (xn && access_type == 2) | |||
2999 | goto do_fault; | |||
3000 | ||||
3001 | /* The simplified model uses AP[0] as an access control bit. */ | |||
3002 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { | |||
3003 | /* Access flag fault. */ | |||
3004 | code = (code == 15) ? 6 : 3; | |||
3005 | goto do_fault; | |||
3006 | } | |||
3007 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); | |||
3008 | if (!*prot) { | |||
3009 | /* Access permission fault. */ | |||
3010 | goto do_fault; | |||
3011 | } | |||
3012 | if (!xn) { | |||
3013 | *prot |= PAGE_EXEC0x0004; | |||
3014 | } | |||
3015 | } | |||
3016 | *phys_ptr = phys_addr; | |||
3017 | return 0; | |||
3018 | do_fault: | |||
3019 | return code | (domain << 4); | |||
3020 | } | |||
3021 | ||||
3022 | /* Fault type for long-descriptor MMU fault reporting; this corresponds | |||
3023 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |||
3024 | */ | |||
3025 | typedef enum { | |||
3026 | translation_fault = 1, | |||
3027 | access_fault = 2, | |||
3028 | permission_fault = 3, | |||
3029 | } MMUFaultType; | |||
3030 | ||||
3031 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |||
3032 | int access_type, int is_user, | |||
3033 | hwaddr *phys_ptr, int *prot, | |||
3034 | target_ulong *page_size_ptr) | |||
3035 | { | |||
3036 | /* Read an LPAE long-descriptor translation table. */ | |||
3037 | MMUFaultType fault_type = translation_fault; | |||
3038 | uint32_t level = 1; | |||
3039 | uint32_t epd; | |||
3040 | uint32_t tsz; | |||
3041 | uint64_t ttbr; | |||
3042 | int ttbr_select; | |||
3043 | int n; | |||
3044 | hwaddr descaddr; | |||
3045 | uint32_t tableattrs; | |||
3046 | target_ulong page_size; | |||
3047 | uint32_t attrs; | |||
3048 | ||||
3049 | /* Determine whether this address is in the region controlled by | |||
3050 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |||
3051 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |||
3052 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |||
3053 | */ | |||
3054 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |||
3055 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |||
3056 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |||
3057 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |||
3058 | ttbr_select = 0; | |||
3059 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |||
3060 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |||
3061 | ttbr_select = 1; | |||
3062 | } else if (!t0sz) { | |||
3063 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |||
3064 | ttbr_select = 0; | |||
3065 | } else if (!t1sz) { | |||
3066 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |||
3067 | ttbr_select = 1; | |||
3068 | } else { | |||
3069 | /* in the gap between the two regions, this is a Translation fault */ | |||
3070 | fault_type = translation_fault; | |||
3071 | goto do_fault; | |||
3072 | } | |||
3073 | ||||
3074 | /* Note that QEMU ignores shareability and cacheability attributes, | |||
3075 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |||
3076 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |||
3077 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |||
3078 | * implement any ASID-like capability so we can ignore it (instead | |||
3079 | * we will always flush the TLB any time the ASID is changed). | |||
3080 | */ | |||
3081 | if (ttbr_select == 0) { | |||
3082 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |||
3083 | epd = extract32(env->cp15.c2_control, 7, 1); | |||
3084 | tsz = t0sz; | |||
3085 | } else { | |||
3086 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |||
3087 | epd = extract32(env->cp15.c2_control, 23, 1); | |||
3088 | tsz = t1sz; | |||
3089 | } | |||
3090 | ||||
3091 | if (epd) { | |||
3092 | /* Translation table walk disabled => Translation fault on TLB miss */ | |||
3093 | goto do_fault; | |||
3094 | } | |||
3095 | ||||
3096 | /* If the region is small enough we will skip straight to a 2nd level | |||
3097 | * lookup. This affects the number of bits of the address used in | |||
3098 | * combination with the TTBR to find the first descriptor. ('n' here | |||
3099 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |||
3100 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |||
3101 | */ | |||
3102 | if (tsz > 1) { | |||
3103 | level = 2; | |||
3104 | n = 14 - tsz; | |||
3105 | } else { | |||
3106 | n = 5 - tsz; | |||
3107 | } | |||
3108 | ||||
3109 | /* Clear the vaddr bits which aren't part of the within-region address, | |||
3110 | * so that we don't have to special case things when calculating the | |||
3111 | * first descriptor address. | |||
3112 | */ | |||
3113 | address &= (0xffffffffU >> tsz); | |||
3114 | ||||
3115 | /* Now we can extract the actual base address from the TTBR */ | |||
3116 | descaddr = extract64(ttbr, 0, 40); | |||
3117 | descaddr &= ~((1ULL << n) - 1); | |||
3118 | ||||
3119 | tableattrs = 0; | |||
3120 | for (;;) { | |||
3121 | uint64_t descriptor; | |||
3122 | ||||
3123 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |||
3124 | descriptor = ldq_phys(descaddr); | |||
3125 | if (!(descriptor & 1) || | |||
3126 | (!(descriptor & 2) && (level == 3))) { | |||
3127 | /* Invalid, or the Reserved level 3 encoding */ | |||
3128 | goto do_fault; | |||
3129 | } | |||
3130 | descaddr = descriptor & 0xfffffff000ULL; | |||
3131 | ||||
3132 | if ((descriptor & 2) && (level < 3)) { | |||
3133 | /* Table entry. The top five bits are attributes which may | |||
3134 | * propagate down through lower levels of the table (and | |||
3135 | * which are all arranged so that 0 means "no effect", so | |||
3136 | * we can gather them up by ORing in the bits at each level). | |||
3137 | */ | |||
3138 | tableattrs |= extract64(descriptor, 59, 5); | |||
3139 | level++; | |||
3140 | continue; | |||
3141 | } | |||
3142 | /* Block entry at level 1 or 2, or page entry at level 3. | |||
3143 | * These are basically the same thing, although the number | |||
3144 | * of bits we pull in from the vaddr varies. | |||
3145 | */ | |||
3146 | page_size = (1 << (39 - (9 * level))); | |||
3147 | descaddr |= (address & (page_size - 1)); | |||
3148 | /* Extract attributes from the descriptor and merge with table attrs */ | |||
3149 | attrs = extract64(descriptor, 2, 10) | |||
3150 | | (extract64(descriptor, 52, 12) << 10); | |||
3151 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |||
3152 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |||
3153 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |||
3154 | * means "force PL1 access only", which means forcing AP[1] to 0. | |||
3155 | */ | |||
3156 | if (extract32(tableattrs, 2, 1)) { | |||
3157 | attrs &= ~(1 << 4); | |||
3158 | } | |||
3159 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |||
3160 | break; | |||
3161 | } | |||
3162 | /* Here descaddr is the final physical address, and attributes | |||
3163 | * are all in attrs. | |||
3164 | */ | |||
3165 | fault_type = access_fault; | |||
3166 | if ((attrs & (1 << 8)) == 0) { | |||
3167 | /* Access flag */ | |||
3168 | goto do_fault; | |||
3169 | } | |||
3170 | fault_type = permission_fault; | |||
3171 | if (is_user && !(attrs & (1 << 4))) { | |||
3172 | /* Unprivileged access not enabled */ | |||
3173 | goto do_fault; | |||
3174 | } | |||
3175 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; | |||
3176 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |||
3177 | /* XN or PXN */ | |||
3178 | if (access_type == 2) { | |||
3179 | goto do_fault; | |||
3180 | } | |||
3181 | *prot &= ~PAGE_EXEC0x0004; | |||
3182 | } | |||
3183 | if (attrs & (1 << 5)) { | |||
3184 | /* Write access forbidden */ | |||
3185 | if (access_type == 1) { | |||
3186 | goto do_fault; | |||
3187 | } | |||
3188 | *prot &= ~PAGE_WRITE0x0002; | |||
3189 | } | |||
3190 | ||||
3191 | *phys_ptr = descaddr; | |||
3192 | *page_size_ptr = page_size; | |||
3193 | return 0; | |||
3194 | ||||
3195 | do_fault: | |||
3196 | /* Long-descriptor format IFSR/DFSR value */ | |||
3197 | return (1 << 9) | (fault_type << 2) | level; | |||
3198 | } | |||
3199 | ||||
3200 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, | |||
3201 | int access_type, int is_user, | |||
3202 | hwaddr *phys_ptr, int *prot) | |||
3203 | { | |||
3204 | int n; | |||
3205 | uint32_t mask; | |||
3206 | uint32_t base; | |||
3207 | ||||
3208 | *phys_ptr = address; | |||
3209 | for (n = 7; n >= 0; n--) { | |||
3210 | base = env->cp15.c6_region[n]; | |||
3211 | if ((base & 1) == 0) | |||
3212 | continue; | |||
3213 | mask = 1 << ((base >> 1) & 0x1f); | |||
3214 | /* Keep this shift separate from the above to avoid an | |||
3215 | (undefined) << 32. */ | |||
3216 | mask = (mask << 1) - 1; | |||
3217 | if (((base ^ address) & ~mask) == 0) | |||
3218 | break; | |||
3219 | } | |||
3220 | if (n < 0) | |||
3221 | return 2; | |||
3222 | ||||
3223 | if (access_type == 2) { | |||
3224 | mask = env->cp15.c5_insn; | |||
3225 | } else { | |||
3226 | mask = env->cp15.c5_data; | |||
3227 | } | |||
3228 | mask = (mask >> (n * 4)) & 0xf; | |||
3229 | switch (mask) { | |||
3230 | case 0: | |||
3231 | return 1; | |||
3232 | case 1: | |||
3233 | if (is_user) | |||
3234 | return 1; | |||
3235 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
3236 | break; | |||
3237 | case 2: | |||
3238 | *prot = PAGE_READ0x0001; | |||
3239 | if (!is_user) | |||
3240 | *prot |= PAGE_WRITE0x0002; | |||
3241 | break; | |||
3242 | case 3: | |||
3243 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; | |||
3244 | break; | |||
3245 | case 5: | |||
3246 | if (is_user) | |||
3247 | return 1; | |||
3248 | *prot = PAGE_READ0x0001; | |||
3249 | break; | |||
3250 | case 6: | |||
3251 | *prot = PAGE_READ0x0001; | |||
3252 | break; | |||
3253 | default: | |||
3254 | /* Bad permission. */ | |||
3255 | return 1; | |||
3256 | } | |||
3257 | *prot |= PAGE_EXEC0x0004; | |||
3258 | return 0; | |||
3259 | } | |||
3260 | ||||
3261 | /* get_phys_addr - get the physical address for this virtual address | |||
3262 | * | |||
3263 | * Find the physical address corresponding to the given virtual address, | |||
3264 | * by doing a translation table walk on MMU based systems or using the | |||
3265 | * MPU state on MPU based systems. | |||
3266 | * | |||
3267 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |||
3268 | * prot and page_size are not filled in, and the return value provides | |||
3269 | * information on why the translation aborted, in the format of a | |||
3270 | * DFSR/IFSR fault register, with the following caveats: | |||
3271 | * * we honour the short vs long DFSR format differences. | |||
3272 | * * the WnR bit is never set (the caller must do this). | |||
3273 | * * for MPU based systems we don't bother to return a full FSR format | |||
3274 | * value. | |||
3275 | * | |||
3276 | * @env: CPUARMState | |||
3277 | * @address: virtual address to get physical address for | |||
3278 | * @access_type: 0 for read, 1 for write, 2 for execute | |||
3279 | * @is_user: 0 for privileged access, 1 for user | |||
3280 | * @phys_ptr: set to the physical address corresponding to the virtual address | |||
3281 | * @prot: set to the permissions for the page containing phys_ptr | |||
3282 | * @page_size: set to the size of the page containing phys_ptr | |||
3283 | */ | |||
3284 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |||
3285 | int access_type, int is_user, | |||
3286 | hwaddr *phys_ptr, int *prot, | |||
3287 | target_ulong *page_size) | |||
3288 | { | |||
3289 | /* Fast Context Switch Extension. */ | |||
3290 | if (address < 0x02000000) | |||
3291 | address += env->cp15.c13_fcse; | |||
3292 | ||||
3293 | if ((env->cp15.c1_sys & 1) == 0) { | |||
3294 | /* MMU/MPU disabled. */ | |||
3295 | *phys_ptr = address; | |||
3296 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; | |||
3297 | *page_size = TARGET_PAGE_SIZE(1 << 10); | |||
3298 | return 0; | |||
3299 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |||
3300 | *page_size = TARGET_PAGE_SIZE(1 << 10); | |||
3301 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, | |||
3302 | prot); | |||
3303 | } else if (extended_addresses_enabled(env)) { | |||
3304 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |||
3305 | prot, page_size); | |||
3306 | } else if (env->cp15.c1_sys & (1 << 23)) { | |||
3307 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | |||
3308 | prot, page_size); | |||
3309 | } else { | |||
3310 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |||
3311 | prot, page_size); | |||
3312 | } | |||
3313 | } | |||
3314 | ||||
3315 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, | |||
3316 | int access_type, int mmu_idx) | |||
3317 | { | |||
3318 | hwaddr phys_addr; | |||
3319 | target_ulong page_size; | |||
3320 | int prot; | |||
3321 | int ret, is_user; | |||
3322 | ||||
3323 | is_user = mmu_idx == MMU_USER_IDX1; | |||
3324 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, | |||
3325 | &page_size); | |||
3326 | if (ret == 0) { | |||
3327 | /* Map a single [sub]page. */ | |||
3328 | phys_addr &= ~(hwaddr)0x3ff; | |||
3329 | address &= ~(uint32_t)0x3ff; | |||
3330 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); | |||
3331 | return 0; | |||
3332 | } | |||
3333 | ||||
3334 | if (access_type == 2) { | |||
3335 | env->cp15.c5_insn = ret; | |||
3336 | env->cp15.c6_insn = address; | |||
3337 | env->exception_index = EXCP_PREFETCH_ABORT3; | |||
3338 | } else { | |||
3339 | env->cp15.c5_data = ret; | |||
3340 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) | |||
3341 | env->cp15.c5_data |= (1 << 11); | |||
3342 | env->cp15.c6_data = address; | |||
3343 | env->exception_index = EXCP_DATA_ABORT4; | |||
3344 | } | |||
3345 | return 1; | |||
3346 | } | |||
3347 | ||||
3348 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | |||
3349 | { | |||
3350 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 3350, __func__)); | |||
3351 | hwaddr phys_addr; | |||
| ||||
3352 | target_ulong page_size; | |||
3353 | int prot; | |||
3354 | int ret; | |||
3355 | ||||
3356 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); | |||
3357 | ||||
3358 | if (ret != 0) { | |||
3359 | return -1; | |||
3360 | } | |||
3361 | ||||
3362 | return phys_addr; | |||
| ||||
3363 | } | |||
3364 | ||||
3365 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) | |||
3366 | { | |||
3367 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { | |||
3368 | env->regs[13] = val; | |||
3369 | } else { | |||
3370 | env->banked_r13[bank_number(mode)] = val; | |||
3371 | } | |||
3372 | } | |||
3373 | ||||
3374 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) | |||
3375 | { | |||
3376 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { | |||
3377 | return env->regs[13]; | |||
3378 | } else { | |||
3379 | return env->banked_r13[bank_number(mode)]; | |||
3380 | } | |||
3381 | } | |||
3382 | ||||
3383 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) | |||
3384 | { | |||
3385 | switch (reg) { | |||
3386 | case 0: /* APSR */ | |||
3387 | return xpsr_read(env) & 0xf8000000; | |||
3388 | case 1: /* IAPSR */ | |||
3389 | return xpsr_read(env) & 0xf80001ff; | |||
3390 | case 2: /* EAPSR */ | |||
3391 | return xpsr_read(env) & 0xff00fc00; | |||
3392 | case 3: /* xPSR */ | |||
3393 | return xpsr_read(env) & 0xff00fdff; | |||
3394 | case 5: /* IPSR */ | |||
3395 | return xpsr_read(env) & 0x000001ff; | |||
3396 | case 6: /* EPSR */ | |||
3397 | return xpsr_read(env) & 0x0700fc00; | |||
3398 | case 7: /* IEPSR */ | |||
3399 | return xpsr_read(env) & 0x0700edff; | |||
3400 | case 8: /* MSP */ | |||
3401 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |||
3402 | case 9: /* PSP */ | |||
3403 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |||
3404 | case 16: /* PRIMASK */ | |||
3405 | return (env->uncached_cpsr & CPSR_I(1U << 7)) != 0; | |||
3406 | case 17: /* BASEPRI */ | |||
3407 | case 18: /* BASEPRI_MAX */ | |||
3408 | return env->v7m.basepri; | |||
3409 | case 19: /* FAULTMASK */ | |||
3410 | return (env->uncached_cpsr & CPSR_F(1U << 6)) != 0; | |||
3411 | case 20: /* CONTROL */ | |||
3412 | return env->v7m.control; | |||
3413 | default: | |||
3414 | /* ??? For debugging only. */ | |||
3415 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |||
3416 | return 0; | |||
3417 | } | |||
3418 | } | |||
3419 | ||||
3420 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) | |||
3421 | { | |||
3422 | switch (reg) { | |||
3423 | case 0: /* APSR */ | |||
3424 | xpsr_write(env, val, 0xf8000000); | |||
3425 | break; | |||
3426 | case 1: /* IAPSR */ | |||
3427 | xpsr_write(env, val, 0xf8000000); | |||
3428 | break; | |||
3429 | case 2: /* EAPSR */ | |||
3430 | xpsr_write(env, val, 0xfe00fc00); | |||
3431 | break; | |||
3432 | case 3: /* xPSR */ | |||
3433 | xpsr_write(env, val, 0xfe00fc00); | |||
3434 | break; | |||
3435 | case 5: /* IPSR */ | |||
3436 | /* IPSR bits are readonly. */ | |||
3437 | break; | |||
3438 | case 6: /* EPSR */ | |||
3439 | xpsr_write(env, val, 0x0600fc00); | |||
3440 | break; | |||
3441 | case 7: /* IEPSR */ | |||
3442 | xpsr_write(env, val, 0x0600fc00); | |||
3443 | break; | |||
3444 | case 8: /* MSP */ | |||
3445 | if (env->v7m.current_sp) | |||
3446 | env->v7m.other_sp = val; | |||
3447 | else | |||
3448 | env->regs[13] = val; | |||
3449 | break; | |||
3450 | case 9: /* PSP */ | |||
3451 | if (env->v7m.current_sp) | |||
3452 | env->regs[13] = val; | |||
3453 | else | |||
3454 | env->v7m.other_sp = val; | |||
3455 | break; | |||
3456 | case 16: /* PRIMASK */ | |||
3457 | if (val & 1) | |||
3458 | env->uncached_cpsr |= CPSR_I(1U << 7); | |||
3459 | else | |||
3460 | env->uncached_cpsr &= ~CPSR_I(1U << 7); | |||
3461 | break; | |||
3462 | case 17: /* BASEPRI */ | |||
3463 | env->v7m.basepri = val & 0xff; | |||
3464 | break; | |||
3465 | case 18: /* BASEPRI_MAX */ | |||
3466 | val &= 0xff; | |||
3467 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |||
3468 | env->v7m.basepri = val; | |||
3469 | break; | |||
3470 | case 19: /* FAULTMASK */ | |||
3471 | if (val & 1) | |||
3472 | env->uncached_cpsr |= CPSR_F(1U << 6); | |||
3473 | else | |||
3474 | env->uncached_cpsr &= ~CPSR_F(1U << 6); | |||
3475 | break; | |||
3476 | case 20: /* CONTROL */ | |||
3477 | env->v7m.control = val & 3; | |||
3478 | switch_v7m_sp(env, (val & 2) != 0); | |||
3479 | break; | |||
3480 | default: | |||
3481 | /* ??? For debugging only. */ | |||
3482 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |||
3483 | return; | |||
3484 | } | |||
3485 | } | |||
3486 | ||||
3487 | #endif | |||
3488 | ||||
3489 | /* Note that signed overflow is undefined in C. The following routines are | |||
3490 | careful to use unsigned types where modulo arithmetic is required. | |||
3491 | Failure to do so _will_ break on newer gcc. */ | |||
3492 | ||||
3493 | /* Signed saturating arithmetic. */ | |||
3494 | ||||
3495 | /* Perform 16-bit signed saturating addition. */ | |||
3496 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) | |||
3497 | { | |||
3498 | uint16_t res; | |||
3499 | ||||
3500 | res = a + b; | |||
3501 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |||
3502 | if (a & 0x8000) | |||
3503 | res = 0x8000; | |||
3504 | else | |||
3505 | res = 0x7fff; | |||
3506 | } | |||
3507 | return res; | |||
3508 | } | |||
3509 | ||||
3510 | /* Perform 8-bit signed saturating addition. */ | |||
3511 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) | |||
3512 | { | |||
3513 | uint8_t res; | |||
3514 | ||||
3515 | res = a + b; | |||
3516 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |||
3517 | if (a & 0x80) | |||
3518 | res = 0x80; | |||
3519 | else | |||
3520 | res = 0x7f; | |||
3521 | } | |||
3522 | return res; | |||
3523 | } | |||
3524 | ||||
3525 | /* Perform 16-bit signed saturating subtraction. */ | |||
3526 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) | |||
3527 | { | |||
3528 | uint16_t res; | |||
3529 | ||||
3530 | res = a - b; | |||
3531 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |||
3532 | if (a & 0x8000) | |||
3533 | res = 0x8000; | |||
3534 | else | |||
3535 | res = 0x7fff; | |||
3536 | } | |||
3537 | return res; | |||
3538 | } | |||
3539 | ||||
3540 | /* Perform 8-bit signed saturating subtraction. */ | |||
3541 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) | |||
3542 | { | |||
3543 | uint8_t res; | |||
3544 | ||||
3545 | res = a - b; | |||
3546 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |||
3547 | if (a & 0x80) | |||
3548 | res = 0x80; | |||
3549 | else | |||
3550 | res = 0x7f; | |||
3551 | } | |||
3552 | return res; | |||
3553 | } | |||
3554 | ||||
3555 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |||
3556 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |||
3557 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |||
3558 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |||
3559 | #define PFX q | |||
3560 | ||||
3561 | #include "op_addsub.h" | |||
3562 | ||||
3563 | /* Unsigned saturating arithmetic. */ | |||
3564 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) | |||
3565 | { | |||
3566 | uint16_t res; | |||
3567 | res = a + b; | |||
3568 | if (res < a) | |||
3569 | res = 0xffff; | |||
3570 | return res; | |||
3571 | } | |||
3572 | ||||
3573 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) | |||
3574 | { | |||
3575 | if (a > b) | |||
3576 | return a - b; | |||
3577 | else | |||
3578 | return 0; | |||
3579 | } | |||
3580 | ||||
3581 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |||
3582 | { | |||
3583 | uint8_t res; | |||
3584 | res = a + b; | |||
3585 | if (res < a) | |||
3586 | res = 0xff; | |||
3587 | return res; | |||
3588 | } | |||
3589 | ||||
3590 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |||
3591 | { | |||
3592 | if (a > b) | |||
3593 | return a - b; | |||
3594 | else | |||
3595 | return 0; | |||
3596 | } | |||
3597 | ||||
3598 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |||
3599 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |||
3600 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |||
3601 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |||
3602 | #define PFX uq | |||
3603 | ||||
3604 | #include "op_addsub.h" | |||
3605 | ||||
3606 | /* Signed modulo arithmetic. */ | |||
3607 | #define SARITH16(a, b, n, op)do { int32_t sum; sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) do { \ | |||
3608 | int32_t sum; \ | |||
3609 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ | |||
3610 | RESULT(sum, n, 16); \ | |||
3611 | if (sum >= 0) \ | |||
3612 | ge |= 3 << (n * 2); \ | |||
3613 | } while(0) | |||
3614 | ||||
3615 | #define SARITH8(a, b, n, op)do { int32_t sum; sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) do { \ | |||
3616 | int32_t sum; \ | |||
3617 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ | |||
3618 | RESULT(sum, n, 8); \ | |||
3619 | if (sum >= 0) \ | |||
3620 | ge |= 1 << n; \ | |||
3621 | } while(0) | |||
3622 | ||||
3623 | ||||
3624 | #define ADD16(a, b, n) SARITH16(a, b, n, +)do { int32_t sum; sum = (int32_t)(int16_t)(a) + (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) | |||
3625 | #define SUB16(a, b, n) SARITH16(a, b, n, -)do { int32_t sum; sum = (int32_t)(int16_t)(a) - (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) | |||
3626 | #define ADD8(a, b, n) SARITH8(a, b, n, +)do { int32_t sum; sum = (int32_t)(int8_t)(a) + (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) | |||
3627 | #define SUB8(a, b, n) SARITH8(a, b, n, -)do { int32_t sum; sum = (int32_t)(int8_t)(a) - (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) | |||
3628 | #define PFX s | |||
3629 | #define ARITH_GE | |||
3630 | ||||
3631 | #include "op_addsub.h" | |||
3632 | ||||
3633 | /* Unsigned modulo arithmetic. */ | |||
3634 | #define ADD16(a, b, n) do { \ | |||
3635 | uint32_t sum; \ | |||
3636 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |||
3637 | RESULT(sum, n, 16); \ | |||
3638 | if ((sum >> 16) == 1) \ | |||
3639 | ge |= 3 << (n * 2); \ | |||
3640 | } while(0) | |||
3641 | ||||
3642 | #define ADD8(a, b, n) do { \ | |||
3643 | uint32_t sum; \ | |||
3644 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |||
3645 | RESULT(sum, n, 8); \ | |||
3646 | if ((sum >> 8) == 1) \ | |||
3647 | ge |= 1 << n; \ | |||
3648 | } while(0) | |||
3649 | ||||
3650 | #define SUB16(a, b, n) do { \ | |||
3651 | uint32_t sum; \ | |||
3652 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |||
3653 | RESULT(sum, n, 16); \ | |||
3654 | if ((sum >> 16) == 0) \ | |||
3655 | ge |= 3 << (n * 2); \ | |||
3656 | } while(0) | |||
3657 | ||||
3658 | #define SUB8(a, b, n) do { \ | |||
3659 | uint32_t sum; \ | |||
3660 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |||
3661 | RESULT(sum, n, 8); \ | |||
3662 | if ((sum >> 8) == 0) \ | |||
3663 | ge |= 1 << n; \ | |||
3664 | } while(0) | |||
3665 | ||||
3666 | #define PFX u | |||
3667 | #define ARITH_GE | |||
3668 | ||||
3669 | #include "op_addsub.h" | |||
3670 | ||||
3671 | /* Halved signed arithmetic. */ | |||
3672 | #define ADD16(a, b, n) \ | |||
3673 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |||
3674 | #define SUB16(a, b, n) \ | |||
3675 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |||
3676 | #define ADD8(a, b, n) \ | |||
3677 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |||
3678 | #define SUB8(a, b, n) \ | |||
3679 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |||
3680 | #define PFX sh | |||
3681 | ||||
3682 | #include "op_addsub.h" | |||
3683 | ||||
3684 | /* Halved unsigned arithmetic. */ | |||
3685 | #define ADD16(a, b, n) \ | |||
3686 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |||
3687 | #define SUB16(a, b, n) \ | |||
3688 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |||
3689 | #define ADD8(a, b, n) \ | |||
3690 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |||
3691 | #define SUB8(a, b, n) \ | |||
3692 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |||
3693 | #define PFX uh | |||
3694 | ||||
3695 | #include "op_addsub.h" | |||
3696 | ||||
3697 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |||
3698 | { | |||
3699 | if (a > b) | |||
3700 | return a - b; | |||
3701 | else | |||
3702 | return b - a; | |||
3703 | } | |||
3704 | ||||
3705 | /* Unsigned sum of absolute byte differences. */ | |||
3706 | uint32_t HELPER(usad8)helper_usad8(uint32_t a, uint32_t b) | |||
3707 | { | |||
3708 | uint32_t sum; | |||
3709 | sum = do_usad(a, b); | |||
3710 | sum += do_usad(a >> 8, b >> 8); | |||
3711 | sum += do_usad(a >> 16, b >>16); | |||
3712 | sum += do_usad(a >> 24, b >> 24); | |||
3713 | return sum; | |||
3714 | } | |||
3715 | ||||
3716 | /* For ARMv6 SEL instruction. */ | |||
3717 | uint32_t HELPER(sel_flags)helper_sel_flags(uint32_t flags, uint32_t a, uint32_t b) | |||
3718 | { | |||
3719 | uint32_t mask; | |||
3720 | ||||
3721 | mask = 0; | |||
3722 | if (flags & 1) | |||
3723 | mask |= 0xff; | |||
3724 | if (flags & 2) | |||
3725 | mask |= 0xff00; | |||
3726 | if (flags & 4) | |||
3727 | mask |= 0xff0000; | |||
3728 | if (flags & 8) | |||
3729 | mask |= 0xff000000; | |||
3730 | return (a & mask) | (b & ~mask); | |||
3731 | } | |||
3732 | ||||
3733 | /* VFP support. We follow the convention used for VFP instructions: | |||
3734 | Single precision routines have a "s" suffix, double precision a | |||
3735 | "d" suffix. */ | |||
3736 | ||||
3737 | /* Convert host exception flags to vfp form. */ | |||
3738 | static inline int vfp_exceptbits_from_host(int host_bits) | |||
3739 | { | |||
3740 | int target_bits = 0; | |||
3741 | ||||
3742 | if (host_bits & float_flag_invalid) | |||
3743 | target_bits |= 1; | |||
3744 | if (host_bits & float_flag_divbyzero) | |||
3745 | target_bits |= 2; | |||
3746 | if (host_bits & float_flag_overflow) | |||
3747 | target_bits |= 4; | |||
3748 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) | |||
3749 | target_bits |= 8; | |||
3750 | if (host_bits & float_flag_inexact) | |||
3751 | target_bits |= 0x10; | |||
3752 | if (host_bits & float_flag_input_denormal) | |||
3753 | target_bits |= 0x80; | |||
3754 | return target_bits; | |||
3755 | } | |||
3756 | ||||
3757 | uint32_t HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(CPUARMState *env) | |||
3758 | { | |||
3759 | int i; | |||
3760 | uint32_t fpscr; | |||
3761 | ||||
3762 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR1] & 0xffc8ffff) | |||
3763 | | (env->vfp.vec_len << 16) | |||
3764 | | (env->vfp.vec_stride << 20); | |||
3765 | i = get_float_exception_flags(&env->vfp.fp_status); | |||
3766 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); | |||
3767 | fpscr |= vfp_exceptbits_from_host(i); | |||
3768 | return fpscr; | |||
3769 | } | |||
3770 | ||||
3771 | uint32_t vfp_get_fpscr(CPUARMState *env) | |||
3772 | { | |||
3773 | return HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(env); | |||
3774 | } | |||
3775 | ||||
3776 | /* Convert vfp exception flags to target form. */ | |||
3777 | static inline int vfp_exceptbits_to_host(int target_bits) | |||
3778 | { | |||
3779 | int host_bits = 0; | |||
3780 | ||||
3781 | if (target_bits & 1) | |||
3782 | host_bits |= float_flag_invalid; | |||
3783 | if (target_bits & 2) | |||
3784 | host_bits |= float_flag_divbyzero; | |||
3785 | if (target_bits & 4) | |||
3786 | host_bits |= float_flag_overflow; | |||
3787 | if (target_bits & 8) | |||
3788 | host_bits |= float_flag_underflow; | |||
3789 | if (target_bits & 0x10) | |||
3790 | host_bits |= float_flag_inexact; | |||
3791 | if (target_bits & 0x80) | |||
3792 | host_bits |= float_flag_input_denormal; | |||
3793 | return host_bits; | |||
3794 | } | |||
3795 | ||||
3796 | void HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(CPUARMState *env, uint32_t val) | |||
3797 | { | |||
3798 | int i; | |||
3799 | uint32_t changed; | |||
3800 | ||||
3801 | changed = env->vfp.xregs[ARM_VFP_FPSCR1]; | |||
3802 | env->vfp.xregs[ARM_VFP_FPSCR1] = (val & 0xffc8ffff); | |||
3803 | env->vfp.vec_len = (val >> 16) & 7; | |||
3804 | env->vfp.vec_stride = (val >> 20) & 3; | |||
3805 | ||||
3806 | changed ^= val; | |||
3807 | if (changed & (3 << 22)) { | |||
3808 | i = (val >> 22) & 3; | |||
3809 | switch (i) { | |||
3810 | case FPROUNDING_TIEEVEN: | |||
3811 | i = float_round_nearest_even; | |||
3812 | break; | |||
3813 | case FPROUNDING_POSINF: | |||
3814 | i = float_round_up; | |||
3815 | break; | |||
3816 | case FPROUNDING_NEGINF: | |||
3817 | i = float_round_down; | |||
3818 | break; | |||
3819 | case FPROUNDING_ZERO: | |||
3820 | i = float_round_to_zero; | |||
3821 | break; | |||
3822 | } | |||
3823 | set_float_rounding_mode(i, &env->vfp.fp_status); | |||
3824 | } | |||
3825 | if (changed & (1 << 24)) { | |||
3826 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | |||
3827 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | |||
3828 | } | |||
3829 | if (changed & (1 << 25)) | |||
3830 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |||
3831 | ||||
3832 | i = vfp_exceptbits_to_host(val); | |||
3833 | set_float_exception_flags(i, &env->vfp.fp_status); | |||
3834 | set_float_exception_flags(0, &env->vfp.standard_fp_status); | |||
3835 | } | |||
3836 | ||||
3837 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) | |||
3838 | { | |||
3839 | HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(env, val); | |||
3840 | } | |||
3841 | ||||
3842 | #define VFP_HELPER(name, p)helper_vfp_namep HELPER(glue(glue(vfp_,name),p))helper_vfp_namep | |||
3843 | ||||
3844 | #define VFP_BINOP(name) \ | |||
3845 | float32 VFP_HELPER(name, s)helper_vfp_names(float32 a, float32 b, void *fpstp) \ | |||
3846 | { \ | |||
3847 | float_status *fpst = fpstp; \ | |||
3848 | return float32_ ## name(a, b, fpst); \ | |||
3849 | } \ | |||
3850 | float64 VFP_HELPER(name, d)helper_vfp_named(float64 a, float64 b, void *fpstp) \ | |||
3851 | { \ | |||
3852 | float_status *fpst = fpstp; \ | |||
3853 | return float64_ ## name(a, b, fpst); \ | |||
3854 | } | |||
3855 | VFP_BINOP(add) | |||
3856 | VFP_BINOP(sub) | |||
3857 | VFP_BINOP(mul) | |||
3858 | VFP_BINOP(div) | |||
3859 | VFP_BINOP(min) | |||
3860 | VFP_BINOP(max) | |||
3861 | VFP_BINOP(minnum) | |||
3862 | VFP_BINOP(maxnum) | |||
3863 | #undef VFP_BINOP | |||
3864 | ||||
3865 | float32 VFP_HELPER(neg, s)helper_vfp_negs(float32 a) | |||
3866 | { | |||
3867 | return float32_chs(a); | |||
3868 | } | |||
3869 | ||||
3870 | float64 VFP_HELPER(neg, d)helper_vfp_negd(float64 a) | |||
3871 | { | |||
3872 | return float64_chs(a); | |||
3873 | } | |||
3874 | ||||
3875 | float32 VFP_HELPER(abs, s)helper_vfp_abss(float32 a) | |||
3876 | { | |||
3877 | return float32_abs(a); | |||
3878 | } | |||
3879 | ||||
3880 | float64 VFP_HELPER(abs, d)helper_vfp_absd(float64 a) | |||
3881 | { | |||
3882 | return float64_abs(a); | |||
3883 | } | |||
3884 | ||||
3885 | float32 VFP_HELPER(sqrt, s)helper_vfp_sqrts(float32 a, CPUARMState *env) | |||
3886 | { | |||
3887 | return float32_sqrt(a, &env->vfp.fp_status); | |||
3888 | } | |||
3889 | ||||
3890 | float64 VFP_HELPER(sqrt, d)helper_vfp_sqrtd(float64 a, CPUARMState *env) | |||
3891 | { | |||
3892 | return float64_sqrt(a, &env->vfp.fp_status); | |||
3893 | } | |||
3894 | ||||
3895 | /* XXX: check quiet/signaling case */ | |||
3896 | #define DO_VFP_cmp(p, type) \ | |||
3897 | void VFP_HELPER(cmp, p)helper_vfp_cmpp(type a, type b, CPUARMState *env) \ | |||
3898 | { \ | |||
3899 | uint32_t flags; \ | |||
3900 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |||
3901 | case 0: flags = 0x6; break; \ | |||
3902 | case -1: flags = 0x8; break; \ | |||
3903 | case 1: flags = 0x2; break; \ | |||
3904 | default: case 2: flags = 0x3; break; \ | |||
3905 | } \ | |||
3906 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ | |||
3907 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ | |||
3908 | } \ | |||
3909 | void VFP_HELPER(cmpe, p)helper_vfp_cmpep(type a, type b, CPUARMState *env) \ | |||
3910 | { \ | |||
3911 | uint32_t flags; \ | |||
3912 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |||
3913 | case 0: flags = 0x6; break; \ | |||
3914 | case -1: flags = 0x8; break; \ | |||
3915 | case 1: flags = 0x2; break; \ | |||
3916 | default: case 2: flags = 0x3; break; \ | |||
3917 | } \ | |||
3918 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ | |||
3919 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ | |||
3920 | } | |||
3921 | DO_VFP_cmp(s, float32) | |||
3922 | DO_VFP_cmp(d, float64) | |||
3923 | #undef DO_VFP_cmp | |||
3924 | ||||
3925 | /* Integer to float and float to integer conversions */ | |||
3926 | ||||
3927 | #define CONV_ITOF(name, fsz, sign) \ | |||
3928 | float##fsz HELPER(name)helper_name(uint32_t x, void *fpstp) \ | |||
3929 | { \ | |||
3930 | float_status *fpst = fpstp; \ | |||
3931 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ | |||
3932 | } | |||
3933 | ||||
3934 | #define CONV_FTOI(name, fsz, sign, round) \ | |||
3935 | uint32_t HELPER(name)helper_name(float##fsz x, void *fpstp) \ | |||
3936 | { \ | |||
3937 | float_status *fpst = fpstp; \ | |||
3938 | if (float##fsz##_is_any_nan(x)) { \ | |||
3939 | float_raise(float_flag_invalid, fpst); \ | |||
3940 | return 0; \ | |||
3941 | } \ | |||
3942 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |||
3943 | } | |||
3944 | ||||
3945 | #define FLOAT_CONVS(name, p, fsz, sign) \ | |||
3946 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |||
3947 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |||
3948 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |||
3949 | ||||
3950 | FLOAT_CONVS(si, s, 32, ) | |||
3951 | FLOAT_CONVS(si, d, 64, ) | |||
3952 | FLOAT_CONVS(ui, s, 32, u) | |||
3953 | FLOAT_CONVS(ui, d, 64, u) | |||
3954 | ||||
3955 | #undef CONV_ITOF | |||
3956 | #undef CONV_FTOI | |||
3957 | #undef FLOAT_CONVS | |||
3958 | ||||
3959 | /* floating point conversion */ | |||
3960 | float64 VFP_HELPER(fcvtd, s)helper_vfp_fcvtds(float32 x, CPUARMState *env) | |||
3961 | { | |||
3962 | float64 r = float32_to_float64(x, &env->vfp.fp_status); | |||
3963 | /* ARM requires that S<->D conversion of any kind of NaN generates | |||
3964 | * a quiet NaN by forcing the most significant frac bit to 1. | |||
3965 | */ | |||
3966 | return float64_maybe_silence_nan(r); | |||
3967 | } | |||
3968 | ||||
3969 | float32 VFP_HELPER(fcvts, d)helper_vfp_fcvtsd(float64 x, CPUARMState *env) | |||
3970 | { | |||
3971 | float32 r = float64_to_float32(x, &env->vfp.fp_status); | |||
3972 | /* ARM requires that S<->D conversion of any kind of NaN generates | |||
3973 | * a quiet NaN by forcing the most significant frac bit to 1. | |||
3974 | */ | |||
3975 | return float32_maybe_silence_nan(r); | |||
3976 | } | |||
3977 | ||||
3978 | /* VFP3 fixed point conversion. */ | |||
3979 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |||
3980 | float##fsz HELPER(vfp_##name##to##p)helper_vfp_##name##to##p(uint##isz##_t x, uint32_t shift, \ | |||
3981 | void *fpstp) \ | |||
3982 | { \ | |||
3983 | float_status *fpst = fpstp; \ | |||
3984 | float##fsz tmp; \ | |||
3985 | tmp = itype##_to_##float##fsz(x, fpst); \ | |||
3986 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | |||
3987 | } | |||
3988 | ||||
3989 | /* Notice that we want only input-denormal exception flags from the | |||
3990 | * scalbn operation: the other possible flags (overflow+inexact if | |||
3991 | * we overflow to infinity, output-denormal) aren't correct for the | |||
3992 | * complete scale-and-convert operation. | |||
3993 | */ | |||
3994 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ | |||
3995 | uint##isz##_t HELPER(vfp_to##name##p##round)helper_vfp_to##name##p##round(float##fsz x, \ | |||
3996 | uint32_t shift, \ | |||
3997 | void *fpstp) \ | |||
3998 | { \ | |||
3999 | float_status *fpst = fpstp; \ | |||
4000 | int old_exc_flags = get_float_exception_flags(fpst); \ | |||
4001 | float##fsz tmp; \ | |||
4002 | if (float##fsz##_is_any_nan(x)) { \ | |||
4003 | float_raise(float_flag_invalid, fpst); \ | |||
4004 | return 0; \ | |||
4005 | } \ | |||
4006 | tmp = float##fsz##_scalbn(x, shift, fpst); \ | |||
4007 | old_exc_flags |= get_float_exception_flags(fpst) \ | |||
4008 | & float_flag_input_denormal; \ | |||
4009 | set_float_exception_flags(old_exc_flags, fpst); \ | |||
4010 | return float##fsz##_to_##itype##round(tmp, fpst); \ | |||
4011 | } | |||
4012 | ||||
4013 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ | |||
4014 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |||
4015 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ | |||
4016 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |||
4017 | ||||
4018 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) VFP_CONV_FLOAT_FIX_ROUND (name, p, fsz, isz, itype, ) \ | |||
4019 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |||
4020 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |||
4021 | ||||
4022 | VFP_CONV_FIX(sh, d, 64, 64, int16) | |||
4023 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |||
4024 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64)VFP_CONV_FIX_FLOAT(sq, d, 64, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, d, 64, 64, int64, ) | |||
4025 | VFP_CONV_FIX(uh, d, 64, 64, uint16) | |||
4026 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |||
4027 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)VFP_CONV_FIX_FLOAT(uq, d, 64, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, d, 64, 64, uint64, ) | |||
4028 | VFP_CONV_FIX(sh, s, 32, 32, int16) | |||
4029 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |||
4030 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64)VFP_CONV_FIX_FLOAT(sq, s, 32, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, s, 32, 64, int64, ) | |||
4031 | VFP_CONV_FIX(uh, s, 32, 32, uint16) | |||
4032 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |||
4033 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)VFP_CONV_FIX_FLOAT(uq, s, 32, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, s, 32, 64, uint64, ) | |||
4034 | #undef VFP_CONV_FIX | |||
4035 | #undef VFP_CONV_FIX_FLOAT | |||
4036 | #undef VFP_CONV_FLOAT_FIX_ROUND | |||
4037 | ||||
4038 | /* Set the current fp rounding mode and return the old one. | |||
4039 | * The argument is a softfloat float_round_ value. | |||
4040 | */ | |||
4041 | uint32_t HELPER(set_rmode)helper_set_rmode(uint32_t rmode, CPUARMState *env) | |||
4042 | { | |||
4043 | float_status *fp_status = &env->vfp.fp_status; | |||
4044 | ||||
4045 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |||
4046 | set_float_rounding_mode(rmode, fp_status); | |||
4047 | ||||
4048 | return prev_rmode; | |||
4049 | } | |||
4050 | ||||
4051 | /* Half precision conversions. */ | |||
4052 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) | |||
4053 | { | |||
4054 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; | |||
4055 | float32 r = float16_to_float32(make_float16(a)(a), ieee, s); | |||
4056 | if (ieee) { | |||
4057 | return float32_maybe_silence_nan(r); | |||
4058 | } | |||
4059 | return r; | |||
4060 | } | |||
4061 | ||||
4062 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) | |||
4063 | { | |||
4064 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; | |||
4065 | float16 r = float32_to_float16(a, ieee, s); | |||
4066 | if (ieee) { | |||
4067 | r = float16_maybe_silence_nan(r); | |||
4068 | } | |||
4069 | return float16_val(r)(r); | |||
4070 | } | |||
4071 | ||||
4072 | float32 HELPER(neon_fcvt_f16_to_f32)helper_neon_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) | |||
4073 | { | |||
4074 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |||
4075 | } | |||
4076 | ||||
4077 | uint32_t HELPER(neon_fcvt_f32_to_f16)helper_neon_fcvt_f32_to_f16(float32 a, CPUARMState *env) | |||
4078 | { | |||
4079 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |||
4080 | } | |||
4081 | ||||
4082 | float32 HELPER(vfp_fcvt_f16_to_f32)helper_vfp_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) | |||
4083 | { | |||
4084 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |||
4085 | } | |||
4086 | ||||
4087 | uint32_t HELPER(vfp_fcvt_f32_to_f16)helper_vfp_fcvt_f32_to_f16(float32 a, CPUARMState *env) | |||
4088 | { | |||
4089 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |||
4090 | } | |||
4091 | ||||
4092 | float64 HELPER(vfp_fcvt_f16_to_f64)helper_vfp_fcvt_f16_to_f64(uint32_t a, CPUARMState *env) | |||
4093 | { | |||
4094 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; | |||
4095 | float64 r = float16_to_float64(make_float16(a)(a), ieee, &env->vfp.fp_status); | |||
4096 | if (ieee) { | |||
4097 | return float64_maybe_silence_nan(r); | |||
4098 | } | |||
4099 | return r; | |||
4100 | } | |||
4101 | ||||
4102 | uint32_t HELPER(vfp_fcvt_f64_to_f16)helper_vfp_fcvt_f64_to_f16(float64 a, CPUARMState *env) | |||
4103 | { | |||
4104 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; | |||
4105 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |||
4106 | if (ieee) { | |||
4107 | r = float16_maybe_silence_nan(r); | |||
4108 | } | |||
4109 | return float16_val(r)(r); | |||
4110 | } | |||
4111 | ||||
4112 | #define float32_two(0x40000000) make_float32(0x40000000)(0x40000000) | |||
4113 | #define float32_three(0x40400000) make_float32(0x40400000)(0x40400000) | |||
4114 | #define float32_one_point_five(0x3fc00000) make_float32(0x3fc00000)(0x3fc00000) | |||
4115 | ||||
4116 | float32 HELPER(recps_f32)helper_recps_f32(float32 a, float32 b, CPUARMState *env) | |||
4117 | { | |||
4118 | float_status *s = &env->vfp.standard_fp_status; | |||
4119 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |||
4120 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |||
4121 | if (!(float32_is_zero(a) || float32_is_zero(b))) { | |||
4122 | float_raise(float_flag_input_denormal, s); | |||
4123 | } | |||
4124 | return float32_two(0x40000000); | |||
4125 | } | |||
4126 | return float32_sub(float32_two(0x40000000), float32_mul(a, b, s), s); | |||
4127 | } | |||
4128 | ||||
4129 | float32 HELPER(rsqrts_f32)helper_rsqrts_f32(float32 a, float32 b, CPUARMState *env) | |||
4130 | { | |||
4131 | float_status *s = &env->vfp.standard_fp_status; | |||
4132 | float32 product; | |||
4133 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |||
4134 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |||
4135 | if (!(float32_is_zero(a) || float32_is_zero(b))) { | |||
4136 | float_raise(float_flag_input_denormal, s); | |||
4137 | } | |||
4138 | return float32_one_point_five(0x3fc00000); | |||
4139 | } | |||
4140 | product = float32_mul(a, b, s); | |||
4141 | return float32_div(float32_sub(float32_three(0x40400000), product, s), float32_two(0x40000000), s); | |||
4142 | } | |||
4143 | ||||
4144 | /* NEON helpers. */ | |||
4145 | ||||
4146 | /* Constants 256 and 512 are used in some helpers; we avoid relying on | |||
4147 | * int->float conversions at run-time. */ | |||
4148 | #define float64_256(0x4070000000000000LL) make_float64(0x4070000000000000LL)(0x4070000000000000LL) | |||
4149 | #define float64_512(0x4080000000000000LL) make_float64(0x4080000000000000LL)(0x4080000000000000LL) | |||
4150 | ||||
4151 | /* The algorithm that must be used to calculate the estimate | |||
4152 | * is specified by the ARM ARM. | |||
4153 | */ | |||
4154 | static float64 recip_estimate(float64 a, CPUARMState *env) | |||
4155 | { | |||
4156 | /* These calculations mustn't set any fp exception flags, | |||
4157 | * so we use a local copy of the fp_status. | |||
4158 | */ | |||
4159 | float_status dummy_status = env->vfp.standard_fp_status; | |||
4160 | float_status *s = &dummy_status; | |||
4161 | /* q = (int)(a * 512.0) */ | |||
4162 | float64 q = float64_mul(float64_512(0x4080000000000000LL), a, s); | |||
4163 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |||
4164 | ||||
4165 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |||
4166 | q = int64_to_float64(q_int, s); | |||
4167 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); | |||
4168 | q = float64_div(q, float64_512(0x4080000000000000LL), s); | |||
4169 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); | |||
4170 | ||||
4171 | /* s = (int)(256.0 * r + 0.5) */ | |||
4172 | q = float64_mul(q, float64_256(0x4070000000000000LL), s); | |||
4173 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); | |||
4174 | q_int = float64_to_int64_round_to_zero(q, s); | |||
4175 | ||||
4176 | /* return (double)s / 256.0 */ | |||
4177 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); | |||
4178 | } | |||
4179 | ||||
4180 | float32 HELPER(recpe_f32)helper_recpe_f32(float32 a, CPUARMState *env) | |||
4181 | { | |||
4182 | float_status *s = &env->vfp.standard_fp_status; | |||
4183 | float64 f64; | |||
4184 | uint32_t val32 = float32_val(a)(a); | |||
4185 | ||||
4186 | int result_exp; | |||
4187 | int a_exp = (val32 & 0x7f800000) >> 23; | |||
4188 | int sign = val32 & 0x80000000; | |||
4189 | ||||
4190 | if (float32_is_any_nan(a)) { | |||
4191 | if (float32_is_signaling_nan(a)) { | |||
4192 | float_raise(float_flag_invalid, s); | |||
4193 | } | |||
4194 | return float32_default_nan; | |||
4195 | } else if (float32_is_infinity(a)) { | |||
4196 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); | |||
4197 | } else if (float32_is_zero_or_denormal(a)) { | |||
4198 | if (!float32_is_zero(a)) { | |||
4199 | float_raise(float_flag_input_denormal, s); | |||
4200 | } | |||
4201 | float_raise(float_flag_divbyzero, s); | |||
4202 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); | |||
4203 | } else if (a_exp >= 253) { | |||
4204 | float_raise(float_flag_underflow, s); | |||
4205 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); | |||
4206 | } | |||
4207 | ||||
4208 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)) | |||
4209 | | ((int64_t)(val32 & 0x7fffff) << 29))((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)); | |||
4210 | ||||
4211 | result_exp = 253 - a_exp; | |||
4212 | ||||
4213 | f64 = recip_estimate(f64, env); | |||
4214 | ||||
4215 | val32 = sign | |||
4216 | | ((result_exp & 0xff) << 23) | |||
4217 | | ((float64_val(f64)(f64) >> 29) & 0x7fffff); | |||
4218 | return make_float32(val32)(val32); | |||
4219 | } | |||
4220 | ||||
4221 | /* The algorithm that must be used to calculate the estimate | |||
4222 | * is specified by the ARM ARM. | |||
4223 | */ | |||
4224 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) | |||
4225 | { | |||
4226 | /* These calculations mustn't set any fp exception flags, | |||
4227 | * so we use a local copy of the fp_status. | |||
4228 | */ | |||
4229 | float_status dummy_status = env->vfp.standard_fp_status; | |||
4230 | float_status *s = &dummy_status; | |||
4231 | float64 q; | |||
4232 | int64_t q_int; | |||
4233 | ||||
4234 | if (float64_lt(a, float64_half(0x3fe0000000000000LL), s)) { | |||
4235 | /* range 0.25 <= a < 0.5 */ | |||
4236 | ||||
4237 | /* a in units of 1/512 rounded down */ | |||
4238 | /* q0 = (int)(a * 512.0); */ | |||
4239 | q = float64_mul(float64_512(0x4080000000000000LL), a, s); | |||
4240 | q_int = float64_to_int64_round_to_zero(q, s); | |||
4241 | ||||
4242 | /* reciprocal root r */ | |||
4243 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |||
4244 | q = int64_to_float64(q_int, s); | |||
4245 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); | |||
4246 | q = float64_div(q, float64_512(0x4080000000000000LL), s); | |||
4247 | q = float64_sqrt(q, s); | |||
4248 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); | |||
4249 | } else { | |||
4250 | /* range 0.5 <= a < 1.0 */ | |||
4251 | ||||
4252 | /* a in units of 1/256 rounded down */ | |||
4253 | /* q1 = (int)(a * 256.0); */ | |||
4254 | q = float64_mul(float64_256(0x4070000000000000LL), a, s); | |||
4255 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |||
4256 | ||||
4257 | /* reciprocal root r */ | |||
4258 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |||
4259 | q = int64_to_float64(q_int, s); | |||
4260 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); | |||
4261 | q = float64_div(q, float64_256(0x4070000000000000LL), s); | |||
4262 | q = float64_sqrt(q, s); | |||
4263 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); | |||
4264 | } | |||
4265 | /* r in units of 1/256 rounded to nearest */ | |||
4266 | /* s = (int)(256.0 * r + 0.5); */ | |||
4267 | ||||
4268 | q = float64_mul(q, float64_256(0x4070000000000000LL),s ); | |||
4269 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); | |||
4270 | q_int = float64_to_int64_round_to_zero(q, s); | |||
4271 | ||||
4272 | /* return (double)s / 256.0;*/ | |||
4273 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); | |||
4274 | } | |||
4275 | ||||
4276 | float32 HELPER(rsqrte_f32)helper_rsqrte_f32(float32 a, CPUARMState *env) | |||
4277 | { | |||
4278 | float_status *s = &env->vfp.standard_fp_status; | |||
4279 | int result_exp; | |||
4280 | float64 f64; | |||
4281 | uint32_t val; | |||
4282 | uint64_t val64; | |||
4283 | ||||
4284 | val = float32_val(a)(a); | |||
4285 | ||||
4286 | if (float32_is_any_nan(a)) { | |||
4287 | if (float32_is_signaling_nan(a)) { | |||
4288 | float_raise(float_flag_invalid, s); | |||
4289 | } | |||
4290 | return float32_default_nan; | |||
4291 | } else if (float32_is_zero_or_denormal(a)) { | |||
4292 | if (!float32_is_zero(a)) { | |||
4293 | float_raise(float_flag_input_denormal, s); | |||
4294 | } | |||
4295 | float_raise(float_flag_divbyzero, s); | |||
4296 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); | |||
4297 | } else if (float32_is_neg(a)) { | |||
4298 | float_raise(float_flag_invalid, s); | |||
4299 | return float32_default_nan; | |||
4300 | } else if (float32_is_infinity(a)) { | |||
4301 | return float32_zero(0); | |||
4302 | } | |||
4303 | ||||
4304 | /* Normalize to a double-precision value between 0.25 and 1.0, | |||
4305 | * preserving the parity of the exponent. */ | |||
4306 | if ((val & 0x800000) == 0) { | |||
4307 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) | |||
4308 | | (0x3feULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) | |||
4309 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); | |||
4310 | } else { | |||
4311 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) | |||
4312 | | (0x3fdULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) | |||
4313 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); | |||
4314 | } | |||
4315 | ||||
4316 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |||
4317 | ||||
4318 | f64 = recip_sqrt_estimate(f64, env); | |||
4319 | ||||
4320 | val64 = float64_val(f64)(f64); | |||
4321 | ||||
4322 | val = ((result_exp & 0xff) << 23) | |||
4323 | | ((val64 >> 29) & 0x7fffff); | |||
4324 | return make_float32(val)(val); | |||
4325 | } | |||
4326 | ||||
4327 | uint32_t HELPER(recpe_u32)helper_recpe_u32(uint32_t a, CPUARMState *env) | |||
4328 | { | |||
4329 | float64 f64; | |||
4330 | ||||
4331 | if ((a & 0x80000000) == 0) { | |||
4332 | return 0xffffffff; | |||
4333 | } | |||
4334 | ||||
4335 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)) | |||
4336 | | ((int64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); | |||
4337 | ||||
4338 | f64 = recip_estimate (f64, env); | |||
4339 | ||||
4340 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); | |||
4341 | } | |||
4342 | ||||
4343 | uint32_t HELPER(rsqrte_u32)helper_rsqrte_u32(uint32_t a, CPUARMState *env) | |||
4344 | { | |||
4345 | float64 f64; | |||
4346 | ||||
4347 | if ((a & 0xc0000000) == 0) { | |||
4348 | return 0xffffffff; | |||
4349 | } | |||
4350 | ||||
4351 | if (a & 0x80000000) { | |||
4352 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)) | |||
4353 | | ((uint64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); | |||
4354 | } else { /* bits 31-30 == '01' */ | |||
4355 | f64 = make_float64((0x3fdULL << 52)((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)) | |||
4356 | | ((uint64_t)(a & 0x3fffffff) << 22))((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); | |||
4357 | } | |||
4358 | ||||
4359 | f64 = recip_sqrt_estimate(f64, env); | |||
4360 | ||||
4361 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); | |||
4362 | } | |||
4363 | ||||
4364 | /* VFPv4 fused multiply-accumulate */ | |||
4365 | float32 VFP_HELPER(muladd, s)helper_vfp_muladds(float32 a, float32 b, float32 c, void *fpstp) | |||
4366 | { | |||
4367 | float_status *fpst = fpstp; | |||
4368 | return float32_muladd(a, b, c, 0, fpst); | |||
4369 | } | |||
4370 | ||||
4371 | float64 VFP_HELPER(muladd, d)helper_vfp_muladdd(float64 a, float64 b, float64 c, void *fpstp) | |||
4372 | { | |||
4373 | float_status *fpst = fpstp; | |||
4374 | return float64_muladd(a, b, c, 0, fpst); | |||
4375 | } | |||
4376 | ||||
4377 | /* ARMv8 round to integral */ | |||
4378 | float32 HELPER(rints_exact)helper_rints_exact(float32 x, void *fp_status) | |||
4379 | { | |||
4380 | return float32_round_to_int(x, fp_status); | |||
4381 | } | |||
4382 | ||||
4383 | float64 HELPER(rintd_exact)helper_rintd_exact(float64 x, void *fp_status) | |||
4384 | { | |||
4385 | return float64_round_to_int(x, fp_status); | |||
4386 | } | |||
4387 | ||||
4388 | float32 HELPER(rints)helper_rints(float32 x, void *fp_status) | |||
4389 | { | |||
4390 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |||
4391 | float32 ret; | |||
4392 | ||||
4393 | ret = float32_round_to_int(x, fp_status); | |||
4394 | ||||
4395 | /* Suppress any inexact exceptions the conversion produced */ | |||
4396 | if (!(old_flags & float_flag_inexact)) { | |||
4397 | new_flags = get_float_exception_flags(fp_status); | |||
4398 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |||
4399 | } | |||
4400 | ||||
4401 | return ret; | |||
4402 | } | |||
4403 | ||||
4404 | float64 HELPER(rintd)helper_rintd(float64 x, void *fp_status) | |||
4405 | { | |||
4406 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |||
4407 | float64 ret; | |||
4408 | ||||
4409 | ret = float64_round_to_int(x, fp_status); | |||
4410 | ||||
4411 | new_flags = get_float_exception_flags(fp_status); | |||
4412 | ||||
4413 | /* Suppress any inexact exceptions the conversion produced */ | |||
4414 | if (!(old_flags & float_flag_inexact)) { | |||
4415 | new_flags = get_float_exception_flags(fp_status); | |||
4416 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |||
4417 | } | |||
4418 | ||||
4419 | return ret; | |||
4420 | } |