| File: | linux-user/elfload.c |
| Location: | line 2563, column 5 |
| Description: | Value stored to 'bytes_written' is never read |
| 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
| 2 | #include <sys/time.h> |
| 3 | #include <sys/param.h> |
| 4 | |
| 5 | #include <stdio.h> |
| 6 | #include <sys/types.h> |
| 7 | #include <fcntl.h> |
| 8 | #include <errno(*__errno_location ()).h> |
| 9 | #include <unistd.h> |
| 10 | #include <sys/mman.h> |
| 11 | #include <sys/resource.h> |
| 12 | #include <stdlib.h> |
| 13 | #include <string.h> |
| 14 | #include <time.h> |
| 15 | |
| 16 | #include "qemu.h" |
| 17 | #include "disas/disas.h" |
| 18 | |
| 19 | #ifdef _ARCH_PPC64 |
| 20 | #undef ARCH_DLINFO |
| 21 | #undef ELF_PLATFORM(((void*)0)) |
| 22 | #undef ELF_HWCAP(4 | 8) |
| 23 | #undef ELF_CLASS1 |
| 24 | #undef ELF_DATA1 |
| 25 | #undef ELF_ARCH110 |
| 26 | #endif |
| 27 | |
| 28 | #define ELF_OSABI0 ELFOSABI_SYSV0 |
| 29 | |
| 30 | /* from personality.h */ |
| 31 | |
| 32 | /* |
| 33 | * Flags for bug emulation. |
| 34 | * |
| 35 | * These occupy the top three bytes. |
| 36 | */ |
| 37 | enum { |
| 38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
| 39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to |
| 40 | descriptors (signal handling) */ |
| 41 | MMAP_PAGE_ZERO = 0x0100000, |
| 42 | ADDR_COMPAT_LAYOUT = 0x0200000, |
| 43 | READ_IMPLIES_EXEC = 0x0400000, |
| 44 | ADDR_LIMIT_32BIT = 0x0800000, |
| 45 | SHORT_INODE = 0x1000000, |
| 46 | WHOLE_SECONDS = 0x2000000, |
| 47 | STICKY_TIMEOUTS = 0x4000000, |
| 48 | ADDR_LIMIT_3GB = 0x8000000, |
| 49 | }; |
| 50 | |
| 51 | /* |
| 52 | * Personality types. |
| 53 | * |
| 54 | * These go in the low byte. Avoid using the top bit, it will |
| 55 | * conflict with error returns. |
| 56 | */ |
| 57 | enum { |
| 58 | PER_LINUX = 0x0000, |
| 59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, |
| 60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, |
| 61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| 62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, |
| 63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, |
| 64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, |
| 65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, |
| 66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, |
| 67 | PER_BSD = 0x0006, |
| 68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, |
| 69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, |
| 70 | PER_LINUX32 = 0x0008, |
| 71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, |
| 72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ |
| 73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ |
| 74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ |
| 75 | PER_RISCOS = 0x000c, |
| 76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, |
| 77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| 78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ |
| 79 | PER_HPUX = 0x0010, |
| 80 | PER_MASK = 0x00ff, |
| 81 | }; |
| 82 | |
| 83 | /* |
| 84 | * Return the base personality without flags. |
| 85 | */ |
| 86 | #define personality(pers)(pers & PER_MASK) (pers & PER_MASK) |
| 87 | |
| 88 | /* this flag is uneffective under linux too, should be deleted */ |
| 89 | #ifndef MAP_DENYWRITE0x00800 |
| 90 | #define MAP_DENYWRITE0x00800 0 |
| 91 | #endif |
| 92 | |
| 93 | /* should probably go in elf.h */ |
| 94 | #ifndef ELIBBAD80 |
| 95 | #define ELIBBAD80 80 |
| 96 | #endif |
| 97 | |
| 98 | #ifdef TARGET_WORDS_BIGENDIAN |
| 99 | #define ELF_DATA1 ELFDATA2MSB2 |
| 100 | #else |
| 101 | #define ELF_DATA1 ELFDATA2LSB1 |
| 102 | #endif |
| 103 | |
| 104 | #ifdef TARGET_ABI_MIPSN32 |
| 105 | typedef abi_ullong target_elf_greg_t; |
| 106 | #define tswapreg(ptr)tswapal(ptr) tswap64(ptr) |
| 107 | #else |
| 108 | typedef abi_ulong target_elf_greg_t; |
| 109 | #define tswapreg(ptr)tswapal(ptr) tswapal(ptr) |
| 110 | #endif |
| 111 | |
| 112 | #ifdef USE_UID16 |
| 113 | typedef abi_ushort target_uid_t; |
| 114 | typedef abi_ushort target_gid_t; |
| 115 | #else |
| 116 | typedef abi_uint target_uid_t; |
| 117 | typedef abi_uint target_gid_t; |
| 118 | #endif |
| 119 | typedef abi_int target_pid_t; |
| 120 | |
| 121 | #ifdef TARGET_I386 |
| 122 | |
| 123 | #define ELF_PLATFORM(((void*)0)) get_elf_platform() |
| 124 | |
| 125 | static const char *get_elf_platform(void) |
| 126 | { |
| 127 | static char elf_platform[] = "i386"; |
| 128 | int family = object_property_get_int(OBJECT(thread_cpu)((Object *)(thread_cpu)), "family", NULL((void*)0)); |
| 129 | if (family > 6) |
| 130 | family = 6; |
| 131 | if (family >= 3) |
| 132 | elf_platform[1] = '0' + family; |
| 133 | return elf_platform; |
| 134 | } |
| 135 | |
| 136 | #define ELF_HWCAP(4 | 8) get_elf_hwcap() |
| 137 | |
| 138 | static uint32_t get_elf_hwcap(void) |
| 139 | { |
| 140 | X86CPU *cpu = X86_CPU(thread_cpu); |
| 141 | |
| 142 | return cpu->env.features[FEAT_1_EDX]; |
| 143 | } |
| 144 | |
| 145 | #ifdef TARGET_X86_64 |
| 146 | #define ELF_START_MMAP0x80000000 0x2aaaaab000ULL |
| 147 | #define elf_check_arch(x)((x) == 110) ( ((x) == ELF_ARCH110) ) |
| 148 | |
| 149 | #define ELF_CLASS1 ELFCLASS642 |
| 150 | #define ELF_ARCH110 EM_X86_6462 |
| 151 | |
| 152 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 153 | { |
| 154 | regs->rax = 0; |
| 155 | regs->rsp = infop->start_stack; |
| 156 | regs->rip = infop->entry; |
| 157 | } |
| 158 | |
| 159 | #define ELF_NREG34 27 |
| 160 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 161 | |
| 162 | /* |
| 163 | * Note that ELF_NREG should be 29 as there should be place for |
| 164 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
| 165 | * those. |
| 166 | * |
| 167 | * See linux kernel: arch/x86/include/asm/elf.h |
| 168 | */ |
| 169 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| 170 | { |
| 171 | (*regs)[0] = env->regs[15]; |
| 172 | (*regs)[1] = env->regs[14]; |
| 173 | (*regs)[2] = env->regs[13]; |
| 174 | (*regs)[3] = env->regs[12]; |
| 175 | (*regs)[4] = env->regs[R_EBP]; |
| 176 | (*regs)[5] = env->regs[R_EBX]; |
| 177 | (*regs)[6] = env->regs[11]; |
| 178 | (*regs)[7] = env->regs[10]; |
| 179 | (*regs)[8] = env->regs[9]; |
| 180 | (*regs)[9] = env->regs[8]; |
| 181 | (*regs)[10] = env->regs[R_EAX]; |
| 182 | (*regs)[11] = env->regs[R_ECX]; |
| 183 | (*regs)[12] = env->regs[R_EDX]; |
| 184 | (*regs)[13] = env->regs[R_ESI]; |
| 185 | (*regs)[14] = env->regs[R_EDI]; |
| 186 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ |
| 187 | (*regs)[16] = env->eip; |
| 188 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; |
| 189 | (*regs)[18] = env->eflags; |
| 190 | (*regs)[19] = env->regs[R_ESP]; |
| 191 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; |
| 192 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; |
| 193 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; |
| 194 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; |
| 195 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; |
| 196 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; |
| 197 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; |
| 198 | } |
| 199 | |
| 200 | #else |
| 201 | |
| 202 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 203 | |
| 204 | /* |
| 205 | * This is used to ensure we don't load something for the wrong architecture. |
| 206 | */ |
| 207 | #define elf_check_arch(x)((x) == 110) ( ((x) == EM_3863) || ((x) == EM_4866) ) |
| 208 | |
| 209 | /* |
| 210 | * These are used to set parameters in the core dumps. |
| 211 | */ |
| 212 | #define ELF_CLASS1 ELFCLASS321 |
| 213 | #define ELF_ARCH110 EM_3863 |
| 214 | |
| 215 | static inline void init_thread(struct target_pt_regs *regs, |
| 216 | struct image_info *infop) |
| 217 | { |
| 218 | regs->esp = infop->start_stack; |
| 219 | regs->eip = infop->entry; |
| 220 | |
| 221 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
| 222 | starts %edx contains a pointer to a function which might be |
| 223 | registered using `atexit'. This provides a mean for the |
| 224 | dynamic linker to call DT_FINI functions for shared libraries |
| 225 | that have been loaded before the code runs. |
| 226 | |
| 227 | A value of 0 tells we have no such handler. */ |
| 228 | regs->edx = 0; |
| 229 | } |
| 230 | |
| 231 | #define ELF_NREG34 17 |
| 232 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 233 | |
| 234 | /* |
| 235 | * Note that ELF_NREG should be 19 as there should be place for |
| 236 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
| 237 | * those. |
| 238 | * |
| 239 | * See linux kernel: arch/x86/include/asm/elf.h |
| 240 | */ |
| 241 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| 242 | { |
| 243 | (*regs)[0] = env->regs[R_EBX]; |
| 244 | (*regs)[1] = env->regs[R_ECX]; |
| 245 | (*regs)[2] = env->regs[R_EDX]; |
| 246 | (*regs)[3] = env->regs[R_ESI]; |
| 247 | (*regs)[4] = env->regs[R_EDI]; |
| 248 | (*regs)[5] = env->regs[R_EBP]; |
| 249 | (*regs)[6] = env->regs[R_EAX]; |
| 250 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; |
| 251 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; |
| 252 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; |
| 253 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; |
| 254 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ |
| 255 | (*regs)[12] = env->eip; |
| 256 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; |
| 257 | (*regs)[14] = env->eflags; |
| 258 | (*regs)[15] = env->regs[R_ESP]; |
| 259 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; |
| 260 | } |
| 261 | #endif |
| 262 | |
| 263 | #define USE_ELF_CORE_DUMP |
| 264 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 265 | |
| 266 | #endif |
| 267 | |
| 268 | #ifdef TARGET_ARM |
| 269 | |
| 270 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 271 | |
| 272 | #define elf_check_arch(x)((x) == 110) ((x) == ELF_MACHINE110) |
| 273 | |
| 274 | #define ELF_ARCH110 ELF_MACHINE110 |
| 275 | |
| 276 | #ifdef TARGET_AARCH64 |
| 277 | #define ELF_CLASS1 ELFCLASS642 |
| 278 | #else |
| 279 | #define ELF_CLASS1 ELFCLASS321 |
| 280 | #endif |
| 281 | |
| 282 | static inline void init_thread(struct target_pt_regs *regs, |
| 283 | struct image_info *infop) |
| 284 | { |
| 285 | abi_long stack = infop->start_stack; |
| 286 | memset(regs, 0, sizeof(*regs)); |
| 287 | |
| 288 | #ifdef TARGET_AARCH64 |
| 289 | regs->pc = infop->entry & ~0x3ULL; |
| 290 | regs->sp = stack; |
| 291 | #else |
| 292 | regs->ARM_cpsr = 0x10; |
| 293 | if (infop->entry & 1) |
| 294 | regs->ARM_cpsr |= CPSR_T; |
| 295 | regs->ARM_pc = infop->entry & 0xfffffffe; |
| 296 | regs->ARM_sp = infop->start_stack; |
| 297 | /* FIXME - what to for failure of get_user()? */ |
| 298 | get_user_ual(regs->ARM_r2, stack + 8)({ abi_ulong __gaddr = ((stack + 8)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->ARM_r2))) = (typeof(*__hptr))( __builtin_choose_expr (sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr(sizeof (*(__hptr)) == 2, lduw_le_p, __builtin_choose_expr(sizeof(*(__hptr )) == 4, ldl_le_p, __builtin_choose_expr(sizeof(*(__hptr)) == 8, ldq_le_p, abort)))) (__hptr)), 0); unlock_user(__hptr, __gaddr , 0); } else { ((regs->ARM_r2)) = 0; __ret = -14; } __ret; }); /* envp */ |
| 299 | get_user_ual(regs->ARM_r1, stack + 4)({ abi_ulong __gaddr = ((stack + 4)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->ARM_r1))) = (typeof(*__hptr))( __builtin_choose_expr (sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr(sizeof (*(__hptr)) == 2, lduw_le_p, __builtin_choose_expr(sizeof(*(__hptr )) == 4, ldl_le_p, __builtin_choose_expr(sizeof(*(__hptr)) == 8, ldq_le_p, abort)))) (__hptr)), 0); unlock_user(__hptr, __gaddr , 0); } else { ((regs->ARM_r1)) = 0; __ret = -14; } __ret; }); /* envp */ |
| 300 | /* XXX: it seems that r0 is zeroed after ! */ |
| 301 | regs->ARM_r0 = 0; |
| 302 | /* For uClinux PIC binaries. */ |
| 303 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
| 304 | regs->ARM_r10 = infop->start_data; |
| 305 | #endif |
| 306 | } |
| 307 | |
| 308 | #define ELF_NREG34 18 |
| 309 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 310 | |
| 311 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
| 312 | { |
| 313 | (*regs)[0] = tswapreg(env->regs[0])tswapal(env->regs[0]); |
| 314 | (*regs)[1] = tswapreg(env->regs[1])tswapal(env->regs[1]); |
| 315 | (*regs)[2] = tswapreg(env->regs[2])tswapal(env->regs[2]); |
| 316 | (*regs)[3] = tswapreg(env->regs[3])tswapal(env->regs[3]); |
| 317 | (*regs)[4] = tswapreg(env->regs[4])tswapal(env->regs[4]); |
| 318 | (*regs)[5] = tswapreg(env->regs[5])tswapal(env->regs[5]); |
| 319 | (*regs)[6] = tswapreg(env->regs[6])tswapal(env->regs[6]); |
| 320 | (*regs)[7] = tswapreg(env->regs[7])tswapal(env->regs[7]); |
| 321 | (*regs)[8] = tswapreg(env->regs[8])tswapal(env->regs[8]); |
| 322 | (*regs)[9] = tswapreg(env->regs[9])tswapal(env->regs[9]); |
| 323 | (*regs)[10] = tswapreg(env->regs[10])tswapal(env->regs[10]); |
| 324 | (*regs)[11] = tswapreg(env->regs[11])tswapal(env->regs[11]); |
| 325 | (*regs)[12] = tswapreg(env->regs[12])tswapal(env->regs[12]); |
| 326 | (*regs)[13] = tswapreg(env->regs[13])tswapal(env->regs[13]); |
| 327 | (*regs)[14] = tswapreg(env->regs[14])tswapal(env->regs[14]); |
| 328 | (*regs)[15] = tswapreg(env->regs[15])tswapal(env->regs[15]); |
| 329 | |
| 330 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env))tswapal(cpsr_read((CPUARMState *)env)); |
| 331 | (*regs)[17] = tswapreg(env->regs[0])tswapal(env->regs[0]); /* XXX */ |
| 332 | } |
| 333 | |
| 334 | #define USE_ELF_CORE_DUMP |
| 335 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 336 | |
| 337 | enum |
| 338 | { |
| 339 | ARM_HWCAP_ARM_SWP = 1 << 0, |
| 340 | ARM_HWCAP_ARM_HALF = 1 << 1, |
| 341 | ARM_HWCAP_ARM_THUMB = 1 << 2, |
| 342 | ARM_HWCAP_ARM_26BIT = 1 << 3, |
| 343 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
| 344 | ARM_HWCAP_ARM_FPA = 1 << 5, |
| 345 | ARM_HWCAP_ARM_VFP = 1 << 6, |
| 346 | ARM_HWCAP_ARM_EDSP = 1 << 7, |
| 347 | ARM_HWCAP_ARM_JAVA = 1 << 8, |
| 348 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, |
| 349 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, |
| 350 | ARM_HWCAP_ARM_NEON = 1 << 11, |
| 351 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, |
| 352 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, |
| 353 | }; |
| 354 | |
| 355 | #define TARGET_HAS_VALIDATE_GUEST_SPACE |
| 356 | /* Return 1 if the proposed guest space is suitable for the guest. |
| 357 | * Return 0 if the proposed guest space isn't suitable, but another |
| 358 | * address space should be tried. |
| 359 | * Return -1 if there is no way the proposed guest space can be |
| 360 | * valid regardless of the base. |
| 361 | * The guest code may leave a page mapped and populate it if the |
| 362 | * address is suitable. |
| 363 | */ |
| 364 | static int validate_guest_space(unsigned long guest_base, |
| 365 | unsigned long guest_size) |
| 366 | { |
| 367 | unsigned long real_start, test_page_addr; |
| 368 | |
| 369 | /* We need to check that we can force a fault on access to the |
| 370 | * commpage at 0xffff0fxx |
| 371 | */ |
| 372 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); |
| 373 | |
| 374 | /* If the commpage lies within the already allocated guest space, |
| 375 | * then there is no way we can allocate it. |
| 376 | */ |
| 377 | if (test_page_addr >= guest_base |
| 378 | && test_page_addr <= (guest_base + guest_size)) { |
| 379 | return -1; |
| 380 | } |
| 381 | |
| 382 | /* Note it needs to be writeable to let us initialise it */ |
| 383 | real_start = (unsigned long) |
| 384 | mmap((void *)test_page_addr, qemu_host_page_size, |
| 385 | PROT_READ0x1 | PROT_WRITE0x2, |
| 386 | MAP_ANONYMOUS0x20 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
| 387 | |
| 388 | /* If we can't map it then try another address */ |
| 389 | if (real_start == -1ul) { |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | if (real_start != test_page_addr) { |
| 394 | /* OS didn't put the page where we asked - unmap and reject */ |
| 395 | munmap((void *)real_start, qemu_host_page_size); |
| 396 | return 0; |
| 397 | } |
| 398 | |
| 399 | /* Leave the page mapped |
| 400 | * Populate it (mmap should have left it all 0'd) |
| 401 | */ |
| 402 | |
| 403 | /* Kernel helper versions */ |
| 404 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul))(__builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 1, stb_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 2, stw_le_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 4, stl_le_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 8, stq_le_p , abort)))) (((uint32_t *)((void *)((unsigned long)(target_ulong )(0xffff0ffcul) + guest_base))), (5)), 0); |
| 405 | |
| 406 | /* Now it's populated make it RO */ |
| 407 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ0x1)) { |
| 408 | perror("Protecting guest commpage"); |
| 409 | exit(-1); |
| 410 | } |
| 411 | |
| 412 | return 1; /* All good */ |
| 413 | } |
| 414 | |
| 415 | |
| 416 | #define ELF_HWCAP(4 | 8) get_elf_hwcap() |
| 417 | |
| 418 | static uint32_t get_elf_hwcap(void) |
| 419 | { |
| 420 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
| 421 | uint32_t hwcaps = 0; |
| 422 | |
| 423 | hwcaps |= ARM_HWCAP_ARM_SWP; |
| 424 | hwcaps |= ARM_HWCAP_ARM_HALF; |
| 425 | hwcaps |= ARM_HWCAP_ARM_THUMB; |
| 426 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; |
| 427 | hwcaps |= ARM_HWCAP_ARM_FPA; |
| 428 | |
| 429 | /* probe for the extra features */ |
| 430 | #define GET_FEATURE(feat, hwcap) \ |
| 431 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
| 432 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); |
| 433 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); |
| 434 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); |
| 435 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); |
| 436 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); |
| 437 | GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16); |
| 438 | #undef GET_FEATURE |
| 439 | |
| 440 | return hwcaps; |
| 441 | } |
| 442 | |
| 443 | #endif |
| 444 | |
| 445 | #ifdef TARGET_UNICORE321 |
| 446 | |
| 447 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 448 | |
| 449 | #define elf_check_arch(x)((x) == 110) ((x) == EM_UNICORE32110) |
| 450 | |
| 451 | #define ELF_CLASS1 ELFCLASS321 |
| 452 | #define ELF_DATA1 ELFDATA2LSB1 |
| 453 | #define ELF_ARCH110 EM_UNICORE32110 |
| 454 | |
| 455 | static inline void init_thread(struct target_pt_regs *regs, |
| 456 | struct image_info *infop) |
| 457 | { |
| 458 | abi_long stack = infop->start_stack; |
| 459 | memset(regs, 0, sizeof(*regs)); |
| 460 | regs->UC32_REG_asruregs[32] = 0x10; |
| 461 | regs->UC32_REG_pcuregs[31] = infop->entry & 0xfffffffe; |
| 462 | regs->UC32_REG_spuregs[29] = infop->start_stack; |
| 463 | /* FIXME - what to for failure of get_user()? */ |
| 464 | get_user_ual(regs->UC32_REG_02, stack + 8)({ abi_ulong __gaddr = ((stack + 8)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->uregs[2]))) = (typeof(*__hptr)) ( __builtin_choose_expr(sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr (sizeof(*(__hptr)) == 2, lduw_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 4, ldl_le_p, __builtin_choose_expr(sizeof(*(__hptr )) == 8, ldq_le_p, abort)))) (__hptr)), 0); unlock_user(__hptr , __gaddr, 0); } else { ((regs->uregs[2])) = 0; __ret = -14 ; } __ret; }); /* envp */ |
| 465 | get_user_ual(regs->UC32_REG_01, stack + 4)({ abi_ulong __gaddr = ((stack + 4)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->uregs[1]))) = (typeof(*__hptr)) ( __builtin_choose_expr(sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr (sizeof(*(__hptr)) == 2, lduw_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 4, ldl_le_p, __builtin_choose_expr(sizeof(*(__hptr )) == 8, ldq_le_p, abort)))) (__hptr)), 0); unlock_user(__hptr , __gaddr, 0); } else { ((regs->uregs[1])) = 0; __ret = -14 ; } __ret; }); /* envp */ |
| 466 | /* XXX: it seems that r0 is zeroed after ! */ |
| 467 | regs->UC32_REG_00uregs[0] = 0; |
| 468 | } |
| 469 | |
| 470 | #define ELF_NREG34 34 |
| 471 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 472 | |
| 473 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) |
| 474 | { |
| 475 | (*regs)[0] = env->regs[0]; |
| 476 | (*regs)[1] = env->regs[1]; |
| 477 | (*regs)[2] = env->regs[2]; |
| 478 | (*regs)[3] = env->regs[3]; |
| 479 | (*regs)[4] = env->regs[4]; |
| 480 | (*regs)[5] = env->regs[5]; |
| 481 | (*regs)[6] = env->regs[6]; |
| 482 | (*regs)[7] = env->regs[7]; |
| 483 | (*regs)[8] = env->regs[8]; |
| 484 | (*regs)[9] = env->regs[9]; |
| 485 | (*regs)[10] = env->regs[10]; |
| 486 | (*regs)[11] = env->regs[11]; |
| 487 | (*regs)[12] = env->regs[12]; |
| 488 | (*regs)[13] = env->regs[13]; |
| 489 | (*regs)[14] = env->regs[14]; |
| 490 | (*regs)[15] = env->regs[15]; |
| 491 | (*regs)[16] = env->regs[16]; |
| 492 | (*regs)[17] = env->regs[17]; |
| 493 | (*regs)[18] = env->regs[18]; |
| 494 | (*regs)[19] = env->regs[19]; |
| 495 | (*regs)[20] = env->regs[20]; |
| 496 | (*regs)[21] = env->regs[21]; |
| 497 | (*regs)[22] = env->regs[22]; |
| 498 | (*regs)[23] = env->regs[23]; |
| 499 | (*regs)[24] = env->regs[24]; |
| 500 | (*regs)[25] = env->regs[25]; |
| 501 | (*regs)[26] = env->regs[26]; |
| 502 | (*regs)[27] = env->regs[27]; |
| 503 | (*regs)[28] = env->regs[28]; |
| 504 | (*regs)[29] = env->regs[29]; |
| 505 | (*regs)[30] = env->regs[30]; |
| 506 | (*regs)[31] = env->regs[31]; |
| 507 | |
| 508 | (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); |
| 509 | (*regs)[33] = env->regs[0]; /* XXX */ |
| 510 | } |
| 511 | |
| 512 | #define USE_ELF_CORE_DUMP |
| 513 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 514 | |
| 515 | #define ELF_HWCAP(4 | 8) (UC32_HWCAP_CMOV4 | UC32_HWCAP_UCF648) |
| 516 | |
| 517 | #endif |
| 518 | |
| 519 | #ifdef TARGET_SPARC |
| 520 | #ifdef TARGET_SPARC64 |
| 521 | |
| 522 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 523 | #define ELF_HWCAP(4 | 8) (HWCAP_SPARC_FLUSH1 | HWCAP_SPARC_STBAR2 | HWCAP_SPARC_SWAP4 \ |
| 524 | | HWCAP_SPARC_MULDIV8 | HWCAP_SPARC_V916) |
| 525 | #ifndef TARGET_ABI321 |
| 526 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_SPARCV943 || (x) == EM_SPARC32PLUS18 ) |
| 527 | #else |
| 528 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_SPARC32PLUS18 || (x) == EM_SPARC2 ) |
| 529 | #endif |
| 530 | |
| 531 | #define ELF_CLASS1 ELFCLASS642 |
| 532 | #define ELF_ARCH110 EM_SPARCV943 |
| 533 | |
| 534 | #define STACK_BIAS 2047 |
| 535 | |
| 536 | static inline void init_thread(struct target_pt_regs *regs, |
| 537 | struct image_info *infop) |
| 538 | { |
| 539 | #ifndef TARGET_ABI321 |
| 540 | regs->tstate = 0; |
| 541 | #endif |
| 542 | regs->pc = infop->entry; |
| 543 | regs->npc = regs->pc + 4; |
| 544 | regs->y = 0; |
| 545 | #ifdef TARGET_ABI321 |
| 546 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 547 | #else |
| 548 | if (personality(infop->personality)(infop->personality & PER_MASK) == PER_LINUX32) |
| 549 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 550 | else |
| 551 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; |
| 552 | #endif |
| 553 | } |
| 554 | |
| 555 | #else |
| 556 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 557 | #define ELF_HWCAP(4 | 8) (HWCAP_SPARC_FLUSH1 | HWCAP_SPARC_STBAR2 | HWCAP_SPARC_SWAP4 \ |
| 558 | | HWCAP_SPARC_MULDIV8) |
| 559 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_SPARC2 ) |
| 560 | |
| 561 | #define ELF_CLASS1 ELFCLASS321 |
| 562 | #define ELF_ARCH110 EM_SPARC2 |
| 563 | |
| 564 | static inline void init_thread(struct target_pt_regs *regs, |
| 565 | struct image_info *infop) |
| 566 | { |
| 567 | regs->psr = 0; |
| 568 | regs->pc = infop->entry; |
| 569 | regs->npc = regs->pc + 4; |
| 570 | regs->y = 0; |
| 571 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
| 572 | } |
| 573 | |
| 574 | #endif |
| 575 | #endif |
| 576 | |
| 577 | #ifdef TARGET_PPC |
| 578 | |
| 579 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 580 | |
| 581 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI321) |
| 582 | |
| 583 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_PPC6421 ) |
| 584 | |
| 585 | #define ELF_CLASS1 ELFCLASS642 |
| 586 | |
| 587 | #else |
| 588 | |
| 589 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_PPC20 ) |
| 590 | |
| 591 | #define ELF_CLASS1 ELFCLASS321 |
| 592 | |
| 593 | #endif |
| 594 | |
| 595 | #define ELF_ARCH110 EM_PPC20 |
| 596 | |
| 597 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
| 598 | See arch/powerpc/include/asm/cputable.h. */ |
| 599 | enum { |
| 600 | QEMU_PPC_FEATURE_32 = 0x80000000, |
| 601 | QEMU_PPC_FEATURE_64 = 0x40000000, |
| 602 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, |
| 603 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, |
| 604 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, |
| 605 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, |
| 606 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, |
| 607 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, |
| 608 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, |
| 609 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, |
| 610 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, |
| 611 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, |
| 612 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, |
| 613 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, |
| 614 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, |
| 615 | QEMU_PPC_FEATURE_CELL = 0x00010000, |
| 616 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, |
| 617 | QEMU_PPC_FEATURE_SMT = 0x00004000, |
| 618 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, |
| 619 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, |
| 620 | QEMU_PPC_FEATURE_PA6T = 0x00000800, |
| 621 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, |
| 622 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, |
| 623 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, |
| 624 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, |
| 625 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, |
| 626 | |
| 627 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, |
| 628 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, |
| 629 | }; |
| 630 | |
| 631 | #define ELF_HWCAP(4 | 8) get_elf_hwcap() |
| 632 | |
| 633 | static uint32_t get_elf_hwcap(void) |
| 634 | { |
| 635 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
| 636 | uint32_t features = 0; |
| 637 | |
| 638 | /* We don't have to be terribly complete here; the high points are |
| 639 | Altivec/FP/SPE support. Anything else is just a bonus. */ |
| 640 | #define GET_FEATURE(flag, feature) \ |
| 641 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
| 642 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
| 643 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); |
| 644 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); |
| 645 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); |
| 646 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); |
| 647 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); |
| 648 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); |
| 649 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); |
| 650 | #undef GET_FEATURE |
| 651 | |
| 652 | return features; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * The requirements here are: |
| 657 | * - keep the final alignment of sp (sp & 0xf) |
| 658 | * - make sure the 32-bit value at the first 16 byte aligned position of |
| 659 | * AUXV is greater than 16 for glibc compatibility. |
| 660 | * AT_IGNOREPPC is used for that. |
| 661 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
| 662 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
| 663 | */ |
| 664 | #define DLINFO_ARCH_ITEMS 5 |
| 665 | #define ARCH_DLINFO \ |
| 666 | do { \ |
| 667 | NEW_AUX_ENT(AT_DCACHEBSIZE19, 0x20); \ |
| 668 | NEW_AUX_ENT(AT_ICACHEBSIZE20, 0x20); \ |
| 669 | NEW_AUX_ENT(AT_UCACHEBSIZE21, 0); \ |
| 670 | /* \ |
| 671 | * Now handle glibc compatibility. \ |
| 672 | */ \ |
| 673 | NEW_AUX_ENT(AT_IGNOREPPC22, AT_IGNOREPPC22); \ |
| 674 | NEW_AUX_ENT(AT_IGNOREPPC22, AT_IGNOREPPC22); \ |
| 675 | } while (0) |
| 676 | |
| 677 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
| 678 | { |
| 679 | _regs->gpr[1] = infop->start_stack; |
| 680 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI321) |
| 681 | _regs->gpr[2] = ldq_raw(infop->entry + 8)ldq_le_p(((void *)((unsigned long)(target_ulong)((infop->entry + 8)) + guest_base))) + infop->load_bias; |
| 682 | infop->entry = ldq_raw(infop->entry)ldq_le_p(((void *)((unsigned long)(target_ulong)((infop->entry )) + guest_base))) + infop->load_bias; |
| 683 | #endif |
| 684 | _regs->nip = infop->entry; |
| 685 | } |
| 686 | |
| 687 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
| 688 | #define ELF_NREG34 48 |
| 689 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 690 | |
| 691 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
| 692 | { |
| 693 | int i; |
| 694 | target_ulong ccr = 0; |
| 695 | |
| 696 | for (i = 0; i < ARRAY_SIZE(env->gpr)(sizeof(env->gpr) / sizeof((env->gpr)[0])); i++) { |
| 697 | (*regs)[i] = tswapreg(env->gpr[i])tswapal(env->gpr[i]); |
| 698 | } |
| 699 | |
| 700 | (*regs)[32] = tswapreg(env->nip)tswapal(env->nip); |
| 701 | (*regs)[33] = tswapreg(env->msr)tswapal(env->msr); |
| 702 | (*regs)[35] = tswapreg(env->ctr)tswapal(env->ctr); |
| 703 | (*regs)[36] = tswapreg(env->lr)tswapal(env->lr); |
| 704 | (*regs)[37] = tswapreg(env->xer)tswapal(env->xer); |
| 705 | |
| 706 | for (i = 0; i < ARRAY_SIZE(env->crf)(sizeof(env->crf) / sizeof((env->crf)[0])); i++) { |
| 707 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| 708 | } |
| 709 | (*regs)[38] = tswapreg(ccr)tswapal(ccr); |
| 710 | } |
| 711 | |
| 712 | #define USE_ELF_CORE_DUMP |
| 713 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 714 | |
| 715 | #endif |
| 716 | |
| 717 | #ifdef TARGET_MIPS |
| 718 | |
| 719 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 720 | |
| 721 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_MIPS8 ) |
| 722 | |
| 723 | #ifdef TARGET_MIPS64 |
| 724 | #define ELF_CLASS1 ELFCLASS642 |
| 725 | #else |
| 726 | #define ELF_CLASS1 ELFCLASS321 |
| 727 | #endif |
| 728 | #define ELF_ARCH110 EM_MIPS8 |
| 729 | |
| 730 | static inline void init_thread(struct target_pt_regs *regs, |
| 731 | struct image_info *infop) |
| 732 | { |
| 733 | regs->cp0_status = 2 << CP0St_KSU; |
| 734 | regs->cp0_epc = infop->entry; |
| 735 | regs->regs[29] = infop->start_stack; |
| 736 | } |
| 737 | |
| 738 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
| 739 | #define ELF_NREG34 45 |
| 740 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 741 | |
| 742 | /* See linux kernel: arch/mips/include/asm/reg.h. */ |
| 743 | enum { |
| 744 | #ifdef TARGET_MIPS64 |
| 745 | TARGET_EF_R0 = 0, |
| 746 | #else |
| 747 | TARGET_EF_R0 = 6, |
| 748 | #endif |
| 749 | TARGET_EF_R26 = TARGET_EF_R0 + 26, |
| 750 | TARGET_EF_R27 = TARGET_EF_R0 + 27, |
| 751 | TARGET_EF_LO = TARGET_EF_R0 + 32, |
| 752 | TARGET_EF_HI = TARGET_EF_R0 + 33, |
| 753 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, |
| 754 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, |
| 755 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, |
| 756 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 |
| 757 | }; |
| 758 | |
| 759 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| 760 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
| 761 | { |
| 762 | int i; |
| 763 | |
| 764 | for (i = 0; i < TARGET_EF_R0; i++) { |
| 765 | (*regs)[i] = 0; |
| 766 | } |
| 767 | (*regs)[TARGET_EF_R0] = 0; |
| 768 | |
| 769 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr)(sizeof(env->active_tc.gpr) / sizeof((env->active_tc.gpr )[0])); i++) { |
| 770 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i])tswapal(env->active_tc.gpr[i]); |
| 771 | } |
| 772 | |
| 773 | (*regs)[TARGET_EF_R26] = 0; |
| 774 | (*regs)[TARGET_EF_R27] = 0; |
| 775 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0])tswapal(env->active_tc.LO[0]); |
| 776 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0])tswapal(env->active_tc.HI[0]); |
| 777 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC)tswapal(env->active_tc.PC); |
| 778 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr)tswapal(env->CP0_BadVAddr); |
| 779 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status)tswapal(env->CP0_Status); |
| 780 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause)tswapal(env->CP0_Cause); |
| 781 | } |
| 782 | |
| 783 | #define USE_ELF_CORE_DUMP |
| 784 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 785 | |
| 786 | #endif /* TARGET_MIPS */ |
| 787 | |
| 788 | #ifdef TARGET_MICROBLAZE |
| 789 | |
| 790 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 791 | |
| 792 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_MICROBLAZE189 || (x) == EM_MICROBLAZE_OLD0xBAAB) |
| 793 | |
| 794 | #define ELF_CLASS1 ELFCLASS321 |
| 795 | #define ELF_ARCH110 EM_MICROBLAZE189 |
| 796 | |
| 797 | static inline void init_thread(struct target_pt_regs *regs, |
| 798 | struct image_info *infop) |
| 799 | { |
| 800 | regs->pc = infop->entry; |
| 801 | regs->r1 = infop->start_stack; |
| 802 | |
| 803 | } |
| 804 | |
| 805 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 806 | |
| 807 | #define USE_ELF_CORE_DUMP |
| 808 | #define ELF_NREG34 38 |
| 809 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 810 | |
| 811 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| 812 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
| 813 | { |
| 814 | int i, pos = 0; |
| 815 | |
| 816 | for (i = 0; i < 32; i++) { |
| 817 | (*regs)[pos++] = tswapreg(env->regs[i])tswapal(env->regs[i]); |
| 818 | } |
| 819 | |
| 820 | for (i = 0; i < 6; i++) { |
| 821 | (*regs)[pos++] = tswapreg(env->sregs[i])tswapal(env->sregs[i]); |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | #endif /* TARGET_MICROBLAZE */ |
| 826 | |
| 827 | #ifdef TARGET_OPENRISC |
| 828 | |
| 829 | #define ELF_START_MMAP0x80000000 0x08000000 |
| 830 | |
| 831 | #define elf_check_arch(x)((x) == 110) ((x) == EM_OPENRISC92) |
| 832 | |
| 833 | #define ELF_ARCH110 EM_OPENRISC92 |
| 834 | #define ELF_CLASS1 ELFCLASS321 |
| 835 | #define ELF_DATA1 ELFDATA2MSB2 |
| 836 | |
| 837 | static inline void init_thread(struct target_pt_regs *regs, |
| 838 | struct image_info *infop) |
| 839 | { |
| 840 | regs->pc = infop->entry; |
| 841 | regs->gpr[1] = infop->start_stack; |
| 842 | } |
| 843 | |
| 844 | #define USE_ELF_CORE_DUMP |
| 845 | #define ELF_EXEC_PAGESIZE4096 8192 |
| 846 | |
| 847 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ |
| 848 | #define ELF_NREG34 34 /* gprs and pc, sr */ |
| 849 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 850 | |
| 851 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 852 | const CPUOpenRISCState *env) |
| 853 | { |
| 854 | int i; |
| 855 | |
| 856 | for (i = 0; i < 32; i++) { |
| 857 | (*regs)[i] = tswapreg(env->gpr[i])tswapal(env->gpr[i]); |
| 858 | } |
| 859 | |
| 860 | (*regs)[32] = tswapreg(env->pc)tswapal(env->pc); |
| 861 | (*regs)[33] = tswapreg(env->sr)tswapal(env->sr); |
| 862 | } |
| 863 | #define ELF_HWCAP(4 | 8) 0 |
| 864 | #define ELF_PLATFORM(((void*)0)) NULL((void*)0) |
| 865 | |
| 866 | #endif /* TARGET_OPENRISC */ |
| 867 | |
| 868 | #ifdef TARGET_SH4 |
| 869 | |
| 870 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 871 | |
| 872 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_SH42 ) |
| 873 | |
| 874 | #define ELF_CLASS1 ELFCLASS321 |
| 875 | #define ELF_ARCH110 EM_SH42 |
| 876 | |
| 877 | static inline void init_thread(struct target_pt_regs *regs, |
| 878 | struct image_info *infop) |
| 879 | { |
| 880 | /* Check other registers XXXXX */ |
| 881 | regs->pc = infop->entry; |
| 882 | regs->regs[15] = infop->start_stack; |
| 883 | } |
| 884 | |
| 885 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
| 886 | #define ELF_NREG34 23 |
| 887 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 888 | |
| 889 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ |
| 890 | enum { |
| 891 | TARGET_REG_PC = 16, |
| 892 | TARGET_REG_PR = 17, |
| 893 | TARGET_REG_SR = 18, |
| 894 | TARGET_REG_GBR = 19, |
| 895 | TARGET_REG_MACH = 20, |
| 896 | TARGET_REG_MACL = 21, |
| 897 | TARGET_REG_SYSCALL = 22 |
| 898 | }; |
| 899 | |
| 900 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
| 901 | const CPUSH4State *env) |
| 902 | { |
| 903 | int i; |
| 904 | |
| 905 | for (i = 0; i < 16; i++) { |
| 906 | (*regs[i]) = tswapreg(env->gregs[i])tswapal(env->gregs[i]); |
| 907 | } |
| 908 | |
| 909 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc)tswapal(env->pc); |
| 910 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr)tswapal(env->pr); |
| 911 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr)tswapal(env->sr); |
| 912 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr)tswapal(env->gbr); |
| 913 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach)tswapal(env->mach); |
| 914 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl)tswapal(env->macl); |
| 915 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
| 916 | } |
| 917 | |
| 918 | #define USE_ELF_CORE_DUMP |
| 919 | #define ELF_EXEC_PAGESIZE4096 4096 |
| 920 | |
| 921 | #endif |
| 922 | |
| 923 | #ifdef TARGET_CRIS |
| 924 | |
| 925 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 926 | |
| 927 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_CRIS76 ) |
| 928 | |
| 929 | #define ELF_CLASS1 ELFCLASS321 |
| 930 | #define ELF_ARCH110 EM_CRIS76 |
| 931 | |
| 932 | static inline void init_thread(struct target_pt_regs *regs, |
| 933 | struct image_info *infop) |
| 934 | { |
| 935 | regs->erp = infop->entry; |
| 936 | } |
| 937 | |
| 938 | #define ELF_EXEC_PAGESIZE4096 8192 |
| 939 | |
| 940 | #endif |
| 941 | |
| 942 | #ifdef TARGET_M68K |
| 943 | |
| 944 | #define ELF_START_MMAP0x80000000 0x80000000 |
| 945 | |
| 946 | #define elf_check_arch(x)((x) == 110) ( (x) == EM_68K4 ) |
| 947 | |
| 948 | #define ELF_CLASS1 ELFCLASS321 |
| 949 | #define ELF_ARCH110 EM_68K4 |
| 950 | |
| 951 | /* ??? Does this need to do anything? |
| 952 | #define ELF_PLAT_INIT(_r) */ |
| 953 | |
| 954 | static inline void init_thread(struct target_pt_regs *regs, |
| 955 | struct image_info *infop) |
| 956 | { |
| 957 | regs->usp = infop->start_stack; |
| 958 | regs->sr = 0; |
| 959 | regs->pc = infop->entry; |
| 960 | } |
| 961 | |
| 962 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
| 963 | #define ELF_NREG34 20 |
| 964 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG34]; |
| 965 | |
| 966 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
| 967 | { |
| 968 | (*regs)[0] = tswapreg(env->dregs[1])tswapal(env->dregs[1]); |
| 969 | (*regs)[1] = tswapreg(env->dregs[2])tswapal(env->dregs[2]); |
| 970 | (*regs)[2] = tswapreg(env->dregs[3])tswapal(env->dregs[3]); |
| 971 | (*regs)[3] = tswapreg(env->dregs[4])tswapal(env->dregs[4]); |
| 972 | (*regs)[4] = tswapreg(env->dregs[5])tswapal(env->dregs[5]); |
| 973 | (*regs)[5] = tswapreg(env->dregs[6])tswapal(env->dregs[6]); |
| 974 | (*regs)[6] = tswapreg(env->dregs[7])tswapal(env->dregs[7]); |
| 975 | (*regs)[7] = tswapreg(env->aregs[0])tswapal(env->aregs[0]); |
| 976 | (*regs)[8] = tswapreg(env->aregs[1])tswapal(env->aregs[1]); |
| 977 | (*regs)[9] = tswapreg(env->aregs[2])tswapal(env->aregs[2]); |
| 978 | (*regs)[10] = tswapreg(env->aregs[3])tswapal(env->aregs[3]); |
| 979 | (*regs)[11] = tswapreg(env->aregs[4])tswapal(env->aregs[4]); |
| 980 | (*regs)[12] = tswapreg(env->aregs[5])tswapal(env->aregs[5]); |
| 981 | (*regs)[13] = tswapreg(env->aregs[6])tswapal(env->aregs[6]); |
| 982 | (*regs)[14] = tswapreg(env->dregs[0])tswapal(env->dregs[0]); |
| 983 | (*regs)[15] = tswapreg(env->aregs[7])tswapal(env->aregs[7]); |
| 984 | (*regs)[16] = tswapreg(env->dregs[0])tswapal(env->dregs[0]); /* FIXME: orig_d0 */ |
| 985 | (*regs)[17] = tswapreg(env->sr)tswapal(env->sr); |
| 986 | (*regs)[18] = tswapreg(env->pc)tswapal(env->pc); |
| 987 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
| 988 | } |
| 989 | |
| 990 | #define USE_ELF_CORE_DUMP |
| 991 | #define ELF_EXEC_PAGESIZE4096 8192 |
| 992 | |
| 993 | #endif |
| 994 | |
| 995 | #ifdef TARGET_ALPHA |
| 996 | |
| 997 | #define ELF_START_MMAP0x80000000 (0x30000000000ULL) |
| 998 | |
| 999 | #define elf_check_arch(x)((x) == 110) ( (x) == ELF_ARCH110 ) |
| 1000 | |
| 1001 | #define ELF_CLASS1 ELFCLASS642 |
| 1002 | #define ELF_ARCH110 EM_ALPHA0x9026 |
| 1003 | |
| 1004 | static inline void init_thread(struct target_pt_regs *regs, |
| 1005 | struct image_info *infop) |
| 1006 | { |
| 1007 | regs->pc = infop->entry; |
| 1008 | regs->ps = 8; |
| 1009 | regs->usp = infop->start_stack; |
| 1010 | } |
| 1011 | |
| 1012 | #define ELF_EXEC_PAGESIZE4096 8192 |
| 1013 | |
| 1014 | #endif /* TARGET_ALPHA */ |
| 1015 | |
| 1016 | #ifdef TARGET_S390X |
| 1017 | |
| 1018 | #define ELF_START_MMAP0x80000000 (0x20000000000ULL) |
| 1019 | |
| 1020 | #define elf_check_arch(x)((x) == 110) ( (x) == ELF_ARCH110 ) |
| 1021 | |
| 1022 | #define ELF_CLASS1 ELFCLASS642 |
| 1023 | #define ELF_DATA1 ELFDATA2MSB2 |
| 1024 | #define ELF_ARCH110 EM_S39022 |
| 1025 | |
| 1026 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 1027 | { |
| 1028 | regs->psw.addr = infop->entry; |
| 1029 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; |
| 1030 | regs->gprs[15] = infop->start_stack; |
| 1031 | } |
| 1032 | |
| 1033 | #endif /* TARGET_S390X */ |
| 1034 | |
| 1035 | #ifndef ELF_PLATFORM(((void*)0)) |
| 1036 | #define ELF_PLATFORM(((void*)0)) (NULL((void*)0)) |
| 1037 | #endif |
| 1038 | |
| 1039 | #ifndef ELF_HWCAP(4 | 8) |
| 1040 | #define ELF_HWCAP(4 | 8) 0 |
| 1041 | #endif |
| 1042 | |
| 1043 | #ifdef TARGET_ABI321 |
| 1044 | #undef ELF_CLASS1 |
| 1045 | #define ELF_CLASS1 ELFCLASS321 |
| 1046 | #undef bswaptls |
| 1047 | #define bswaptls(ptr)bswap32s(ptr) bswap32s(ptr) |
| 1048 | #endif |
| 1049 | |
| 1050 | #include "elf.h" |
| 1051 | |
| 1052 | struct exec |
| 1053 | { |
| 1054 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
| 1055 | unsigned int a_text; /* length of text, in bytes */ |
| 1056 | unsigned int a_data; /* length of data, in bytes */ |
| 1057 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
| 1058 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
| 1059 | unsigned int a_entry; /* start address */ |
| 1060 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
| 1061 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
| 1062 | }; |
| 1063 | |
| 1064 | |
| 1065 | #define N_MAGIC(exec)((exec).a_info & 0xffff) ((exec).a_info & 0xffff) |
| 1066 | #define OMAGIC0407 0407 |
| 1067 | #define NMAGIC0410 0410 |
| 1068 | #define ZMAGIC0413 0413 |
| 1069 | #define QMAGIC0314 0314 |
| 1070 | |
| 1071 | /* Necessary parameters */ |
| 1072 | #define TARGET_ELF_EXEC_PAGESIZE(1 << 12) TARGET_PAGE_SIZE(1 << 12) |
| 1073 | #define TARGET_ELF_PAGESTART(_v)((_v) & ~(unsigned long)((1 << 12)-1)) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE(1 << 12)-1)) |
| 1074 | #define TARGET_ELF_PAGEOFFSET(_v)((_v) & ((1 << 12)-1)) ((_v) & (TARGET_ELF_EXEC_PAGESIZE(1 << 12)-1)) |
| 1075 | |
| 1076 | #define DLINFO_ITEMS13 13 |
| 1077 | |
| 1078 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
| 1079 | { |
| 1080 | memcpy(to, from, n); |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef BSWAP_NEEDED |
| 1084 | static void bswap_ehdr(struct elfhdrelf32_hdr *ehdr) |
| 1085 | { |
| 1086 | bswap16s(&ehdr->e_type); /* Object file type */ |
| 1087 | bswap16s(&ehdr->e_machine); /* Architecture */ |
| 1088 | bswap32s(&ehdr->e_version); /* Object file version */ |
| 1089 | bswaptls(&ehdr->e_entry)bswap32s(&ehdr->e_entry); /* Entry point virtual address */ |
| 1090 | bswaptls(&ehdr->e_phoff)bswap32s(&ehdr->e_phoff); /* Program header table file offset */ |
| 1091 | bswaptls(&ehdr->e_shoff)bswap32s(&ehdr->e_shoff); /* Section header table file offset */ |
| 1092 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| 1093 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| 1094 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| 1095 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| 1096 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| 1097 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| 1098 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| 1099 | } |
| 1100 | |
| 1101 | static void bswap_phdr(struct elf_phdrelf32_phdr *phdr, int phnum) |
| 1102 | { |
| 1103 | int i; |
| 1104 | for (i = 0; i < phnum; ++i, ++phdr) { |
| 1105 | bswap32s(&phdr->p_type); /* Segment type */ |
| 1106 | bswap32s(&phdr->p_flags); /* Segment flags */ |
| 1107 | bswaptls(&phdr->p_offset)bswap32s(&phdr->p_offset); /* Segment file offset */ |
| 1108 | bswaptls(&phdr->p_vaddr)bswap32s(&phdr->p_vaddr); /* Segment virtual address */ |
| 1109 | bswaptls(&phdr->p_paddr)bswap32s(&phdr->p_paddr); /* Segment physical address */ |
| 1110 | bswaptls(&phdr->p_filesz)bswap32s(&phdr->p_filesz); /* Segment size in file */ |
| 1111 | bswaptls(&phdr->p_memsz)bswap32s(&phdr->p_memsz); /* Segment size in memory */ |
| 1112 | bswaptls(&phdr->p_align)bswap32s(&phdr->p_align); /* Segment alignment */ |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | static void bswap_shdr(struct elf_shdrelf32_shdr *shdr, int shnum) |
| 1117 | { |
| 1118 | int i; |
| 1119 | for (i = 0; i < shnum; ++i, ++shdr) { |
| 1120 | bswap32s(&shdr->sh_name); |
| 1121 | bswap32s(&shdr->sh_type); |
| 1122 | bswaptls(&shdr->sh_flags)bswap32s(&shdr->sh_flags); |
| 1123 | bswaptls(&shdr->sh_addr)bswap32s(&shdr->sh_addr); |
| 1124 | bswaptls(&shdr->sh_offset)bswap32s(&shdr->sh_offset); |
| 1125 | bswaptls(&shdr->sh_size)bswap32s(&shdr->sh_size); |
| 1126 | bswap32s(&shdr->sh_link); |
| 1127 | bswap32s(&shdr->sh_info); |
| 1128 | bswaptls(&shdr->sh_addralign)bswap32s(&shdr->sh_addralign); |
| 1129 | bswaptls(&shdr->sh_entsize)bswap32s(&shdr->sh_entsize); |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | static void bswap_sym(struct elf_symelf32_sym *sym) |
| 1134 | { |
| 1135 | bswap32s(&sym->st_name); |
| 1136 | bswaptls(&sym->st_value)bswap32s(&sym->st_value); |
| 1137 | bswaptls(&sym->st_size)bswap32s(&sym->st_size); |
| 1138 | bswap16s(&sym->st_shndx); |
| 1139 | } |
| 1140 | #else |
| 1141 | static inline void bswap_ehdr(struct elfhdrelf32_hdr *ehdr) { } |
| 1142 | static inline void bswap_phdr(struct elf_phdrelf32_phdr *phdr, int phnum) { } |
| 1143 | static inline void bswap_shdr(struct elf_shdrelf32_shdr *shdr, int shnum) { } |
| 1144 | static inline void bswap_sym(struct elf_symelf32_sym *sym) { } |
| 1145 | #endif |
| 1146 | |
| 1147 | #ifdef USE_ELF_CORE_DUMP |
| 1148 | static int elf_core_dump(int, const CPUArchStatestruct CPUUniCore32State *); |
| 1149 | #endif /* USE_ELF_CORE_DUMP */ |
| 1150 | static void load_symbols(struct elfhdrelf32_hdr *hdr, int fd, abi_ulong load_bias); |
| 1151 | |
| 1152 | /* Verify the portions of EHDR within E_IDENT for the target. |
| 1153 | This can be performed before bswapping the entire header. */ |
| 1154 | static bool_Bool elf_check_ident(struct elfhdrelf32_hdr *ehdr) |
| 1155 | { |
| 1156 | return (ehdr->e_ident[EI_MAG00] == ELFMAG00x7f |
| 1157 | && ehdr->e_ident[EI_MAG11] == ELFMAG1'E' |
| 1158 | && ehdr->e_ident[EI_MAG22] == ELFMAG2'L' |
| 1159 | && ehdr->e_ident[EI_MAG33] == ELFMAG3'F' |
| 1160 | && ehdr->e_ident[EI_CLASS4] == ELF_CLASS1 |
| 1161 | && ehdr->e_ident[EI_DATA5] == ELF_DATA1 |
| 1162 | && ehdr->e_ident[EI_VERSION6] == EV_CURRENT1); |
| 1163 | } |
| 1164 | |
| 1165 | /* Verify the portions of EHDR outside of E_IDENT for the target. |
| 1166 | This has to wait until after bswapping the header. */ |
| 1167 | static bool_Bool elf_check_ehdr(struct elfhdrelf32_hdr *ehdr) |
| 1168 | { |
| 1169 | return (elf_check_arch(ehdr->e_machine)((ehdr->e_machine) == 110) |
| 1170 | && ehdr->e_ehsize == sizeof(struct elfhdrelf32_hdr) |
| 1171 | && ehdr->e_phentsize == sizeof(struct elf_phdrelf32_phdr) |
| 1172 | && ehdr->e_shentsize == sizeof(struct elf_shdrelf32_shdr) |
| 1173 | && (ehdr->e_type == ET_EXEC2 || ehdr->e_type == ET_DYN3)); |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * 'copy_elf_strings()' copies argument/envelope strings from user |
| 1178 | * memory to free pages in kernel mem. These are in a format ready |
| 1179 | * to be put directly into the top of new user memory. |
| 1180 | * |
| 1181 | */ |
| 1182 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
| 1183 | abi_ulong p) |
| 1184 | { |
| 1185 | char *tmp, *tmp1, *pag = NULL((void*)0); |
| 1186 | int len, offset = 0; |
| 1187 | |
| 1188 | if (!p) { |
| 1189 | return 0; /* bullet-proofing */ |
| 1190 | } |
| 1191 | while (argc-- > 0) { |
| 1192 | tmp = argv[argc]; |
| 1193 | if (!tmp) { |
| 1194 | fprintf(stderrstderr, "VFS: argc is wrong"); |
| 1195 | exit(-1); |
| 1196 | } |
| 1197 | tmp1 = tmp; |
| 1198 | while (*tmp++); |
| 1199 | len = tmp - tmp1; |
| 1200 | if (p < len) { /* this shouldn't happen - 128kB */ |
| 1201 | return 0; |
| 1202 | } |
| 1203 | while (len) { |
| 1204 | --p; --tmp; --len; |
| 1205 | if (--offset < 0) { |
| 1206 | offset = p % TARGET_PAGE_SIZE(1 << 12); |
| 1207 | pag = (char *)page[p/TARGET_PAGE_SIZE(1 << 12)]; |
| 1208 | if (!pag) { |
| 1209 | pag = g_try_malloc0(TARGET_PAGE_SIZE(1 << 12)); |
| 1210 | page[p/TARGET_PAGE_SIZE(1 << 12)] = pag; |
| 1211 | if (!pag) |
| 1212 | return 0; |
| 1213 | } |
| 1214 | } |
| 1215 | if (len == 0 || offset == 0) { |
| 1216 | *(pag + offset) = *tmp; |
| 1217 | } |
| 1218 | else { |
| 1219 | int bytes_to_copy = (len > offset) ? offset : len; |
| 1220 | tmp -= bytes_to_copy; |
| 1221 | p -= bytes_to_copy; |
| 1222 | offset -= bytes_to_copy; |
| 1223 | len -= bytes_to_copy; |
| 1224 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); |
| 1225 | } |
| 1226 | } |
| 1227 | } |
| 1228 | return p; |
| 1229 | } |
| 1230 | |
| 1231 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
| 1232 | struct image_info *info) |
| 1233 | { |
| 1234 | abi_ulong stack_base, size, error, guard; |
| 1235 | int i; |
| 1236 | |
| 1237 | /* Create enough stack to hold everything. If we don't use |
| 1238 | it for args, we'll use it for something else. */ |
| 1239 | size = guest_stack_size; |
| 1240 | if (size < MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12)) { |
| 1241 | size = MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12); |
| 1242 | } |
| 1243 | guard = TARGET_PAGE_SIZE(1 << 12); |
| 1244 | if (guard < qemu_real_host_page_size) { |
| 1245 | guard = qemu_real_host_page_size; |
| 1246 | } |
| 1247 | |
| 1248 | error = target_mmap(0, size + guard, PROT_READ0x1 | PROT_WRITE0x2, |
| 1249 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
| 1250 | if (error == -1) { |
| 1251 | perror("mmap stack"); |
| 1252 | exit(-1); |
| 1253 | } |
| 1254 | |
| 1255 | /* We reserve one extra page at the top of the stack as guard. */ |
| 1256 | target_mprotect(error, guard, PROT_NONE0x0); |
| 1257 | |
| 1258 | info->stack_limit = error + guard; |
| 1259 | stack_base = info->stack_limit + size - MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12); |
| 1260 | p += stack_base; |
| 1261 | |
| 1262 | for (i = 0 ; i < MAX_ARG_PAGES33 ; i++) { |
| 1263 | if (bprm->page[i]) { |
| 1264 | info->rss++; |
| 1265 | /* FIXME - check return value of memcpy_to_target() for failure */ |
| 1266 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE(1 << 12)); |
| 1267 | g_free(bprm->page[i]); |
| 1268 | } |
| 1269 | stack_base += TARGET_PAGE_SIZE(1 << 12); |
| 1270 | } |
| 1271 | return p; |
| 1272 | } |
| 1273 | |
| 1274 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
| 1275 | after the data section (i.e. bss). */ |
| 1276 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) |
| 1277 | { |
| 1278 | uintptr_t host_start, host_map_start, host_end; |
| 1279 | |
| 1280 | last_bss = TARGET_PAGE_ALIGN(last_bss)(((last_bss) + (1 << 12) - 1) & ~((1 << 12) - 1)); |
| 1281 | |
| 1282 | /* ??? There is confusion between qemu_real_host_page_size and |
| 1283 | qemu_host_page_size here and elsewhere in target_mmap, which |
| 1284 | may lead to the end of the data section mapping from the file |
| 1285 | not being mapped. At least there was an explicit test and |
| 1286 | comment for that here, suggesting that "the file size must |
| 1287 | be known". The comment probably pre-dates the introduction |
| 1288 | of the fstat system call in target_mmap which does in fact |
| 1289 | find out the size. What isn't clear is if the workaround |
| 1290 | here is still actually needed. For now, continue with it, |
| 1291 | but merge it with the "normal" mmap that would allocate the bss. */ |
| 1292 | |
| 1293 | host_start = (uintptr_t) g2h(elf_bss)((void *)((unsigned long)(target_ulong)(elf_bss) + guest_base )); |
| 1294 | host_end = (uintptr_t) g2h(last_bss)((void *)((unsigned long)(target_ulong)(last_bss) + guest_base )); |
| 1295 | host_map_start = (host_start + qemu_real_host_page_size - 1); |
| 1296 | host_map_start &= -qemu_real_host_page_size; |
| 1297 | |
| 1298 | if (host_map_start < host_end) { |
| 1299 | void *p = mmap((void *)host_map_start, host_end - host_map_start, |
| 1300 | prot, MAP_FIXED0x10 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
| 1301 | if (p == MAP_FAILED((void *) -1)) { |
| 1302 | perror("cannot mmap brk"); |
| 1303 | exit(-1); |
| 1304 | } |
| 1305 | |
| 1306 | /* Since we didn't use target_mmap, make sure to record |
| 1307 | the validity of the pages with qemu. */ |
| 1308 | page_set_flags(elf_bss & TARGET_PAGE_MASK~((1 << 12) - 1), last_bss, prot|PAGE_VALID0x0008); |
| 1309 | } |
| 1310 | |
| 1311 | if (host_start < host_map_start) { |
| 1312 | memset((void *)host_start, 0, host_map_start - host_start); |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | #ifdef CONFIG_USE_FDPIC |
| 1317 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
| 1318 | { |
| 1319 | uint16_t n; |
| 1320 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; |
| 1321 | |
| 1322 | /* elf32_fdpic_loadseg */ |
| 1323 | n = info->nsegs; |
| 1324 | while (n--) { |
| 1325 | sp -= 12; |
| 1326 | put_user_u32(loadsegs[n].addr, sp+0)({ abi_ulong __gaddr = ((sp+0)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((loadsegs[ n].addr)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
| 1327 | put_user_u32(loadsegs[n].p_vaddr, sp+4)({ abi_ulong __gaddr = ((sp+4)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((loadsegs[ n].p_vaddr)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
| 1328 | put_user_u32(loadsegs[n].p_memsz, sp+8)({ abi_ulong __gaddr = ((sp+8)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((loadsegs[ n].p_memsz)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
| 1329 | } |
| 1330 | |
| 1331 | /* elf32_fdpic_loadmap */ |
| 1332 | sp -= 4; |
| 1333 | put_user_u16(0, sp+0)({ abi_ulong __gaddr = ((sp+0)); uint16_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint16_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((0)))), 0) ; unlock_user(__hptr, __gaddr, sizeof(uint16_t)); } else __ret = -14; __ret; }); /* version */ |
| 1334 | put_user_u16(info->nsegs, sp+2)({ abi_ulong __gaddr = ((sp+2)); uint16_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint16_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((info-> nsegs)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint16_t)) ; } else __ret = -14; __ret; }); /* nsegs */ |
| 1335 | |
| 1336 | info->personality = PER_LINUX_FDPIC; |
| 1337 | info->loadmap_addr = sp; |
| 1338 | |
| 1339 | return sp; |
| 1340 | } |
| 1341 | #endif |
| 1342 | |
| 1343 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
| 1344 | struct elfhdrelf32_hdr *exec, |
| 1345 | struct image_info *info, |
| 1346 | struct image_info *interp_info) |
| 1347 | { |
| 1348 | abi_ulong sp; |
| 1349 | abi_ulong sp_auxv; |
| 1350 | int size; |
| 1351 | int i; |
| 1352 | abi_ulong u_rand_bytes; |
| 1353 | uint8_t k_rand_bytes[16]; |
| 1354 | abi_ulong u_platform; |
| 1355 | const char *k_platform; |
| 1356 | const int n = sizeof(elf_addr_tElf32_Off); |
| 1357 | |
| 1358 | sp = p; |
| 1359 | |
| 1360 | #ifdef CONFIG_USE_FDPIC |
| 1361 | /* Needs to be before we load the env/argc/... */ |
| 1362 | if (elf_is_fdpic(exec)) { |
| 1363 | /* Need 4 byte alignment for these structs */ |
| 1364 | sp &= ~3; |
| 1365 | sp = loader_build_fdpic_loadmap(info, sp); |
| 1366 | info->other_info = interp_info; |
| 1367 | if (interp_info) { |
| 1368 | interp_info->other_info = info; |
| 1369 | sp = loader_build_fdpic_loadmap(interp_info, sp); |
| 1370 | } |
| 1371 | } |
| 1372 | #endif |
| 1373 | |
| 1374 | u_platform = 0; |
| 1375 | k_platform = ELF_PLATFORM(((void*)0)); |
| 1376 | if (k_platform) { |
| 1377 | size_t len = strlen(k_platform) + 1; |
| 1378 | sp -= (len + n - 1) & ~(n - 1); |
| 1379 | u_platform = sp; |
| 1380 | /* FIXME - check return value of memcpy_to_target() for failure */ |
| 1381 | memcpy_to_target(sp, k_platform, len); |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Generate 16 random bytes for userspace PRNG seeding (not |
| 1386 | * cryptically secure but it's not the aim of QEMU). |
| 1387 | */ |
| 1388 | srand((unsigned int) time(NULL((void*)0))); |
| 1389 | for (i = 0; i < 16; i++) { |
| 1390 | k_rand_bytes[i] = rand(); |
| 1391 | } |
| 1392 | sp -= 16; |
| 1393 | u_rand_bytes = sp; |
| 1394 | /* FIXME - check return value of memcpy_to_target() for failure */ |
| 1395 | memcpy_to_target(sp, k_rand_bytes, 16); |
| 1396 | |
| 1397 | /* |
| 1398 | * Force 16 byte _final_ alignment here for generality. |
| 1399 | */ |
| 1400 | sp = sp &~ (abi_ulong)15; |
| 1401 | size = (DLINFO_ITEMS13 + 1) * 2; |
| 1402 | if (k_platform) |
| 1403 | size += 2; |
| 1404 | #ifdef DLINFO_ARCH_ITEMS |
| 1405 | size += DLINFO_ARCH_ITEMS * 2; |
| 1406 | #endif |
| 1407 | size += envc + argc + 2; |
| 1408 | size += 1; /* argc itself */ |
| 1409 | size *= n; |
| 1410 | if (size & 15) |
| 1411 | sp -= 16 - (size & 15); |
| 1412 | |
| 1413 | /* This is correct because Linux defines |
| 1414 | * elf_addr_t as Elf32_Off / Elf64_Off |
| 1415 | */ |
| 1416 | #define NEW_AUX_ENT(id, val) do { \ |
| 1417 | sp -= n; put_user_ual(val, sp)({ abi_ulong __gaddr = ((sp)); abi_ulong *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(abi_ulong), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((val)))), 0 ); unlock_user(__hptr, __gaddr, sizeof(abi_ulong)); } else __ret = -14; __ret; }); \ |
| 1418 | sp -= n; put_user_ual(id, sp)({ abi_ulong __gaddr = ((sp)); abi_ulong *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(abi_ulong), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_le_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_le_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_le_p, abort)))) ((__hptr), (((id)))), 0 ); unlock_user(__hptr, __gaddr, sizeof(abi_ulong)); } else __ret = -14; __ret; }); \ |
| 1419 | } while(0) |
| 1420 | |
| 1421 | sp_auxv = sp; |
| 1422 | NEW_AUX_ENT (AT_NULL0, 0); |
| 1423 | |
| 1424 | /* There must be exactly DLINFO_ITEMS entries here. */ |
| 1425 | NEW_AUX_ENT(AT_PHDR3, (abi_ulong)(info->load_addr + exec->e_phoff)); |
| 1426 | NEW_AUX_ENT(AT_PHENT4, (abi_ulong)(sizeof (struct elf_phdrelf32_phdr))); |
| 1427 | NEW_AUX_ENT(AT_PHNUM5, (abi_ulong)(exec->e_phnum)); |
| 1428 | NEW_AUX_ENT(AT_PAGESZ6, (abi_ulong)(TARGET_PAGE_SIZE(1 << 12))); |
| 1429 | NEW_AUX_ENT(AT_BASE7, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
| 1430 | NEW_AUX_ENT(AT_FLAGS8, (abi_ulong)0); |
| 1431 | NEW_AUX_ENT(AT_ENTRY9, info->entry); |
| 1432 | NEW_AUX_ENT(AT_UID11, (abi_ulong) getuid()); |
| 1433 | NEW_AUX_ENT(AT_EUID12, (abi_ulong) geteuid()); |
| 1434 | NEW_AUX_ENT(AT_GID13, (abi_ulong) getgid()); |
| 1435 | NEW_AUX_ENT(AT_EGID14, (abi_ulong) getegid()); |
| 1436 | NEW_AUX_ENT(AT_HWCAP16, (abi_ulong) ELF_HWCAP(4 | 8)); |
| 1437 | NEW_AUX_ENT(AT_CLKTCK17, (abi_ulong) sysconf(_SC_CLK_TCK_SC_CLK_TCK)); |
| 1438 | NEW_AUX_ENT(AT_RANDOM25, (abi_ulong) u_rand_bytes); |
| 1439 | |
| 1440 | if (k_platform) |
| 1441 | NEW_AUX_ENT(AT_PLATFORM15, u_platform); |
| 1442 | #ifdef ARCH_DLINFO |
| 1443 | /* |
| 1444 | * ARCH_DLINFO must come last so platform specific code can enforce |
| 1445 | * special alignment requirements on the AUXV if necessary (eg. PPC). |
| 1446 | */ |
| 1447 | ARCH_DLINFO; |
| 1448 | #endif |
| 1449 | #undef NEW_AUX_ENT |
| 1450 | |
| 1451 | info->saved_auxv = sp; |
| 1452 | info->auxv_len = sp_auxv - sp; |
| 1453 | |
| 1454 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
| 1455 | return sp; |
| 1456 | } |
| 1457 | |
| 1458 | #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE |
| 1459 | /* If the guest doesn't have a validation function just agree */ |
| 1460 | static int validate_guest_space(unsigned long guest_base, |
| 1461 | unsigned long guest_size) |
| 1462 | { |
| 1463 | return 1; |
| 1464 | } |
| 1465 | #endif |
| 1466 | |
| 1467 | unsigned long init_guest_space(unsigned long host_start, |
| 1468 | unsigned long host_size, |
| 1469 | unsigned long guest_start, |
| 1470 | bool_Bool fixed) |
| 1471 | { |
| 1472 | unsigned long current_start, real_start; |
| 1473 | int flags; |
| 1474 | |
| 1475 | assert(host_start || host_size)((host_start || host_size) ? (void) (0) : __assert_fail ("host_start || host_size" , "/home/stefan/src/qemu/qemu.org/qemu/linux-user/elfload.c", 1475, __PRETTY_FUNCTION__)); |
| 1476 | |
| 1477 | /* If just a starting address is given, then just verify that |
| 1478 | * address. */ |
| 1479 | if (host_start && !host_size) { |
| 1480 | if (validate_guest_space(host_start, host_size) == 1) { |
| 1481 | return host_start; |
| 1482 | } else { |
| 1483 | return (unsigned long)-1; |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | /* Setup the initial flags and start address. */ |
| 1488 | current_start = host_start & qemu_host_page_mask; |
| 1489 | flags = MAP_ANONYMOUS0x20 | MAP_PRIVATE0x02 | MAP_NORESERVE0x04000; |
| 1490 | if (fixed) { |
| 1491 | flags |= MAP_FIXED0x10; |
| 1492 | } |
| 1493 | |
| 1494 | /* Otherwise, a non-zero size region of memory needs to be mapped |
| 1495 | * and validated. */ |
| 1496 | while (1) { |
| 1497 | unsigned long real_size = host_size; |
| 1498 | |
| 1499 | /* Do not use mmap_find_vma here because that is limited to the |
| 1500 | * guest address space. We are going to make the |
| 1501 | * guest address space fit whatever we're given. |
| 1502 | */ |
| 1503 | real_start = (unsigned long) |
| 1504 | mmap((void *)current_start, host_size, PROT_NONE0x0, flags, -1, 0); |
| 1505 | if (real_start == (unsigned long)-1) { |
| 1506 | return (unsigned long)-1; |
| 1507 | } |
| 1508 | |
| 1509 | /* Ensure the address is properly aligned. */ |
| 1510 | if (real_start & ~qemu_host_page_mask) { |
| 1511 | munmap((void *)real_start, host_size); |
| 1512 | real_size = host_size + qemu_host_page_size; |
| 1513 | real_start = (unsigned long) |
| 1514 | mmap((void *)real_start, real_size, PROT_NONE0x0, flags, -1, 0); |
| 1515 | if (real_start == (unsigned long)-1) { |
| 1516 | return (unsigned long)-1; |
| 1517 | } |
| 1518 | real_start = HOST_PAGE_ALIGN(real_start)(((real_start) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
| 1519 | } |
| 1520 | |
| 1521 | /* Check to see if the address is valid. */ |
| 1522 | if (!host_start || real_start == current_start) { |
| 1523 | int valid = validate_guest_space(real_start - guest_start, |
| 1524 | real_size); |
| 1525 | if (valid == 1) { |
| 1526 | break; |
| 1527 | } else if (valid == -1) { |
| 1528 | return (unsigned long)-1; |
| 1529 | } |
| 1530 | /* valid == 0, so try again. */ |
| 1531 | } |
| 1532 | |
| 1533 | /* That address didn't work. Unmap and try a different one. |
| 1534 | * The address the host picked because is typically right at |
| 1535 | * the top of the host address space and leaves the guest with |
| 1536 | * no usable address space. Resort to a linear search. We |
| 1537 | * already compensated for mmap_min_addr, so this should not |
| 1538 | * happen often. Probably means we got unlucky and host |
| 1539 | * address space randomization put a shared library somewhere |
| 1540 | * inconvenient. |
| 1541 | */ |
| 1542 | munmap((void *)real_start, host_size); |
| 1543 | current_start += qemu_host_page_size; |
| 1544 | if (host_start == current_start) { |
| 1545 | /* Theoretically possible if host doesn't have any suitably |
| 1546 | * aligned areas. Normally the first mmap will fail. |
| 1547 | */ |
| 1548 | return (unsigned long)-1; |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); |
| 1553 | |
| 1554 | return real_start; |
| 1555 | } |
| 1556 | |
| 1557 | static void probe_guest_base(const char *image_name, |
| 1558 | abi_ulong loaddr, abi_ulong hiaddr) |
| 1559 | { |
| 1560 | /* Probe for a suitable guest base address, if the user has not set |
| 1561 | * it explicitly, and set guest_base appropriately. |
| 1562 | * In case of error we will print a suitable message and exit. |
| 1563 | */ |
| 1564 | #if defined(CONFIG_USE_GUEST_BASE1) |
| 1565 | const char *errmsg; |
| 1566 | if (!have_guest_base && !reserved_va) { |
| 1567 | unsigned long host_start, real_start, host_size; |
| 1568 | |
| 1569 | /* Round addresses to page boundaries. */ |
| 1570 | loaddr &= qemu_host_page_mask; |
| 1571 | hiaddr = HOST_PAGE_ALIGN(hiaddr)(((hiaddr) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
| 1572 | |
| 1573 | if (loaddr < mmap_min_addr) { |
| 1574 | host_start = HOST_PAGE_ALIGN(mmap_min_addr)(((mmap_min_addr) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
| 1575 | } else { |
| 1576 | host_start = loaddr; |
| 1577 | if (host_start != loaddr) { |
| 1578 | errmsg = "Address overflow loading ELF binary"; |
| 1579 | goto exit_errmsg; |
| 1580 | } |
| 1581 | } |
| 1582 | host_size = hiaddr - loaddr; |
| 1583 | |
| 1584 | /* Setup the initial guest memory space with ranges gleaned from |
| 1585 | * the ELF image that is being loaded. |
| 1586 | */ |
| 1587 | real_start = init_guest_space(host_start, host_size, loaddr, false0); |
| 1588 | if (real_start == (unsigned long)-1) { |
| 1589 | errmsg = "Unable to find space for application"; |
| 1590 | goto exit_errmsg; |
| 1591 | } |
| 1592 | guest_base = real_start - loaddr; |
| 1593 | |
| 1594 | qemu_log("Relocating guest address space from 0x" |
| 1595 | TARGET_ABI_FMT_lx"%08x" " to 0x%lx\n", |
| 1596 | loaddr, real_start); |
| 1597 | } |
| 1598 | return; |
| 1599 | |
| 1600 | exit_errmsg: |
| 1601 | fprintf(stderrstderr, "%s: %s\n", image_name, errmsg); |
| 1602 | exit(-1); |
| 1603 | #endif |
| 1604 | } |
| 1605 | |
| 1606 | |
| 1607 | /* Load an ELF image into the address space. |
| 1608 | |
| 1609 | IMAGE_NAME is the filename of the image, to use in error messages. |
| 1610 | IMAGE_FD is the open file descriptor for the image. |
| 1611 | |
| 1612 | BPRM_BUF is a copy of the beginning of the file; this of course |
| 1613 | contains the elf file header at offset 0. It is assumed that this |
| 1614 | buffer is sufficiently aligned to present no problems to the host |
| 1615 | in accessing data at aligned offsets within the buffer. |
| 1616 | |
| 1617 | On return: INFO values will be filled in, as necessary or available. */ |
| 1618 | |
| 1619 | static void load_elf_image(const char *image_name, int image_fd, |
| 1620 | struct image_info *info, char **pinterp_name, |
| 1621 | char bprm_buf[BPRM_BUF_SIZE1024]) |
| 1622 | { |
| 1623 | struct elfhdrelf32_hdr *ehdr = (struct elfhdrelf32_hdr *)bprm_buf; |
| 1624 | struct elf_phdrelf32_phdr *phdr; |
| 1625 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; |
| 1626 | int i, retval; |
| 1627 | const char *errmsg; |
| 1628 | |
| 1629 | /* First of all, some simple consistency checks */ |
| 1630 | errmsg = "Invalid ELF image for this architecture"; |
| 1631 | if (!elf_check_ident(ehdr)) { |
| 1632 | goto exit_errmsg; |
| 1633 | } |
| 1634 | bswap_ehdr(ehdr); |
| 1635 | if (!elf_check_ehdr(ehdr)) { |
| 1636 | goto exit_errmsg; |
| 1637 | } |
| 1638 | |
| 1639 | i = ehdr->e_phnum * sizeof(struct elf_phdrelf32_phdr); |
| 1640 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE1024) { |
| 1641 | phdr = (struct elf_phdrelf32_phdr *)(bprm_buf + ehdr->e_phoff); |
| 1642 | } else { |
| 1643 | phdr = (struct elf_phdrelf32_phdr *) alloca(i)__builtin_alloca (i); |
| 1644 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); |
| 1645 | if (retval != i) { |
| 1646 | goto exit_read; |
| 1647 | } |
| 1648 | } |
| 1649 | bswap_phdr(phdr, ehdr->e_phnum); |
| 1650 | |
| 1651 | #ifdef CONFIG_USE_FDPIC |
| 1652 | info->nsegs = 0; |
| 1653 | info->pt_dynamic_addr = 0; |
| 1654 | #endif |
| 1655 | |
| 1656 | /* Find the maximum size of the image and allocate an appropriate |
| 1657 | amount of memory to handle that. */ |
| 1658 | loaddr = -1, hiaddr = 0; |
| 1659 | for (i = 0; i < ehdr->e_phnum; ++i) { |
| 1660 | if (phdr[i].p_type == PT_LOAD1) { |
| 1661 | abi_ulong a = phdr[i].p_vaddr; |
| 1662 | if (a < loaddr) { |
| 1663 | loaddr = a; |
| 1664 | } |
| 1665 | a += phdr[i].p_memsz; |
| 1666 | if (a > hiaddr) { |
| 1667 | hiaddr = a; |
| 1668 | } |
| 1669 | #ifdef CONFIG_USE_FDPIC |
| 1670 | ++info->nsegs; |
| 1671 | #endif |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | load_addr = loaddr; |
| 1676 | if (ehdr->e_type == ET_DYN3) { |
| 1677 | /* The image indicates that it can be loaded anywhere. Find a |
| 1678 | location that can hold the memory space required. If the |
| 1679 | image is pre-linked, LOADDR will be non-zero. Since we do |
| 1680 | not supply MAP_FIXED here we'll use that address if and |
| 1681 | only if it remains available. */ |
| 1682 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE0x0, |
| 1683 | MAP_PRIVATE0x02 | MAP_ANON0x20 | MAP_NORESERVE0x04000, |
| 1684 | -1, 0); |
| 1685 | if (load_addr == -1) { |
| 1686 | goto exit_perror; |
| 1687 | } |
| 1688 | } else if (pinterp_name != NULL((void*)0)) { |
| 1689 | /* This is the main executable. Make sure that the low |
| 1690 | address does not conflict with MMAP_MIN_ADDR or the |
| 1691 | QEMU application itself. */ |
| 1692 | probe_guest_base(image_name, loaddr, hiaddr); |
| 1693 | } |
| 1694 | load_bias = load_addr - loaddr; |
| 1695 | |
| 1696 | #ifdef CONFIG_USE_FDPIC |
| 1697 | { |
| 1698 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
| 1699 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
| 1700 | |
| 1701 | for (i = 0; i < ehdr->e_phnum; ++i) { |
| 1702 | switch (phdr[i].p_type) { |
| 1703 | case PT_DYNAMIC2: |
| 1704 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; |
| 1705 | break; |
| 1706 | case PT_LOAD1: |
| 1707 | loadsegs->addr = phdr[i].p_vaddr + load_bias; |
| 1708 | loadsegs->p_vaddr = phdr[i].p_vaddr; |
| 1709 | loadsegs->p_memsz = phdr[i].p_memsz; |
| 1710 | ++loadsegs; |
| 1711 | break; |
| 1712 | } |
| 1713 | } |
| 1714 | } |
| 1715 | #endif |
| 1716 | |
| 1717 | info->load_bias = load_bias; |
| 1718 | info->load_addr = load_addr; |
| 1719 | info->entry = ehdr->e_entry + load_bias; |
| 1720 | info->start_code = -1; |
| 1721 | info->end_code = 0; |
| 1722 | info->start_data = -1; |
| 1723 | info->end_data = 0; |
| 1724 | info->brk = 0; |
| 1725 | info->elf_flags = ehdr->e_flags; |
| 1726 | |
| 1727 | for (i = 0; i < ehdr->e_phnum; i++) { |
| 1728 | struct elf_phdrelf32_phdr *eppnt = phdr + i; |
| 1729 | if (eppnt->p_type == PT_LOAD1) { |
| 1730 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
| 1731 | int elf_prot = 0; |
| 1732 | |
| 1733 | if (eppnt->p_flags & PF_R0x4) elf_prot = PROT_READ0x1; |
| 1734 | if (eppnt->p_flags & PF_W0x2) elf_prot |= PROT_WRITE0x2; |
| 1735 | if (eppnt->p_flags & PF_X0x1) elf_prot |= PROT_EXEC0x4; |
| 1736 | |
| 1737 | vaddr = load_bias + eppnt->p_vaddr; |
| 1738 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr)((vaddr) & ((1 << 12)-1)); |
| 1739 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr)((vaddr) & ~(unsigned long)((1 << 12)-1)); |
| 1740 | |
| 1741 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, |
| 1742 | elf_prot, MAP_PRIVATE0x02 | MAP_FIXED0x10, |
| 1743 | image_fd, eppnt->p_offset - vaddr_po); |
| 1744 | if (error == -1) { |
| 1745 | goto exit_perror; |
| 1746 | } |
| 1747 | |
| 1748 | vaddr_ef = vaddr + eppnt->p_filesz; |
| 1749 | vaddr_em = vaddr + eppnt->p_memsz; |
| 1750 | |
| 1751 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
| 1752 | if (vaddr_ef < vaddr_em) { |
| 1753 | zero_bss(vaddr_ef, vaddr_em, elf_prot); |
| 1754 | } |
| 1755 | |
| 1756 | /* Find the full program boundaries. */ |
| 1757 | if (elf_prot & PROT_EXEC0x4) { |
| 1758 | if (vaddr < info->start_code) { |
| 1759 | info->start_code = vaddr; |
| 1760 | } |
| 1761 | if (vaddr_ef > info->end_code) { |
| 1762 | info->end_code = vaddr_ef; |
| 1763 | } |
| 1764 | } |
| 1765 | if (elf_prot & PROT_WRITE0x2) { |
| 1766 | if (vaddr < info->start_data) { |
| 1767 | info->start_data = vaddr; |
| 1768 | } |
| 1769 | if (vaddr_ef > info->end_data) { |
| 1770 | info->end_data = vaddr_ef; |
| 1771 | } |
| 1772 | if (vaddr_em > info->brk) { |
| 1773 | info->brk = vaddr_em; |
| 1774 | } |
| 1775 | } |
| 1776 | } else if (eppnt->p_type == PT_INTERP3 && pinterp_name) { |
| 1777 | char *interp_name; |
| 1778 | |
| 1779 | if (*pinterp_name) { |
| 1780 | errmsg = "Multiple PT_INTERP entries"; |
| 1781 | goto exit_errmsg; |
| 1782 | } |
| 1783 | interp_name = malloc(eppnt->p_filesz); |
| 1784 | if (!interp_name) { |
| 1785 | goto exit_perror; |
| 1786 | } |
| 1787 | |
| 1788 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE1024) { |
| 1789 | memcpy(interp_name, bprm_buf + eppnt->p_offset, |
| 1790 | eppnt->p_filesz); |
| 1791 | } else { |
| 1792 | retval = pread(image_fd, interp_name, eppnt->p_filesz, |
| 1793 | eppnt->p_offset); |
| 1794 | if (retval != eppnt->p_filesz) { |
| 1795 | goto exit_perror; |
| 1796 | } |
| 1797 | } |
| 1798 | if (interp_name[eppnt->p_filesz - 1] != 0) { |
| 1799 | errmsg = "Invalid PT_INTERP entry"; |
| 1800 | goto exit_errmsg; |
| 1801 | } |
| 1802 | *pinterp_name = interp_name; |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | if (info->end_data == 0) { |
| 1807 | info->start_data = info->end_code; |
| 1808 | info->end_data = info->end_code; |
| 1809 | info->brk = info->end_code; |
| 1810 | } |
| 1811 | |
| 1812 | if (qemu_log_enabled()) { |
| 1813 | load_symbols(ehdr, image_fd, load_bias); |
| 1814 | } |
| 1815 | |
| 1816 | close(image_fd); |
| 1817 | return; |
| 1818 | |
| 1819 | exit_read: |
| 1820 | if (retval >= 0) { |
| 1821 | errmsg = "Incomplete read of file header"; |
| 1822 | goto exit_errmsg; |
| 1823 | } |
| 1824 | exit_perror: |
| 1825 | errmsg = strerror(errno(*__errno_location ())); |
| 1826 | exit_errmsg: |
| 1827 | fprintf(stderrstderr, "%s: %s\n", image_name, errmsg); |
| 1828 | exit(-1); |
| 1829 | } |
| 1830 | |
| 1831 | static void load_elf_interp(const char *filename, struct image_info *info, |
| 1832 | char bprm_buf[BPRM_BUF_SIZE1024]) |
| 1833 | { |
| 1834 | int fd, retval; |
| 1835 | |
| 1836 | fd = open(path(filename), O_RDONLY00); |
| 1837 | if (fd < 0) { |
| 1838 | goto exit_perror; |
| 1839 | } |
| 1840 | |
| 1841 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE1024); |
| 1842 | if (retval < 0) { |
| 1843 | goto exit_perror; |
| 1844 | } |
| 1845 | if (retval < BPRM_BUF_SIZE1024) { |
| 1846 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE1024 - retval); |
| 1847 | } |
| 1848 | |
| 1849 | load_elf_image(filename, fd, info, NULL((void*)0), bprm_buf); |
| 1850 | return; |
| 1851 | |
| 1852 | exit_perror: |
| 1853 | fprintf(stderrstderr, "%s: %s\n", filename, strerror(errno(*__errno_location ()))); |
| 1854 | exit(-1); |
| 1855 | } |
| 1856 | |
| 1857 | static int symfind(const void *s0, const void *s1) |
| 1858 | { |
| 1859 | target_ulong addr = *(target_ulong *)s0; |
| 1860 | struct elf_symelf32_sym *sym = (struct elf_symelf32_sym *)s1; |
| 1861 | int result = 0; |
| 1862 | if (addr < sym->st_value) { |
| 1863 | result = -1; |
| 1864 | } else if (addr >= sym->st_value + sym->st_size) { |
| 1865 | result = 1; |
| 1866 | } |
| 1867 | return result; |
| 1868 | } |
| 1869 | |
| 1870 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) |
| 1871 | { |
| 1872 | #if ELF_CLASS1 == ELFCLASS321 |
| 1873 | struct elf_symelf32_sym *syms = s->disas_symtab.elf32; |
| 1874 | #else |
| 1875 | struct elf_symelf32_sym *syms = s->disas_symtab.elf64; |
| 1876 | #endif |
| 1877 | |
| 1878 | // binary search |
| 1879 | struct elf_symelf32_sym *sym; |
| 1880 | |
| 1881 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
| 1882 | if (sym != NULL((void*)0)) { |
| 1883 | return s->disas_strtab + sym->st_name; |
| 1884 | } |
| 1885 | |
| 1886 | return ""; |
| 1887 | } |
| 1888 | |
| 1889 | /* FIXME: This should use elf_ops.h */ |
| 1890 | static int symcmp(const void *s0, const void *s1) |
| 1891 | { |
| 1892 | struct elf_symelf32_sym *sym0 = (struct elf_symelf32_sym *)s0; |
| 1893 | struct elf_symelf32_sym *sym1 = (struct elf_symelf32_sym *)s1; |
| 1894 | return (sym0->st_value < sym1->st_value) |
| 1895 | ? -1 |
| 1896 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
| 1897 | } |
| 1898 | |
| 1899 | /* Best attempt to load symbols from this ELF object. */ |
| 1900 | static void load_symbols(struct elfhdrelf32_hdr *hdr, int fd, abi_ulong load_bias) |
| 1901 | { |
| 1902 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
| 1903 | struct elf_shdrelf32_shdr *shdr; |
| 1904 | char *strings = NULL((void*)0); |
| 1905 | struct syminfo *s = NULL((void*)0); |
| 1906 | struct elf_symelf32_sym *new_syms, *syms = NULL((void*)0); |
| 1907 | |
| 1908 | shnum = hdr->e_shnum; |
| 1909 | i = shnum * sizeof(struct elf_shdrelf32_shdr); |
| 1910 | shdr = (struct elf_shdrelf32_shdr *)alloca(i)__builtin_alloca (i); |
| 1911 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { |
| 1912 | return; |
| 1913 | } |
| 1914 | |
| 1915 | bswap_shdr(shdr, shnum); |
| 1916 | for (i = 0; i < shnum; ++i) { |
| 1917 | if (shdr[i].sh_type == SHT_SYMTAB2) { |
| 1918 | sym_idx = i; |
| 1919 | str_idx = shdr[i].sh_link; |
| 1920 | goto found; |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | /* There will be no symbol table if the file was stripped. */ |
| 1925 | return; |
| 1926 | |
| 1927 | found: |
| 1928 | /* Now know where the strtab and symtab are. Snarf them. */ |
| 1929 | s = malloc(sizeof(*s)); |
| 1930 | if (!s) { |
| 1931 | goto give_up; |
| 1932 | } |
| 1933 | |
| 1934 | i = shdr[str_idx].sh_size; |
| 1935 | s->disas_strtab = strings = malloc(i); |
| 1936 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { |
| 1937 | goto give_up; |
| 1938 | } |
| 1939 | |
| 1940 | i = shdr[sym_idx].sh_size; |
| 1941 | syms = malloc(i); |
| 1942 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { |
| 1943 | goto give_up; |
| 1944 | } |
| 1945 | |
| 1946 | nsyms = i / sizeof(struct elf_symelf32_sym); |
| 1947 | for (i = 0; i < nsyms; ) { |
| 1948 | bswap_sym(syms + i); |
| 1949 | /* Throw away entries which we do not need. */ |
| 1950 | if (syms[i].st_shndx == SHN_UNDEF0 |
| 1951 | || syms[i].st_shndx >= SHN_LORESERVE0xff00 |
| 1952 | || ELF_ST_TYPE(syms[i].st_info)(((unsigned int) syms[i].st_info) & 0xf) != STT_FUNC2) { |
| 1953 | if (i < --nsyms) { |
| 1954 | syms[i] = syms[nsyms]; |
| 1955 | } |
| 1956 | } else { |
| 1957 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
| 1958 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
| 1959 | syms[i].st_value &= ~(target_ulong)1; |
| 1960 | #endif |
| 1961 | syms[i].st_value += load_bias; |
| 1962 | i++; |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | /* No "useful" symbol. */ |
| 1967 | if (nsyms == 0) { |
| 1968 | goto give_up; |
| 1969 | } |
| 1970 | |
| 1971 | /* Attempt to free the storage associated with the local symbols |
| 1972 | that we threw away. Whether or not this has any effect on the |
| 1973 | memory allocation depends on the malloc implementation and how |
| 1974 | many symbols we managed to discard. */ |
| 1975 | new_syms = realloc(syms, nsyms * sizeof(*syms)); |
| 1976 | if (new_syms == NULL((void*)0)) { |
| 1977 | goto give_up; |
| 1978 | } |
| 1979 | syms = new_syms; |
| 1980 | |
| 1981 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
| 1982 | |
| 1983 | s->disas_num_syms = nsyms; |
| 1984 | #if ELF_CLASS1 == ELFCLASS321 |
| 1985 | s->disas_symtab.elf32 = syms; |
| 1986 | #else |
| 1987 | s->disas_symtab.elf64 = syms; |
| 1988 | #endif |
| 1989 | s->lookup_symbol = lookup_symbolxx; |
| 1990 | s->next = syminfos; |
| 1991 | syminfos = s; |
| 1992 | |
| 1993 | return; |
| 1994 | |
| 1995 | give_up: |
| 1996 | free(s); |
| 1997 | free(strings); |
| 1998 | free(syms); |
| 1999 | } |
| 2000 | |
| 2001 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
| 2002 | { |
| 2003 | struct image_info interp_info; |
| 2004 | struct elfhdrelf32_hdr elf_ex; |
| 2005 | char *elf_interpreter = NULL((void*)0); |
| 2006 | |
| 2007 | info->start_mmap = (abi_ulong)ELF_START_MMAP0x80000000; |
| 2008 | info->mmap = 0; |
| 2009 | info->rss = 0; |
| 2010 | |
| 2011 | load_elf_image(bprm->filename, bprm->fd, info, |
| 2012 | &elf_interpreter, bprm->buf); |
| 2013 | |
| 2014 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
| 2015 | If we do nothing, we'll have overwritten this when we re-use bprm->buf |
| 2016 | when we load the interpreter. */ |
| 2017 | elf_ex = *(struct elfhdrelf32_hdr *)bprm->buf; |
| 2018 | |
| 2019 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
| 2020 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); |
| 2021 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); |
| 2022 | if (!bprm->p) { |
| 2023 | fprintf(stderrstderr, "%s: %s\n", bprm->filename, strerror(E2BIG7)); |
| 2024 | exit(-1); |
| 2025 | } |
| 2026 | |
| 2027 | /* Do this so that we can load the interpreter, if need be. We will |
| 2028 | change some of these later */ |
| 2029 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
| 2030 | |
| 2031 | if (elf_interpreter) { |
| 2032 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); |
| 2033 | |
| 2034 | /* If the program interpreter is one of these two, then assume |
| 2035 | an iBCS2 image. Otherwise assume a native linux image. */ |
| 2036 | |
| 2037 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 |
| 2038 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { |
| 2039 | info->personality = PER_SVR4; |
| 2040 | |
| 2041 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| 2042 | and some applications "depend" upon this behavior. Since |
| 2043 | we do not have the power to recompile these, we emulate |
| 2044 | the SVr4 behavior. Sigh. */ |
| 2045 | target_mmap(0, qemu_host_page_size, PROT_READ0x1 | PROT_EXEC0x4, |
| 2046 | MAP_FIXED0x10 | MAP_PRIVATE0x02, -1, 0); |
| 2047 | } |
| 2048 | } |
| 2049 | |
| 2050 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
| 2051 | info, (elf_interpreter ? &interp_info : NULL((void*)0))); |
| 2052 | info->start_stack = bprm->p; |
| 2053 | |
| 2054 | /* If we have an interpreter, set that as the program's entry point. |
| 2055 | Copy the load_bias as well, to help PPC64 interpret the entry |
| 2056 | point as a function descriptor. Do this after creating elf tables |
| 2057 | so that we copy the original program entry point into the AUXV. */ |
| 2058 | if (elf_interpreter) { |
| 2059 | info->load_bias = interp_info.load_bias; |
| 2060 | info->entry = interp_info.entry; |
| 2061 | free(elf_interpreter); |
| 2062 | } |
| 2063 | |
| 2064 | #ifdef USE_ELF_CORE_DUMP |
| 2065 | bprm->core_dump = &elf_core_dump; |
| 2066 | #endif |
| 2067 | |
| 2068 | return 0; |
| 2069 | } |
| 2070 | |
| 2071 | #ifdef USE_ELF_CORE_DUMP |
| 2072 | /* |
| 2073 | * Definitions to generate Intel SVR4-like core files. |
| 2074 | * These mostly have the same names as the SVR4 types with "target_elf_" |
| 2075 | * tacked on the front to prevent clashes with linux definitions, |
| 2076 | * and the typedef forms have been avoided. This is mostly like |
| 2077 | * the SVR4 structure, but more Linuxy, with things that Linux does |
| 2078 | * not support and which gdb doesn't really use excluded. |
| 2079 | * |
| 2080 | * Fields we don't dump (their contents is zero) in linux-user qemu |
| 2081 | * are marked with XXX. |
| 2082 | * |
| 2083 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). |
| 2084 | * |
| 2085 | * Porting ELF coredump for target is (quite) simple process. First you |
| 2086 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
| 2087 | * the target resides): |
| 2088 | * |
| 2089 | * #define USE_ELF_CORE_DUMP |
| 2090 | * |
| 2091 | * Next you define type of register set used for dumping. ELF specification |
| 2092 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. |
| 2093 | * |
| 2094 | * typedef <target_regtype> target_elf_greg_t; |
| 2095 | * #define ELF_NREG <number of registers> |
| 2096 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| 2097 | * |
| 2098 | * Last step is to implement target specific function that copies registers |
| 2099 | * from given cpu into just specified register set. Prototype is: |
| 2100 | * |
| 2101 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
| 2102 | * const CPUArchState *env); |
| 2103 | * |
| 2104 | * Parameters: |
| 2105 | * regs - copy register values into here (allocated and zeroed by caller) |
| 2106 | * env - copy registers from here |
| 2107 | * |
| 2108 | * Example for ARM target is provided in this file. |
| 2109 | */ |
| 2110 | |
| 2111 | /* An ELF note in memory */ |
| 2112 | struct memelfnote { |
| 2113 | const char *name; |
| 2114 | size_t namesz; |
| 2115 | size_t namesz_rounded; |
| 2116 | int type; |
| 2117 | size_t datasz; |
| 2118 | size_t datasz_rounded; |
| 2119 | void *data; |
| 2120 | size_t notesz; |
| 2121 | }; |
| 2122 | |
| 2123 | struct target_elf_siginfo { |
| 2124 | abi_int si_signo; /* signal number */ |
| 2125 | abi_int si_code; /* extra code */ |
| 2126 | abi_int si_errno; /* errno */ |
| 2127 | }; |
| 2128 | |
| 2129 | struct target_elf_prstatus { |
| 2130 | struct target_elf_siginfo pr_info; /* Info associated with signal */ |
| 2131 | abi_short pr_cursig; /* Current signal */ |
| 2132 | abi_ulong pr_sigpend; /* XXX */ |
| 2133 | abi_ulong pr_sighold; /* XXX */ |
| 2134 | target_pid_t pr_pid; |
| 2135 | target_pid_t pr_ppid; |
| 2136 | target_pid_t pr_pgrp; |
| 2137 | target_pid_t pr_sid; |
| 2138 | struct target_timeval pr_utime; /* XXX User time */ |
| 2139 | struct target_timeval pr_stime; /* XXX System time */ |
| 2140 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ |
| 2141 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ |
| 2142 | target_elf_gregset_t pr_reg; /* GP registers */ |
| 2143 | abi_int pr_fpvalid; /* XXX */ |
| 2144 | }; |
| 2145 | |
| 2146 | #define ELF_PRARGSZ(80) (80) /* Number of chars for args */ |
| 2147 | |
| 2148 | struct target_elf_prpsinfo { |
| 2149 | char pr_state; /* numeric process state */ |
| 2150 | char pr_sname; /* char for pr_state */ |
| 2151 | char pr_zomb; /* zombie */ |
| 2152 | char pr_nice; /* nice val */ |
| 2153 | abi_ulong pr_flag; /* flags */ |
| 2154 | target_uid_t pr_uid; |
| 2155 | target_gid_t pr_gid; |
| 2156 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; |
| 2157 | /* Lots missing */ |
| 2158 | char pr_fname[16]; /* filename of executable */ |
| 2159 | char pr_psargs[ELF_PRARGSZ(80)]; /* initial part of arg list */ |
| 2160 | }; |
| 2161 | |
| 2162 | /* Here is the structure in which status of each thread is captured. */ |
| 2163 | struct elf_thread_status { |
| 2164 | QTAILQ_ENTRY(elf_thread_status)struct { struct elf_thread_status *tqe_next; struct elf_thread_status * *tqe_prev; } ets_link; |
| 2165 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
| 2166 | #if 0 |
| 2167 | elf_fpregset_t fpu; /* NT_PRFPREG */ |
| 2168 | struct task_struct *thread; |
| 2169 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
| 2170 | #endif |
| 2171 | struct memelfnote notes[1]; |
| 2172 | int num_notes; |
| 2173 | }; |
| 2174 | |
| 2175 | struct elf_note_info { |
| 2176 | struct memelfnote *notes; |
| 2177 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
| 2178 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ |
| 2179 | |
| 2180 | QTAILQ_HEAD(thread_list_head, elf_thread_status)struct thread_list_head { struct elf_thread_status *tqh_first ; struct elf_thread_status * *tqh_last; } thread_list; |
| 2181 | #if 0 |
| 2182 | /* |
| 2183 | * Current version of ELF coredump doesn't support |
| 2184 | * dumping fp regs etc. |
| 2185 | */ |
| 2186 | elf_fpregset_t *fpu; |
| 2187 | elf_fpxregset_t *xfpu; |
| 2188 | int thread_status_size; |
| 2189 | #endif |
| 2190 | int notes_size; |
| 2191 | int numnote; |
| 2192 | }; |
| 2193 | |
| 2194 | struct vm_area_struct { |
| 2195 | abi_ulong vma_start; /* start vaddr of memory region */ |
| 2196 | abi_ulong vma_end; /* end vaddr of memory region */ |
| 2197 | abi_ulong vma_flags; /* protection etc. flags for the region */ |
| 2198 | QTAILQ_ENTRY(vm_area_struct)struct { struct vm_area_struct *tqe_next; struct vm_area_struct * *tqe_prev; } vma_link; |
| 2199 | }; |
| 2200 | |
| 2201 | struct mm_struct { |
| 2202 | QTAILQ_HEAD(, vm_area_struct)struct { struct vm_area_struct *tqh_first; struct vm_area_struct * *tqh_last; } mm_mmap; |
| 2203 | int mm_count; /* number of mappings */ |
| 2204 | }; |
| 2205 | |
| 2206 | static struct mm_struct *vma_init(void); |
| 2207 | static void vma_delete(struct mm_struct *); |
| 2208 | static int vma_add_mapping(struct mm_struct *, abi_ulong, |
| 2209 | abi_ulong, abi_ulong); |
| 2210 | static int vma_get_mapping_count(const struct mm_struct *); |
| 2211 | static struct vm_area_struct *vma_first(const struct mm_struct *); |
| 2212 | static struct vm_area_struct *vma_next(struct vm_area_struct *); |
| 2213 | static abi_ulong vma_dump_size(const struct vm_area_struct *); |
| 2214 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
| 2215 | unsigned long flags); |
| 2216 | |
| 2217 | static void fill_elf_header(struct elfhdrelf32_hdr *, int, uint16_t, uint32_t); |
| 2218 | static void fill_note(struct memelfnote *, const char *, int, |
| 2219 | unsigned int, void *); |
| 2220 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
| 2221 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); |
| 2222 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
| 2223 | static void fill_elf_note_phdr(struct elf_phdrelf32_phdr *, int, off_t); |
| 2224 | static size_t note_size(const struct memelfnote *); |
| 2225 | static void free_note_info(struct elf_note_info *); |
| 2226 | static int fill_note_info(struct elf_note_info *, long, const CPUArchStatestruct CPUUniCore32State *); |
| 2227 | static void fill_thread_info(struct elf_note_info *, const CPUArchStatestruct CPUUniCore32State *); |
| 2228 | static int core_dump_filename(const TaskState *, char *, size_t); |
| 2229 | |
| 2230 | static int dump_write(int, const void *, size_t); |
| 2231 | static int write_note(struct memelfnote *, int); |
| 2232 | static int write_note_info(struct elf_note_info *, int); |
| 2233 | |
| 2234 | #ifdef BSWAP_NEEDED |
| 2235 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
| 2236 | { |
| 2237 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
| 2238 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); |
| 2239 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); |
| 2240 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
| 2241 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
| 2242 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); |
| 2243 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
| 2244 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); |
| 2245 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); |
| 2246 | prstatus->pr_sid = tswap32(prstatus->pr_sid); |
| 2247 | /* cpu times are not filled, so we skip them */ |
| 2248 | /* regs should be in correct format already */ |
| 2249 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); |
| 2250 | } |
| 2251 | |
| 2252 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
| 2253 | { |
| 2254 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
| 2255 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
| 2256 | psinfo->pr_gid = tswap16(psinfo->pr_gid); |
| 2257 | psinfo->pr_pid = tswap32(psinfo->pr_pid); |
| 2258 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); |
| 2259 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); |
| 2260 | psinfo->pr_sid = tswap32(psinfo->pr_sid); |
| 2261 | } |
| 2262 | |
| 2263 | static void bswap_note(struct elf_noteelf32_note *en) |
| 2264 | { |
| 2265 | bswap32s(&en->n_namesz); |
| 2266 | bswap32s(&en->n_descsz); |
| 2267 | bswap32s(&en->n_type); |
| 2268 | } |
| 2269 | #else |
| 2270 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } |
| 2271 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} |
| 2272 | static inline void bswap_note(struct elf_noteelf32_note *en) { } |
| 2273 | #endif /* BSWAP_NEEDED */ |
| 2274 | |
| 2275 | /* |
| 2276 | * Minimal support for linux memory regions. These are needed |
| 2277 | * when we are finding out what memory exactly belongs to |
| 2278 | * emulated process. No locks needed here, as long as |
| 2279 | * thread that received the signal is stopped. |
| 2280 | */ |
| 2281 | |
| 2282 | static struct mm_struct *vma_init(void) |
| 2283 | { |
| 2284 | struct mm_struct *mm; |
| 2285 | |
| 2286 | if ((mm = g_malloc(sizeof (*mm))) == NULL((void*)0)) |
| 2287 | return (NULL((void*)0)); |
| 2288 | |
| 2289 | mm->mm_count = 0; |
| 2290 | QTAILQ_INIT(&mm->mm_mmap)do { (&mm->mm_mmap)->tqh_first = ((void*)0); (& mm->mm_mmap)->tqh_last = &(&mm->mm_mmap)-> tqh_first; } while ( 0); |
| 2291 | |
| 2292 | return (mm); |
| 2293 | } |
| 2294 | |
| 2295 | static void vma_delete(struct mm_struct *mm) |
| 2296 | { |
| 2297 | struct vm_area_struct *vma; |
| 2298 | |
| 2299 | while ((vma = vma_first(mm)) != NULL((void*)0)) { |
| 2300 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link)do { if (((vma)->vma_link.tqe_next) != ((void*)0)) (vma)-> vma_link.tqe_next->vma_link.tqe_prev = (vma)->vma_link. tqe_prev; else (&mm->mm_mmap)->tqh_last = (vma)-> vma_link.tqe_prev; *(vma)->vma_link.tqe_prev = (vma)->vma_link .tqe_next; } while ( 0); |
| 2301 | g_free(vma); |
| 2302 | } |
| 2303 | g_free(mm); |
| 2304 | } |
| 2305 | |
| 2306 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, |
| 2307 | abi_ulong end, abi_ulong flags) |
| 2308 | { |
| 2309 | struct vm_area_struct *vma; |
| 2310 | |
| 2311 | if ((vma = g_malloc0(sizeof (*vma))) == NULL((void*)0)) |
| 2312 | return (-1); |
| 2313 | |
| 2314 | vma->vma_start = start; |
| 2315 | vma->vma_end = end; |
| 2316 | vma->vma_flags = flags; |
| 2317 | |
| 2318 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link)do { (vma)->vma_link.tqe_next = ((void*)0); (vma)->vma_link .tqe_prev = (&mm->mm_mmap)->tqh_last; *(&mm-> mm_mmap)->tqh_last = (vma); (&mm->mm_mmap)->tqh_last = &(vma)->vma_link.tqe_next; } while ( 0); |
| 2319 | mm->mm_count++; |
| 2320 | |
| 2321 | return (0); |
| 2322 | } |
| 2323 | |
| 2324 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) |
| 2325 | { |
| 2326 | return (QTAILQ_FIRST(&mm->mm_mmap)((&mm->mm_mmap)->tqh_first)); |
| 2327 | } |
| 2328 | |
| 2329 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) |
| 2330 | { |
| 2331 | return (QTAILQ_NEXT(vma, vma_link)((vma)->vma_link.tqe_next)); |
| 2332 | } |
| 2333 | |
| 2334 | static int vma_get_mapping_count(const struct mm_struct *mm) |
| 2335 | { |
| 2336 | return (mm->mm_count); |
| 2337 | } |
| 2338 | |
| 2339 | /* |
| 2340 | * Calculate file (dump) size of given memory region. |
| 2341 | */ |
| 2342 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) |
| 2343 | { |
| 2344 | /* if we cannot even read the first page, skip it */ |
| 2345 | if (!access_ok(VERIFY_READ0, vma->vma_start, TARGET_PAGE_SIZE(1 << 12))) |
| 2346 | return (0); |
| 2347 | |
| 2348 | /* |
| 2349 | * Usually we don't dump executable pages as they contain |
| 2350 | * non-writable code that debugger can read directly from |
| 2351 | * target library etc. However, thread stacks are marked |
| 2352 | * also executable so we read in first page of given region |
| 2353 | * and check whether it contains elf header. If there is |
| 2354 | * no elf header, we dump it. |
| 2355 | */ |
| 2356 | if (vma->vma_flags & PROT_EXEC0x4) { |
| 2357 | char page[TARGET_PAGE_SIZE(1 << 12)]; |
| 2358 | |
| 2359 | copy_from_user(page, vma->vma_start, sizeof (page)); |
| 2360 | if ((page[EI_MAG00] == ELFMAG00x7f) && |
| 2361 | (page[EI_MAG11] == ELFMAG1'E') && |
| 2362 | (page[EI_MAG22] == ELFMAG2'L') && |
| 2363 | (page[EI_MAG33] == ELFMAG3'F')) { |
| 2364 | /* |
| 2365 | * Mappings are possibly from ELF binary. Don't dump |
| 2366 | * them. |
| 2367 | */ |
| 2368 | return (0); |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | return (vma->vma_end - vma->vma_start); |
| 2373 | } |
| 2374 | |
| 2375 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
| 2376 | unsigned long flags) |
| 2377 | { |
| 2378 | struct mm_struct *mm = (struct mm_struct *)priv; |
| 2379 | |
| 2380 | vma_add_mapping(mm, start, end, flags); |
| 2381 | return (0); |
| 2382 | } |
| 2383 | |
| 2384 | static void fill_note(struct memelfnote *note, const char *name, int type, |
| 2385 | unsigned int sz, void *data) |
| 2386 | { |
| 2387 | unsigned int namesz; |
| 2388 | |
| 2389 | namesz = strlen(name) + 1; |
| 2390 | note->name = name; |
| 2391 | note->namesz = namesz; |
| 2392 | note->namesz_rounded = roundup(namesz, sizeof (int32_t))(__builtin_constant_p (sizeof (int32_t)) && ((((sizeof (int32_t)) - 1) & (sizeof (int32_t))) == 0) ? (((namesz) + (sizeof (int32_t)) - 1) & ~((sizeof (int32_t)) - 1)) : ((((namesz) + ((sizeof (int32_t)) - 1)) / (sizeof (int32_t)) ) * (sizeof (int32_t)))); |
| 2393 | note->type = type; |
| 2394 | note->datasz = sz; |
| 2395 | note->datasz_rounded = roundup(sz, sizeof (int32_t))(__builtin_constant_p (sizeof (int32_t)) && ((((sizeof (int32_t)) - 1) & (sizeof (int32_t))) == 0) ? (((sz) + ( sizeof (int32_t)) - 1) & ~((sizeof (int32_t)) - 1)) : ((( (sz) + ((sizeof (int32_t)) - 1)) / (sizeof (int32_t))) * (sizeof (int32_t)))); |
| 2396 | |
| 2397 | note->data = data; |
| 2398 | |
| 2399 | /* |
| 2400 | * We calculate rounded up note size here as specified by |
| 2401 | * ELF document. |
| 2402 | */ |
| 2403 | note->notesz = sizeof (struct elf_noteelf32_note) + |
| 2404 | note->namesz_rounded + note->datasz_rounded; |
| 2405 | } |
| 2406 | |
| 2407 | static void fill_elf_header(struct elfhdrelf32_hdr *elf, int segs, uint16_t machine, |
| 2408 | uint32_t flags) |
| 2409 | { |
| 2410 | (void) memset(elf, 0, sizeof(*elf)); |
| 2411 | |
| 2412 | (void) memcpy(elf->e_ident, ELFMAG"\177ELF", SELFMAG4); |
| 2413 | elf->e_ident[EI_CLASS4] = ELF_CLASS1; |
| 2414 | elf->e_ident[EI_DATA5] = ELF_DATA1; |
| 2415 | elf->e_ident[EI_VERSION6] = EV_CURRENT1; |
| 2416 | elf->e_ident[EI_OSABI7] = ELF_OSABI0; |
| 2417 | |
| 2418 | elf->e_type = ET_CORE4; |
| 2419 | elf->e_machine = machine; |
| 2420 | elf->e_version = EV_CURRENT1; |
| 2421 | elf->e_phoff = sizeof(struct elfhdrelf32_hdr); |
| 2422 | elf->e_flags = flags; |
| 2423 | elf->e_ehsize = sizeof(struct elfhdrelf32_hdr); |
| 2424 | elf->e_phentsize = sizeof(struct elf_phdrelf32_phdr); |
| 2425 | elf->e_phnum = segs; |
| 2426 | |
| 2427 | bswap_ehdr(elf); |
| 2428 | } |
| 2429 | |
| 2430 | static void fill_elf_note_phdr(struct elf_phdrelf32_phdr *phdr, int sz, off_t offset) |
| 2431 | { |
| 2432 | phdr->p_type = PT_NOTE4; |
| 2433 | phdr->p_offset = offset; |
| 2434 | phdr->p_vaddr = 0; |
| 2435 | phdr->p_paddr = 0; |
| 2436 | phdr->p_filesz = sz; |
| 2437 | phdr->p_memsz = 0; |
| 2438 | phdr->p_flags = 0; |
| 2439 | phdr->p_align = 0; |
| 2440 | |
| 2441 | bswap_phdr(phdr, 1); |
| 2442 | } |
| 2443 | |
| 2444 | static size_t note_size(const struct memelfnote *note) |
| 2445 | { |
| 2446 | return (note->notesz); |
| 2447 | } |
| 2448 | |
| 2449 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
| 2450 | const TaskState *ts, int signr) |
| 2451 | { |
| 2452 | (void) memset(prstatus, 0, sizeof (*prstatus)); |
| 2453 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; |
| 2454 | prstatus->pr_pid = ts->ts_tid; |
| 2455 | prstatus->pr_ppid = getppid(); |
| 2456 | prstatus->pr_pgrp = getpgrp(); |
| 2457 | prstatus->pr_sid = getsid(0); |
| 2458 | |
| 2459 | bswap_prstatus(prstatus); |
| 2460 | } |
| 2461 | |
| 2462 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
| 2463 | { |
| 2464 | char *base_filename; |
| 2465 | unsigned int i, len; |
| 2466 | |
| 2467 | (void) memset(psinfo, 0, sizeof (*psinfo)); |
| 2468 | |
| 2469 | len = ts->info->arg_end - ts->info->arg_start; |
| 2470 | if (len >= ELF_PRARGSZ(80)) |
| 2471 | len = ELF_PRARGSZ(80) - 1; |
| 2472 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) |
| 2473 | return -EFAULT14; |
| 2474 | for (i = 0; i < len; i++) |
| 2475 | if (psinfo->pr_psargs[i] == 0) |
| 2476 | psinfo->pr_psargs[i] = ' '; |
| 2477 | psinfo->pr_psargs[len] = 0; |
| 2478 | |
| 2479 | psinfo->pr_pid = getpid(); |
| 2480 | psinfo->pr_ppid = getppid(); |
| 2481 | psinfo->pr_pgrp = getpgrp(); |
| 2482 | psinfo->pr_sid = getsid(0); |
| 2483 | psinfo->pr_uid = getuid(); |
| 2484 | psinfo->pr_gid = getgid(); |
| 2485 | |
| 2486 | base_filename = g_path_get_basename(ts->bprm->filename); |
| 2487 | /* |
| 2488 | * Using strncpy here is fine: at max-length, |
| 2489 | * this field is not NUL-terminated. |
| 2490 | */ |
| 2491 | (void) strncpy(psinfo->pr_fname, base_filename, |
| 2492 | sizeof(psinfo->pr_fname)); |
| 2493 | |
| 2494 | g_free(base_filename); |
| 2495 | bswap_psinfo(psinfo); |
| 2496 | return (0); |
| 2497 | } |
| 2498 | |
| 2499 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) |
| 2500 | { |
| 2501 | elf_addr_tElf32_Off auxv = (elf_addr_tElf32_Off)ts->info->saved_auxv; |
| 2502 | elf_addr_tElf32_Off orig_auxv = auxv; |
| 2503 | void *ptr; |
| 2504 | int len = ts->info->auxv_len; |
| 2505 | |
| 2506 | /* |
| 2507 | * Auxiliary vector is stored in target process stack. It contains |
| 2508 | * {type, value} pairs that we need to dump into note. This is not |
| 2509 | * strictly necessary but we do it here for sake of completeness. |
| 2510 | */ |
| 2511 | |
| 2512 | /* read in whole auxv vector and copy it to memelfnote */ |
| 2513 | ptr = lock_user(VERIFY_READ0, orig_auxv, len, 0); |
| 2514 | if (ptr != NULL((void*)0)) { |
| 2515 | fill_note(note, "CORE", NT_AUXV6, len, ptr); |
| 2516 | unlock_user(ptr, auxv, len); |
| 2517 | } |
| 2518 | } |
| 2519 | |
| 2520 | /* |
| 2521 | * Constructs name of coredump file. We have following convention |
| 2522 | * for the name: |
| 2523 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core |
| 2524 | * |
| 2525 | * Returns 0 in case of success, -1 otherwise (errno is set). |
| 2526 | */ |
| 2527 | static int core_dump_filename(const TaskState *ts, char *buf, |
| 2528 | size_t bufsize) |
| 2529 | { |
| 2530 | char timestamp[64]; |
| 2531 | char *filename = NULL((void*)0); |
| 2532 | char *base_filename = NULL((void*)0); |
| 2533 | struct timeval tv; |
| 2534 | struct tm tm; |
| 2535 | |
| 2536 | assert(bufsize >= PATH_MAX)((bufsize >= 4096) ? (void) (0) : __assert_fail ("bufsize >= 4096" , "/home/stefan/src/qemu/qemu.org/qemu/linux-user/elfload.c", 2536, __PRETTY_FUNCTION__)); |
| 2537 | |
| 2538 | if (gettimeofday(&tv, NULL((void*)0)) < 0) { |
| 2539 | (void) fprintf(stderrstderr, "unable to get current timestamp: %s", |
| 2540 | strerror(errno(*__errno_location ()))); |
| 2541 | return (-1); |
| 2542 | } |
| 2543 | |
| 2544 | filename = strdup(ts->bprm->filename); |
| 2545 | base_filename = strdup(basename(filename)); |
| 2546 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", |
| 2547 | localtime_r(&tv.tv_sec, &tm)); |
| 2548 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
| 2549 | base_filename, timestamp, (int)getpid()); |
| 2550 | free(base_filename); |
| 2551 | free(filename); |
| 2552 | |
| 2553 | return (0); |
| 2554 | } |
| 2555 | |
| 2556 | static int dump_write(int fd, const void *ptr, size_t size) |
| 2557 | { |
| 2558 | const char *bufp = (const char *)ptr; |
| 2559 | ssize_t bytes_written, bytes_left; |
| 2560 | struct rlimit dumpsize; |
| 2561 | off_t pos; |
| 2562 | |
| 2563 | bytes_written = 0; |
Value stored to 'bytes_written' is never read | |
| 2564 | getrlimit(RLIMIT_CORERLIMIT_CORE, &dumpsize); |
| 2565 | if ((pos = lseek(fd, 0, SEEK_CUR1))==-1) { |
| 2566 | if (errno(*__errno_location ()) == ESPIPE29) { /* not a seekable stream */ |
| 2567 | bytes_left = size; |
| 2568 | } else { |
| 2569 | return pos; |
| 2570 | } |
| 2571 | } else { |
| 2572 | if (dumpsize.rlim_cur <= pos) { |
| 2573 | return -1; |
| 2574 | } else if (dumpsize.rlim_cur == RLIM_INFINITY0xffffffffffffffffuLL) { |
| 2575 | bytes_left = size; |
| 2576 | } else { |
| 2577 | size_t limit_left=dumpsize.rlim_cur - pos; |
| 2578 | bytes_left = limit_left >= size ? size : limit_left ; |
| 2579 | } |
| 2580 | } |
| 2581 | |
| 2582 | /* |
| 2583 | * In normal conditions, single write(2) should do but |
| 2584 | * in case of socket etc. this mechanism is more portable. |
| 2585 | */ |
| 2586 | do { |
| 2587 | bytes_written = write(fd, bufp, bytes_left); |
| 2588 | if (bytes_written < 0) { |
| 2589 | if (errno(*__errno_location ()) == EINTR4) |
| 2590 | continue; |
| 2591 | return (-1); |
| 2592 | } else if (bytes_written == 0) { /* eof */ |
| 2593 | return (-1); |
| 2594 | } |
| 2595 | bufp += bytes_written; |
| 2596 | bytes_left -= bytes_written; |
| 2597 | } while (bytes_left > 0); |
| 2598 | |
| 2599 | return (0); |
| 2600 | } |
| 2601 | |
| 2602 | static int write_note(struct memelfnote *men, int fd) |
| 2603 | { |
| 2604 | struct elf_noteelf32_note en; |
| 2605 | |
| 2606 | en.n_namesz = men->namesz; |
| 2607 | en.n_type = men->type; |
| 2608 | en.n_descsz = men->datasz; |
| 2609 | |
| 2610 | bswap_note(&en); |
| 2611 | |
| 2612 | if (dump_write(fd, &en, sizeof(en)) != 0) |
| 2613 | return (-1); |
| 2614 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) |
| 2615 | return (-1); |
| 2616 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
| 2617 | return (-1); |
| 2618 | |
| 2619 | return (0); |
| 2620 | } |
| 2621 | |
| 2622 | static void fill_thread_info(struct elf_note_info *info, const CPUArchStatestruct CPUUniCore32State *env) |
| 2623 | { |
| 2624 | TaskState *ts = (TaskState *)env->opaque; |
| 2625 | struct elf_thread_status *ets; |
| 2626 | |
| 2627 | ets = g_malloc0(sizeof (*ets)); |
| 2628 | ets->num_notes = 1; /* only prstatus is dumped */ |
| 2629 | fill_prstatus(&ets->prstatus, ts, 0); |
| 2630 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); |
| 2631 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS1, sizeof (ets->prstatus), |
| 2632 | &ets->prstatus); |
| 2633 | |
| 2634 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link)do { (ets)->ets_link.tqe_next = ((void*)0); (ets)->ets_link .tqe_prev = (&info->thread_list)->tqh_last; *(& info->thread_list)->tqh_last = (ets); (&info->thread_list )->tqh_last = &(ets)->ets_link.tqe_next; } while ( 0 ); |
| 2635 | |
| 2636 | info->notes_size += note_size(&ets->notes[0]); |
| 2637 | } |
| 2638 | |
| 2639 | static int fill_note_info(struct elf_note_info *info, |
| 2640 | long signr, const CPUArchStatestruct CPUUniCore32State *env) |
| 2641 | { |
| 2642 | #define NUMNOTES3 3 |
| 2643 | CPUState *cpu = NULL((void*)0); |
| 2644 | TaskState *ts = (TaskState *)env->opaque; |
| 2645 | int i; |
| 2646 | |
| 2647 | (void) memset(info, 0, sizeof (*info)); |
| 2648 | |
| 2649 | QTAILQ_INIT(&info->thread_list)do { (&info->thread_list)->tqh_first = ((void*)0); ( &info->thread_list)->tqh_last = &(&info-> thread_list)->tqh_first; } while ( 0); |
| 2650 | |
| 2651 | info->notes = g_malloc0(NUMNOTES3 * sizeof (struct memelfnote)); |
| 2652 | if (info->notes == NULL((void*)0)) |
| 2653 | return (-ENOMEM12); |
| 2654 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
| 2655 | if (info->prstatus == NULL((void*)0)) |
| 2656 | return (-ENOMEM12); |
| 2657 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
| 2658 | if (info->prstatus == NULL((void*)0)) |
| 2659 | return (-ENOMEM12); |
| 2660 | |
| 2661 | /* |
| 2662 | * First fill in status (and registers) of current thread |
| 2663 | * including process info & aux vector. |
| 2664 | */ |
| 2665 | fill_prstatus(info->prstatus, ts, signr); |
| 2666 | elf_core_copy_regs(&info->prstatus->pr_reg, env); |
| 2667 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS1, |
| 2668 | sizeof (*info->prstatus), info->prstatus); |
| 2669 | fill_psinfo(info->psinfo, ts); |
| 2670 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO3, |
| 2671 | sizeof (*info->psinfo), info->psinfo); |
| 2672 | fill_auxv_note(&info->notes[2], ts); |
| 2673 | info->numnote = 3; |
| 2674 | |
| 2675 | info->notes_size = 0; |
| 2676 | for (i = 0; i < info->numnote; i++) |
| 2677 | info->notes_size += note_size(&info->notes[i]); |
| 2678 | |
| 2679 | /* read and fill status of all threads */ |
| 2680 | cpu_list_lock(); |
| 2681 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { |
| 2682 | if (cpu == thread_cpu) { |
| 2683 | continue; |
| 2684 | } |
| 2685 | fill_thread_info(info, (CPUArchStatestruct CPUUniCore32State *)cpu->env_ptr); |
| 2686 | } |
| 2687 | cpu_list_unlock(); |
| 2688 | |
| 2689 | return (0); |
| 2690 | } |
| 2691 | |
| 2692 | static void free_note_info(struct elf_note_info *info) |
| 2693 | { |
| 2694 | struct elf_thread_status *ets; |
| 2695 | |
| 2696 | while (!QTAILQ_EMPTY(&info->thread_list)((&info->thread_list)->tqh_first == ((void*)0))) { |
| 2697 | ets = QTAILQ_FIRST(&info->thread_list)((&info->thread_list)->tqh_first); |
| 2698 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link)do { if (((ets)->ets_link.tqe_next) != ((void*)0)) (ets)-> ets_link.tqe_next->ets_link.tqe_prev = (ets)->ets_link. tqe_prev; else (&info->thread_list)->tqh_last = (ets )->ets_link.tqe_prev; *(ets)->ets_link.tqe_prev = (ets) ->ets_link.tqe_next; } while ( 0); |
| 2699 | g_free(ets); |
| 2700 | } |
| 2701 | |
| 2702 | g_free(info->prstatus); |
| 2703 | g_free(info->psinfo); |
| 2704 | g_free(info->notes); |
| 2705 | } |
| 2706 | |
| 2707 | static int write_note_info(struct elf_note_info *info, int fd) |
| 2708 | { |
| 2709 | struct elf_thread_status *ets; |
| 2710 | int i, error = 0; |
| 2711 | |
| 2712 | /* write prstatus, psinfo and auxv for current thread */ |
| 2713 | for (i = 0; i < info->numnote; i++) |
| 2714 | if ((error = write_note(&info->notes[i], fd)) != 0) |
| 2715 | return (error); |
| 2716 | |
| 2717 | /* write prstatus for each thread */ |
| 2718 | for (ets = info->thread_list.tqh_first; ets != NULL((void*)0); |
| 2719 | ets = ets->ets_link.tqe_next) { |
| 2720 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
| 2721 | return (error); |
| 2722 | } |
| 2723 | |
| 2724 | return (0); |
| 2725 | } |
| 2726 | |
| 2727 | /* |
| 2728 | * Write out ELF coredump. |
| 2729 | * |
| 2730 | * See documentation of ELF object file format in: |
| 2731 | * http://www.caldera.com/developers/devspecs/gabi41.pdf |
| 2732 | * |
| 2733 | * Coredump format in linux is following: |
| 2734 | * |
| 2735 | * 0 +----------------------+ \ |
| 2736 | * | ELF header | ET_CORE | |
| 2737 | * +----------------------+ | |
| 2738 | * | ELF program headers | |--- headers |
| 2739 | * | - NOTE section | | |
| 2740 | * | - PT_LOAD sections | | |
| 2741 | * +----------------------+ / |
| 2742 | * | NOTEs: | |
| 2743 | * | - NT_PRSTATUS | |
| 2744 | * | - NT_PRSINFO | |
| 2745 | * | - NT_AUXV | |
| 2746 | * +----------------------+ <-- aligned to target page |
| 2747 | * | Process memory dump | |
| 2748 | * : : |
| 2749 | * . . |
| 2750 | * : : |
| 2751 | * | | |
| 2752 | * +----------------------+ |
| 2753 | * |
| 2754 | * NT_PRSTATUS -> struct elf_prstatus (per thread) |
| 2755 | * NT_PRSINFO -> struct elf_prpsinfo |
| 2756 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). |
| 2757 | * |
| 2758 | * Format follows System V format as close as possible. Current |
| 2759 | * version limitations are as follows: |
| 2760 | * - no floating point registers are dumped |
| 2761 | * |
| 2762 | * Function returns 0 in case of success, negative errno otherwise. |
| 2763 | * |
| 2764 | * TODO: make this work also during runtime: it should be |
| 2765 | * possible to force coredump from running process and then |
| 2766 | * continue processing. For example qemu could set up SIGUSR2 |
| 2767 | * handler (provided that target process haven't registered |
| 2768 | * handler for that) that does the dump when signal is received. |
| 2769 | */ |
| 2770 | static int elf_core_dump(int signr, const CPUArchStatestruct CPUUniCore32State *env) |
| 2771 | { |
| 2772 | const TaskState *ts = (const TaskState *)env->opaque; |
| 2773 | struct vm_area_struct *vma = NULL((void*)0); |
| 2774 | char corefile[PATH_MAX4096]; |
| 2775 | struct elf_note_info info; |
| 2776 | struct elfhdrelf32_hdr elf; |
| 2777 | struct elf_phdrelf32_phdr phdr; |
| 2778 | struct rlimit dumpsize; |
| 2779 | struct mm_struct *mm = NULL((void*)0); |
| 2780 | off_t offset = 0, data_offset = 0; |
| 2781 | int segs = 0; |
| 2782 | int fd = -1; |
| 2783 | |
| 2784 | errno(*__errno_location ()) = 0; |
| 2785 | getrlimit(RLIMIT_CORERLIMIT_CORE, &dumpsize); |
| 2786 | if (dumpsize.rlim_cur == 0) |
| 2787 | return 0; |
| 2788 | |
| 2789 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) |
| 2790 | return (-errno(*__errno_location ())); |
| 2791 | |
| 2792 | if ((fd = open(corefile, O_WRONLY01 | O_CREAT0100, |
| 2793 | S_IRUSR0400|S_IWUSR0200|S_IRGRP(0400 >> 3)|S_IROTH((0400 >> 3) >> 3))) < 0) |
| 2794 | return (-errno(*__errno_location ())); |
| 2795 | |
| 2796 | /* |
| 2797 | * Walk through target process memory mappings and |
| 2798 | * set up structure containing this information. After |
| 2799 | * this point vma_xxx functions can be used. |
| 2800 | */ |
| 2801 | if ((mm = vma_init()) == NULL((void*)0)) |
| 2802 | goto out; |
| 2803 | |
| 2804 | walk_memory_regions(mm, vma_walker); |
| 2805 | segs = vma_get_mapping_count(mm); |
| 2806 | |
| 2807 | /* |
| 2808 | * Construct valid coredump ELF header. We also |
| 2809 | * add one more segment for notes. |
| 2810 | */ |
| 2811 | fill_elf_header(&elf, segs + 1, ELF_MACHINE110, 0); |
| 2812 | if (dump_write(fd, &elf, sizeof (elf)) != 0) |
| 2813 | goto out; |
| 2814 | |
| 2815 | /* fill in in-memory version of notes */ |
| 2816 | if (fill_note_info(&info, signr, env) < 0) |
| 2817 | goto out; |
| 2818 | |
| 2819 | offset += sizeof (elf); /* elf header */ |
| 2820 | offset += (segs + 1) * sizeof (struct elf_phdrelf32_phdr); /* program headers */ |
| 2821 | |
| 2822 | /* write out notes program header */ |
| 2823 | fill_elf_note_phdr(&phdr, info.notes_size, offset); |
| 2824 | |
| 2825 | offset += info.notes_size; |
| 2826 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) |
| 2827 | goto out; |
| 2828 | |
| 2829 | /* |
| 2830 | * ELF specification wants data to start at page boundary so |
| 2831 | * we align it here. |
| 2832 | */ |
| 2833 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE)(__builtin_constant_p (4096) && ((((4096) - 1) & ( 4096)) == 0) ? (((offset) + (4096) - 1) & ~((4096) - 1)) : ((((offset) + ((4096) - 1)) / (4096)) * (4096))); |
| 2834 | |
| 2835 | /* |
| 2836 | * Write program headers for memory regions mapped in |
| 2837 | * the target process. |
| 2838 | */ |
| 2839 | for (vma = vma_first(mm); vma != NULL((void*)0); vma = vma_next(vma)) { |
| 2840 | (void) memset(&phdr, 0, sizeof (phdr)); |
| 2841 | |
| 2842 | phdr.p_type = PT_LOAD1; |
| 2843 | phdr.p_offset = offset; |
| 2844 | phdr.p_vaddr = vma->vma_start; |
| 2845 | phdr.p_paddr = 0; |
| 2846 | phdr.p_filesz = vma_dump_size(vma); |
| 2847 | offset += phdr.p_filesz; |
| 2848 | phdr.p_memsz = vma->vma_end - vma->vma_start; |
| 2849 | phdr.p_flags = vma->vma_flags & PROT_READ0x1 ? PF_R0x4 : 0; |
| 2850 | if (vma->vma_flags & PROT_WRITE0x2) |
| 2851 | phdr.p_flags |= PF_W0x2; |
| 2852 | if (vma->vma_flags & PROT_EXEC0x4) |
| 2853 | phdr.p_flags |= PF_X0x1; |
| 2854 | phdr.p_align = ELF_EXEC_PAGESIZE4096; |
| 2855 | |
| 2856 | bswap_phdr(&phdr, 1); |
| 2857 | dump_write(fd, &phdr, sizeof (phdr)); |
| 2858 | } |
| 2859 | |
| 2860 | /* |
| 2861 | * Next we write notes just after program headers. No |
| 2862 | * alignment needed here. |
| 2863 | */ |
| 2864 | if (write_note_info(&info, fd) < 0) |
| 2865 | goto out; |
| 2866 | |
| 2867 | /* align data to page boundary */ |
| 2868 | if (lseek(fd, data_offset, SEEK_SET0) != data_offset) |
| 2869 | goto out; |
| 2870 | |
| 2871 | /* |
| 2872 | * Finally we can dump process memory into corefile as well. |
| 2873 | */ |
| 2874 | for (vma = vma_first(mm); vma != NULL((void*)0); vma = vma_next(vma)) { |
| 2875 | abi_ulong addr; |
| 2876 | abi_ulong end; |
| 2877 | |
| 2878 | end = vma->vma_start + vma_dump_size(vma); |
| 2879 | |
| 2880 | for (addr = vma->vma_start; addr < end; |
| 2881 | addr += TARGET_PAGE_SIZE(1 << 12)) { |
| 2882 | char page[TARGET_PAGE_SIZE(1 << 12)]; |
| 2883 | int error; |
| 2884 | |
| 2885 | /* |
| 2886 | * Read in page from target process memory and |
| 2887 | * write it to coredump file. |
| 2888 | */ |
| 2889 | error = copy_from_user(page, addr, sizeof (page)); |
| 2890 | if (error != 0) { |
| 2891 | (void) fprintf(stderrstderr, "unable to dump " TARGET_ABI_FMT_lx"%08x" "\n", |
| 2892 | addr); |
| 2893 | errno(*__errno_location ()) = -error; |
| 2894 | goto out; |
| 2895 | } |
| 2896 | if (dump_write(fd, page, TARGET_PAGE_SIZE(1 << 12)) < 0) |
| 2897 | goto out; |
| 2898 | } |
| 2899 | } |
| 2900 | |
| 2901 | out: |
| 2902 | free_note_info(&info); |
| 2903 | if (mm != NULL((void*)0)) |
| 2904 | vma_delete(mm); |
| 2905 | (void) close(fd); |
| 2906 | |
| 2907 | if (errno(*__errno_location ()) != 0) |
| 2908 | return (-errno(*__errno_location ())); |
| 2909 | return (0); |
| 2910 | } |
| 2911 | #endif /* USE_ELF_CORE_DUMP */ |
| 2912 | |
| 2913 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| 2914 | { |
| 2915 | init_thread(regs, infop); |
| 2916 | } |