File: | cpu-exec.c |
Location: | line 671, column 29 |
Description: | Value stored to 'next_tb' is never read |
1 | /* |
2 | * emulator main execution loop |
3 | * |
4 | * Copyright (c) 2003-2005 Fabrice Bellard |
5 | * |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2 of the License, or (at your option) any later version. |
10 | * |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | #include "config.h" |
20 | #include "cpu.h" |
21 | #include "disas/disas.h" |
22 | #include "tcg.h" |
23 | #include "qemu/atomic.h" |
24 | #include "sysemu/qtest.h" |
25 | |
26 | bool_Bool qemu_cpu_has_work(CPUState *cpu) |
27 | { |
28 | return cpu_has_work(cpu); |
29 | } |
30 | |
31 | void cpu_loop_exit(CPUArchStatestruct CPUPPCState *env) |
32 | { |
33 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((ppc_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 33, __func__)); |
34 | |
35 | cpu->current_tb = NULL((void*)0); |
36 | siglongjmp(env->jmp_env, 1); |
37 | } |
38 | |
39 | /* exit the current TB from a signal handler. The host registers are |
40 | restored in a state compatible with the CPU emulator |
41 | */ |
42 | #if defined(CONFIG_SOFTMMU1) |
43 | void cpu_resume_from_signal(CPUArchStatestruct CPUPPCState *env, void *puc) |
44 | { |
45 | /* XXX: restore cpu registers saved in host registers */ |
46 | |
47 | env->exception_index = -1; |
48 | siglongjmp(env->jmp_env, 1); |
49 | } |
50 | #endif |
51 | |
52 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ |
53 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) |
54 | { |
55 | CPUArchStatestruct CPUPPCState *env = cpu->env_ptr; |
56 | uintptr_t next_tb; |
57 | |
58 | #if defined(DEBUG_DISAS) |
59 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU(1 << 8))) { |
60 | #if defined(TARGET_I386) |
61 | log_cpu_state(cpu, CPU_DUMP_CCOP); |
62 | #elif defined(TARGET_M68K) |
63 | /* ??? Should not modify env state for dumping. */ |
64 | cpu_m68k_flush_flags(env, env->cc_op); |
65 | env->cc_op = CC_OP_FLAGS; |
66 | env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); |
67 | log_cpu_state(cpu, 0); |
68 | #else |
69 | log_cpu_state(cpu, 0); |
70 | #endif |
71 | } |
72 | #endif /* DEBUG_DISAS */ |
73 | |
74 | next_tb = tcg_qemu_tb_exec(env, tb_ptr)((uintptr_t (*)(void *, void *))tcg_ctx.code_gen_prologue)(env , tb_ptr); |
75 | if ((next_tb & TB_EXIT_MASK3) > TB_EXIT_IDX11) { |
76 | /* We didn't start executing this TB (eg because the instruction |
77 | * counter hit zero); we must restore the guest PC to the address |
78 | * of the start of the TB. |
79 | */ |
80 | CPUClass *cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 80, __func__)); |
81 | TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
82 | if (cc->synchronize_from_tb) { |
83 | cc->synchronize_from_tb(cpu, tb); |
84 | } else { |
85 | assert(cc->set_pc)((cc->set_pc) ? (void) (0) : __assert_fail ("cc->set_pc" , "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c", 85, __PRETTY_FUNCTION__ )); |
86 | cc->set_pc(cpu, tb->pc); |
87 | } |
88 | } |
89 | if ((next_tb & TB_EXIT_MASK3) == TB_EXIT_REQUESTED3) { |
90 | /* We were asked to stop executing TBs (probably a pending |
91 | * interrupt. We've now stopped, so clear the flag. |
92 | */ |
93 | cpu->tcg_exit_req = 0; |
94 | } |
95 | return next_tb; |
96 | } |
97 | |
98 | /* Execute the code without caching the generated code. An interpreter |
99 | could be used if available. */ |
100 | static void cpu_exec_nocache(CPUArchStatestruct CPUPPCState *env, int max_cycles, |
101 | TranslationBlock *orig_tb) |
102 | { |
103 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((ppc_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 103, __func__)); |
104 | TranslationBlock *tb; |
105 | |
106 | /* Should never happen. |
107 | We only end up here when an existing TB is too long. */ |
108 | if (max_cycles > CF_COUNT_MASK0x7fff) |
109 | max_cycles = CF_COUNT_MASK0x7fff; |
110 | |
111 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, |
112 | max_cycles); |
113 | cpu->current_tb = tb; |
114 | /* execute the generated code */ |
115 | cpu_tb_exec(cpu, tb->tc_ptr); |
116 | cpu->current_tb = NULL((void*)0); |
117 | tb_phys_invalidate(tb, -1); |
118 | tb_free(tb); |
119 | } |
120 | |
121 | static TranslationBlock *tb_find_slow(CPUArchStatestruct CPUPPCState *env, |
122 | target_ulong pc, |
123 | target_ulong cs_base, |
124 | uint64_t flags) |
125 | { |
126 | TranslationBlock *tb, **ptb1; |
127 | unsigned int h; |
128 | tb_page_addr_t phys_pc, phys_page1; |
129 | target_ulong virt_page2; |
130 | |
131 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; |
132 | |
133 | /* find translated block using physical mappings */ |
134 | phys_pc = get_page_addr_code(env, pc); |
135 | phys_page1 = phys_pc & TARGET_PAGE_MASK~((1 << 10) - 1); |
136 | h = tb_phys_hash_func(phys_pc); |
137 | ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; |
138 | for(;;) { |
139 | tb = *ptb1; |
140 | if (!tb) |
141 | goto not_found; |
142 | if (tb->pc == pc && |
143 | tb->page_addr[0] == phys_page1 && |
144 | tb->cs_base == cs_base && |
145 | tb->flags == flags) { |
146 | /* check next page if needed */ |
147 | if (tb->page_addr[1] != -1) { |
148 | tb_page_addr_t phys_page2; |
149 | |
150 | virt_page2 = (pc & TARGET_PAGE_MASK~((1 << 10) - 1)) + |
151 | TARGET_PAGE_SIZE(1 << 10); |
152 | phys_page2 = get_page_addr_code(env, virt_page2); |
153 | if (tb->page_addr[1] == phys_page2) |
154 | goto found; |
155 | } else { |
156 | goto found; |
157 | } |
158 | } |
159 | ptb1 = &tb->phys_hash_next; |
160 | } |
161 | not_found: |
162 | /* if no translated code available, then translate it now */ |
163 | tb = tb_gen_code(env, pc, cs_base, flags, 0); |
164 | |
165 | found: |
166 | /* Move the last found TB to the head of the list */ |
167 | if (likely(*ptb1)__builtin_expect(!!(*ptb1), 1)) { |
168 | *ptb1 = tb->phys_hash_next; |
169 | tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; |
170 | tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; |
171 | } |
172 | /* we add the TB in the virtual pc hash table */ |
173 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; |
174 | return tb; |
175 | } |
176 | |
177 | static inline TranslationBlock *tb_find_fast(CPUArchStatestruct CPUPPCState *env) |
178 | { |
179 | TranslationBlock *tb; |
180 | target_ulong cs_base, pc; |
181 | int flags; |
182 | |
183 | /* we record a subset of the CPU state. It will |
184 | always be the same before a given translated block |
185 | is executed. */ |
186 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
187 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
188 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||__builtin_expect(!!(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags), 0) |
189 | tb->flags != flags)__builtin_expect(!!(!tb || tb->pc != pc || tb->cs_base != cs_base || tb->flags != flags), 0)) { |
190 | tb = tb_find_slow(env, pc, cs_base, flags); |
191 | } |
192 | return tb; |
193 | } |
194 | |
195 | static CPUDebugExcpHandler *debug_excp_handler; |
196 | |
197 | void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) |
198 | { |
199 | debug_excp_handler = handler; |
200 | } |
201 | |
202 | static void cpu_handle_debug_exception(CPUArchStatestruct CPUPPCState *env) |
203 | { |
204 | CPUWatchpoint *wp; |
205 | |
206 | if (!env->watchpoint_hit) { |
207 | QTAILQ_FOREACH(wp, &env->watchpoints, entry)for ((wp) = ((&env->watchpoints)->tqh_first); (wp); (wp) = ((wp)->entry.tqe_next)) { |
208 | wp->flags &= ~BP_WATCHPOINT_HIT0x08; |
209 | } |
210 | } |
211 | if (debug_excp_handler) { |
212 | debug_excp_handler(env); |
213 | } |
214 | } |
215 | |
216 | /* main execution loop */ |
217 | |
218 | volatile sig_atomic_t exit_request; |
219 | |
220 | int cpu_execcpu_ppc_exec(CPUArchStatestruct CPUPPCState *env) |
221 | { |
222 | CPUState *cpu = ENV_GET_CPU(env)((CPUState *)object_dynamic_cast_assert(((Object *)((ppc_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 222, __func__)); |
223 | #if !(defined(CONFIG_USER_ONLY) && \ |
224 | (defined(TARGET_M68K) || defined(TARGET_PPC1) || defined(TARGET_S390X))) |
225 | CPUClass *cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 225, __func__)); |
226 | #endif |
227 | #ifdef TARGET_I386 |
228 | X86CPU *x86_cpu = X86_CPU(cpu); |
229 | #endif |
230 | int ret, interrupt_request; |
231 | TranslationBlock *tb; |
232 | uint8_t *tc_ptr; |
233 | uintptr_t next_tb; |
234 | |
235 | if (cpu->halted) { |
236 | if (!cpu_has_work(cpu)) { |
237 | return EXCP_HALTED0x10003; |
238 | } |
239 | |
240 | cpu->halted = 0; |
241 | } |
242 | |
243 | current_cputls__current_cpu = cpu; |
244 | |
245 | /* As long as current_cpu is null, up to the assignment just above, |
246 | * requests by other threads to exit the execution loop are expected to |
247 | * be issued using the exit_request global. We must make sure that our |
248 | * evaluation of the global value is performed past the current_cpu |
249 | * value transition point, which requires a memory barrier as well as |
250 | * an instruction scheduling constraint on modern architectures. */ |
251 | smp_mb()__sync_synchronize(); |
252 | |
253 | if (unlikely(exit_request)__builtin_expect(!!(exit_request), 0)) { |
254 | cpu->exit_request = 1; |
255 | } |
256 | |
257 | #if defined(TARGET_I386) |
258 | /* put eflags in CPU temporary format */ |
259 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
260 | env->df = 1 - (2 * ((env->eflags >> 10) & 1)); |
261 | CC_OP = CC_OP_EFLAGS; |
262 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
263 | #elif defined(TARGET_SPARC) |
264 | #elif defined(TARGET_M68K) |
265 | env->cc_op = CC_OP_FLAGS; |
266 | env->cc_dest = env->sr & 0xf; |
267 | env->cc_x = (env->sr >> 4) & 1; |
268 | #elif defined(TARGET_ALPHA) |
269 | #elif defined(TARGET_ARM) |
270 | #elif defined(TARGET_UNICORE32) |
271 | #elif defined(TARGET_PPC1) |
272 | env->reserve_addr = -1; |
273 | #elif defined(TARGET_LM32) |
274 | #elif defined(TARGET_MICROBLAZE) |
275 | #elif defined(TARGET_MIPS) |
276 | #elif defined(TARGET_MOXIE) |
277 | #elif defined(TARGET_OPENRISC) |
278 | #elif defined(TARGET_SH4) |
279 | #elif defined(TARGET_CRIS) |
280 | #elif defined(TARGET_S390X) |
281 | #elif defined(TARGET_XTENSA) |
282 | /* XXXXX */ |
283 | #else |
284 | #error unsupported target CPU |
285 | #endif |
286 | env->exception_index = -1; |
287 | |
288 | /* prepare setjmp context for exception handling */ |
289 | for(;;) { |
290 | if (sigsetjmp(env->jmp_env, 0)__sigsetjmp (env->jmp_env, 0) == 0) { |
291 | /* if an exception is pending, we execute it here */ |
292 | if (env->exception_index >= 0) { |
293 | if (env->exception_index >= EXCP_INTERRUPT0x10000) { |
294 | /* exit request from the cpu execution loop */ |
295 | ret = env->exception_index; |
296 | if (ret == EXCP_DEBUG0x10002) { |
297 | cpu_handle_debug_exception(env); |
298 | } |
299 | break; |
300 | } else { |
301 | #if defined(CONFIG_USER_ONLY) |
302 | /* if user mode only, we simulate a fake exception |
303 | which will be handled outside the cpu execution |
304 | loop */ |
305 | #if defined(TARGET_I386) |
306 | cc->do_interrupt(cpu); |
307 | #endif |
308 | ret = env->exception_index; |
309 | break; |
310 | #else |
311 | cc->do_interrupt(cpu); |
312 | env->exception_index = -1; |
313 | #endif |
314 | } |
315 | } |
316 | |
317 | next_tb = 0; /* force lookup of first TB */ |
318 | for(;;) { |
319 | interrupt_request = cpu->interrupt_request; |
320 | if (unlikely(interrupt_request)__builtin_expect(!!(interrupt_request), 0)) { |
321 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)__builtin_expect(!!(cpu->singlestep_enabled & 0x2), 0)) { |
322 | /* Mask out external interrupts for this step. */ |
323 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK(0x0002 | 0x0008 | 0x0010 | 0x0040 | 0x0200 | 0x1000); |
324 | } |
325 | if (interrupt_request & CPU_INTERRUPT_DEBUG0x0080) { |
326 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG0x0080; |
327 | env->exception_index = EXCP_DEBUG0x10002; |
328 | cpu_loop_exit(env); |
329 | } |
330 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
331 | defined(TARGET_PPC1) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ |
332 | defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) |
333 | if (interrupt_request & CPU_INTERRUPT_HALT0x0020) { |
334 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT0x0020; |
335 | cpu->halted = 1; |
336 | env->exception_index = EXCP_HLT0x10001; |
337 | cpu_loop_exit(env); |
338 | } |
339 | #endif |
340 | #if defined(TARGET_I386) |
341 | #if !defined(CONFIG_USER_ONLY) |
342 | if (interrupt_request & CPU_INTERRUPT_POLL) { |
343 | cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; |
344 | apic_poll_irq(x86_cpu->apic_state); |
345 | } |
346 | #endif |
347 | if (interrupt_request & CPU_INTERRUPT_INIT) { |
348 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, |
349 | 0); |
350 | do_cpu_init(x86_cpu); |
351 | env->exception_index = EXCP_HALTED0x10003; |
352 | cpu_loop_exit(env); |
353 | } else if (interrupt_request & CPU_INTERRUPT_SIPI) { |
354 | do_cpu_sipi(x86_cpu); |
355 | } else if (env->hflags2 & HF2_GIF_MASK) { |
356 | if ((interrupt_request & CPU_INTERRUPT_SMI) && |
357 | !(env->hflags & HF_SMM_MASK)) { |
358 | cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, |
359 | 0); |
360 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; |
361 | do_smm_enter(x86_cpu); |
362 | next_tb = 0; |
363 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && |
364 | !(env->hflags2 & HF2_NMI_MASK)) { |
365 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; |
366 | env->hflags2 |= HF2_NMI_MASK; |
367 | do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); |
368 | next_tb = 0; |
369 | } else if (interrupt_request & CPU_INTERRUPT_MCE) { |
370 | cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; |
371 | do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); |
372 | next_tb = 0; |
373 | } else if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
374 | (((env->hflags2 & HF2_VINTR_MASK) && |
375 | (env->hflags2 & HF2_HIF_MASK)) || |
376 | (!(env->hflags2 & HF2_VINTR_MASK) && |
377 | (env->eflags & IF_MASK && |
378 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { |
379 | int intno; |
380 | cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, |
381 | 0); |
382 | cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD0x0002 | |
383 | CPU_INTERRUPT_VIRQ); |
384 | intno = cpu_get_pic_interrupt(env); |
385 | qemu_log_mask(CPU_LOG_TB_IN_ASM(1 << 1), "Servicing hardware INT=0x%02x\n", intno); |
386 | do_interrupt_x86_hardirq(env, intno, 1); |
387 | /* ensure that no TB jump will be modified as |
388 | the program flow was changed */ |
389 | next_tb = 0; |
390 | #if !defined(CONFIG_USER_ONLY) |
391 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
392 | (env->eflags & IF_MASK) && |
393 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
394 | int intno; |
395 | /* FIXME: this should respect TPR */ |
396 | cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, |
397 | 0); |
398 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)__builtin_offsetof(struct vmcb, control.int_vector)); |
399 | qemu_log_mask(CPU_LOG_TB_IN_ASM(1 << 1), "Servicing virtual hardware INT=0x%02x\n", intno); |
400 | do_interrupt_x86_hardirq(env, intno, 1); |
401 | cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
402 | next_tb = 0; |
403 | #endif |
404 | } |
405 | } |
406 | #elif defined(TARGET_PPC1) |
407 | if ((interrupt_request & CPU_INTERRUPT_RESET0x0100)) { |
408 | cpu_reset(cpu); |
409 | } |
410 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
411 | ppc_hw_interrupt(env); |
412 | if (env->pending_interrupts == 0) { |
413 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD0x0002; |
414 | } |
415 | next_tb = 0; |
416 | } |
417 | #elif defined(TARGET_LM32) |
418 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
419 | && (env->ie & IE_IE)) { |
420 | env->exception_index = EXCP_IRQ; |
421 | cc->do_interrupt(cpu); |
422 | next_tb = 0; |
423 | } |
424 | #elif defined(TARGET_MICROBLAZE) |
425 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
426 | && (env->sregs[SR_MSR] & MSR_IE) |
427 | && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) |
428 | && !(env->iflags & (D_FLAG | IMM_FLAG))) { |
429 | env->exception_index = EXCP_IRQ; |
430 | cc->do_interrupt(cpu); |
431 | next_tb = 0; |
432 | } |
433 | #elif defined(TARGET_MIPS) |
434 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
435 | cpu_mips_hw_interrupts_pending(env)) { |
436 | /* Raise it */ |
437 | env->exception_index = EXCP_EXT_INTERRUPT; |
438 | env->error_code = 0; |
439 | cc->do_interrupt(cpu); |
440 | next_tb = 0; |
441 | } |
442 | #elif defined(TARGET_OPENRISC) |
443 | { |
444 | int idx = -1; |
445 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) |
446 | && (env->sr & SR_IEE)) { |
447 | idx = EXCP_INT; |
448 | } |
449 | if ((interrupt_request & CPU_INTERRUPT_TIMER) |
450 | && (env->sr & SR_TEE)) { |
451 | idx = EXCP_TICK; |
452 | } |
453 | if (idx >= 0) { |
454 | env->exception_index = idx; |
455 | cc->do_interrupt(cpu); |
456 | next_tb = 0; |
457 | } |
458 | } |
459 | #elif defined(TARGET_SPARC) |
460 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
461 | if (cpu_interrupts_enabled(env) && |
462 | env->interrupt_index > 0) { |
463 | int pil = env->interrupt_index & 0xf; |
464 | int type = env->interrupt_index & 0xf0; |
465 | |
466 | if (((type == TT_EXTINT) && |
467 | cpu_pil_allowed(env, pil)) || |
468 | type != TT_EXTINT) { |
469 | env->exception_index = env->interrupt_index; |
470 | cc->do_interrupt(cpu); |
471 | next_tb = 0; |
472 | } |
473 | } |
474 | } |
475 | #elif defined(TARGET_ARM) |
476 | if (interrupt_request & CPU_INTERRUPT_FIQ |
477 | && !(env->uncached_cpsr & CPSR_F)) { |
478 | env->exception_index = EXCP_FIQ; |
479 | cc->do_interrupt(cpu); |
480 | next_tb = 0; |
481 | } |
482 | /* ARMv7-M interrupt return works by loading a magic value |
483 | into the PC. On real hardware the load causes the |
484 | return to occur. The qemu implementation performs the |
485 | jump normally, then does the exception return when the |
486 | CPU tries to execute code at the magic address. |
487 | This will cause the magic PC value to be pushed to |
488 | the stack if an interrupt occurred at the wrong time. |
489 | We avoid this by disabling interrupts when |
490 | pc contains a magic address. */ |
491 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
492 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
493 | || !(env->uncached_cpsr & CPSR_I))) { |
494 | env->exception_index = EXCP_IRQ; |
495 | cc->do_interrupt(cpu); |
496 | next_tb = 0; |
497 | } |
498 | #elif defined(TARGET_UNICORE32) |
499 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
500 | && !(env->uncached_asr & ASR_I)) { |
501 | env->exception_index = UC32_EXCP_INTR; |
502 | cc->do_interrupt(cpu); |
503 | next_tb = 0; |
504 | } |
505 | #elif defined(TARGET_SH4) |
506 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
507 | cc->do_interrupt(cpu); |
508 | next_tb = 0; |
509 | } |
510 | #elif defined(TARGET_ALPHA) |
511 | { |
512 | int idx = -1; |
513 | /* ??? This hard-codes the OSF/1 interrupt levels. */ |
514 | switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { |
515 | case 0 ... 3: |
516 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
517 | idx = EXCP_DEV_INTERRUPT; |
518 | } |
519 | /* FALLTHRU */ |
520 | case 4: |
521 | if (interrupt_request & CPU_INTERRUPT_TIMER) { |
522 | idx = EXCP_CLK_INTERRUPT; |
523 | } |
524 | /* FALLTHRU */ |
525 | case 5: |
526 | if (interrupt_request & CPU_INTERRUPT_SMP) { |
527 | idx = EXCP_SMP_INTERRUPT; |
528 | } |
529 | /* FALLTHRU */ |
530 | case 6: |
531 | if (interrupt_request & CPU_INTERRUPT_MCHK) { |
532 | idx = EXCP_MCHK; |
533 | } |
534 | } |
535 | if (idx >= 0) { |
536 | env->exception_index = idx; |
537 | env->error_code = 0; |
538 | cc->do_interrupt(cpu); |
539 | next_tb = 0; |
540 | } |
541 | } |
542 | #elif defined(TARGET_CRIS) |
543 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
544 | && (env->pregs[PR_CCS] & I_FLAG) |
545 | && !env->locked_irq) { |
546 | env->exception_index = EXCP_IRQ; |
547 | cc->do_interrupt(cpu); |
548 | next_tb = 0; |
549 | } |
550 | if (interrupt_request & CPU_INTERRUPT_NMI) { |
551 | unsigned int m_flag_archval; |
552 | if (env->pregs[PR_VR] < 32) { |
553 | m_flag_archval = M_FLAG_V10; |
554 | } else { |
555 | m_flag_archval = M_FLAG_V32; |
556 | } |
557 | if ((env->pregs[PR_CCS] & m_flag_archval)) { |
558 | env->exception_index = EXCP_NMI; |
559 | cc->do_interrupt(cpu); |
560 | next_tb = 0; |
561 | } |
562 | } |
563 | #elif defined(TARGET_M68K) |
564 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002 |
565 | && ((env->sr & SR_I) >> SR_I_SHIFT) |
566 | < env->pending_level) { |
567 | /* Real hardware gets the interrupt vector via an |
568 | IACK cycle at this point. Current emulated |
569 | hardware doesn't rely on this, so we |
570 | provide/save the vector when the interrupt is |
571 | first signalled. */ |
572 | env->exception_index = env->pending_vector; |
573 | do_interrupt_m68k_hardirq(env); |
574 | next_tb = 0; |
575 | } |
576 | #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) |
577 | if ((interrupt_request & CPU_INTERRUPT_HARD0x0002) && |
578 | (env->psw.mask & PSW_MASK_EXT)) { |
579 | cc->do_interrupt(cpu); |
580 | next_tb = 0; |
581 | } |
582 | #elif defined(TARGET_XTENSA) |
583 | if (interrupt_request & CPU_INTERRUPT_HARD0x0002) { |
584 | env->exception_index = EXC_IRQ; |
585 | cc->do_interrupt(cpu); |
586 | next_tb = 0; |
587 | } |
588 | #endif |
589 | /* Don't use the cached interrupt_request value, |
590 | do_interrupt may have updated the EXITTB flag. */ |
591 | if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB0x0004) { |
592 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB0x0004; |
593 | /* ensure that no TB jump will be modified as |
594 | the program flow was changed */ |
595 | next_tb = 0; |
596 | } |
597 | } |
598 | if (unlikely(cpu->exit_request)__builtin_expect(!!(cpu->exit_request), 0)) { |
599 | cpu->exit_request = 0; |
600 | env->exception_index = EXCP_INTERRUPT0x10000; |
601 | cpu_loop_exit(env); |
602 | } |
603 | spin_lock(&tcg_ctx.tb_ctx.tb_lock); |
604 | tb = tb_find_fast(env); |
605 | /* Note: we do it here to avoid a gcc bug on Mac OS X when |
606 | doing it in tb_find_slow */ |
607 | if (tcg_ctx.tb_ctx.tb_invalidated_flag) { |
608 | /* as some TB could have been invalidated because |
609 | of memory exceptions while generating the code, we |
610 | must recompute the hash index here */ |
611 | next_tb = 0; |
612 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; |
613 | } |
614 | if (qemu_loglevel_mask(CPU_LOG_EXEC(1 << 5))) { |
615 | qemu_log("Trace %p [" TARGET_FMT_lx"%08x" "] %s\n", |
616 | tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); |
617 | } |
618 | /* see if we can patch the calling TB. When the TB |
619 | spans two pages, we cannot safely do a direct |
620 | jump. */ |
621 | if (next_tb != 0 && tb->page_addr[1] == -1) { |
622 | tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK3), |
623 | next_tb & TB_EXIT_MASK3, tb); |
624 | } |
625 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); |
626 | |
627 | /* cpu_interrupt might be called while translating the |
628 | TB, but before it is linked into a potentially |
629 | infinite loop and becomes env->current_tb. Avoid |
630 | starting execution if there is a pending interrupt. */ |
631 | cpu->current_tb = tb; |
632 | barrier()({ asm volatile("" ::: "memory"); (void)0; }); |
633 | if (likely(!cpu->exit_request)__builtin_expect(!!(!cpu->exit_request), 1)) { |
634 | tc_ptr = tb->tc_ptr; |
635 | /* execute the generated code */ |
636 | next_tb = cpu_tb_exec(cpu, tc_ptr); |
637 | switch (next_tb & TB_EXIT_MASK3) { |
638 | case TB_EXIT_REQUESTED3: |
639 | /* Something asked us to stop executing |
640 | * chained TBs; just continue round the main |
641 | * loop. Whatever requested the exit will also |
642 | * have set something else (eg exit_request or |
643 | * interrupt_request) which we will handle |
644 | * next time around the loop. |
645 | */ |
646 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
647 | next_tb = 0; |
648 | break; |
649 | case TB_EXIT_ICOUNT_EXPIRED2: |
650 | { |
651 | /* Instruction counter expired. */ |
652 | int insns_left; |
653 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK3); |
654 | insns_left = env->icount_decr.u32; |
655 | if (env->icount_extra && insns_left >= 0) { |
656 | /* Refill decrementer and continue execution. */ |
657 | env->icount_extra += insns_left; |
658 | if (env->icount_extra > 0xffff) { |
659 | insns_left = 0xffff; |
660 | } else { |
661 | insns_left = env->icount_extra; |
662 | } |
663 | env->icount_extra -= insns_left; |
664 | env->icount_decr.u16.low = insns_left; |
665 | } else { |
666 | if (insns_left > 0) { |
667 | /* Execute remaining instructions. */ |
668 | cpu_exec_nocache(env, insns_left, tb); |
669 | } |
670 | env->exception_index = EXCP_INTERRUPT0x10000; |
671 | next_tb = 0; |
Value stored to 'next_tb' is never read | |
672 | cpu_loop_exit(env); |
673 | } |
674 | break; |
675 | } |
676 | default: |
677 | break; |
678 | } |
679 | } |
680 | cpu->current_tb = NULL((void*)0); |
681 | /* reset soft MMU for next block (it can currently |
682 | only be set by a memory fault) */ |
683 | } /* for(;;) */ |
684 | } else { |
685 | /* Reload env after longjmp - the compiler may have smashed all |
686 | * local variables as longjmp is marked 'noreturn'. */ |
687 | cpu = current_cputls__current_cpu; |
688 | env = cpu->env_ptr; |
689 | #if !(defined(CONFIG_USER_ONLY) && \ |
690 | (defined(TARGET_M68K) || defined(TARGET_PPC1) || defined(TARGET_S390X))) |
691 | cc = CPU_GET_CLASS(cpu)((CPUClass *)object_class_dynamic_cast_assert(((ObjectClass * )(object_get_class(((Object *)((cpu)))))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/cpu-exec.c" , 691, __func__)); |
692 | #endif |
693 | #ifdef TARGET_I386 |
694 | x86_cpu = X86_CPU(cpu); |
695 | #endif |
696 | } |
697 | } /* for(;;) */ |
698 | |
699 | |
700 | #if defined(TARGET_I386) |
701 | /* restore flags in standard format */ |
702 | env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) |
703 | | (env->df & DF_MASK); |
704 | #elif defined(TARGET_ARM) |
705 | /* XXX: Save/restore host fpu exception state?. */ |
706 | #elif defined(TARGET_UNICORE32) |
707 | #elif defined(TARGET_SPARC) |
708 | #elif defined(TARGET_PPC1) |
709 | #elif defined(TARGET_LM32) |
710 | #elif defined(TARGET_M68K) |
711 | cpu_m68k_flush_flags(env, env->cc_op); |
712 | env->cc_op = CC_OP_FLAGS; |
713 | env->sr = (env->sr & 0xffe0) |
714 | | env->cc_dest | (env->cc_x << 4); |
715 | #elif defined(TARGET_MICROBLAZE) |
716 | #elif defined(TARGET_MIPS) |
717 | #elif defined(TARGET_MOXIE) |
718 | #elif defined(TARGET_OPENRISC) |
719 | #elif defined(TARGET_SH4) |
720 | #elif defined(TARGET_ALPHA) |
721 | #elif defined(TARGET_CRIS) |
722 | #elif defined(TARGET_S390X) |
723 | #elif defined(TARGET_XTENSA) |
724 | /* XXXXX */ |
725 | #else |
726 | #error unsupported target CPU |
727 | #endif |
728 | |
729 | /* fail safe : never use current_cpu outside cpu_exec() */ |
730 | current_cputls__current_cpu = NULL((void*)0); |
731 | return ret; |
732 | } |