| File: | translate-all.c |
| Location: | line 244, column 30 |
| Description: | Dereference of null pointer |
| 1 | /* | |||
| 2 | * Host code generation | |||
| 3 | * | |||
| 4 | * Copyright (c) 2003 Fabrice Bellard | |||
| 5 | * | |||
| 6 | * This library is free software; you can redistribute it and/or | |||
| 7 | * modify it under the terms of the GNU Lesser General Public | |||
| 8 | * License as published by the Free Software Foundation; either | |||
| 9 | * version 2 of the License, or (at your option) any later version. | |||
| 10 | * | |||
| 11 | * This library is distributed in the hope that it will be useful, | |||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| 14 | * Lesser General Public License for more details. | |||
| 15 | * | |||
| 16 | * You should have received a copy of the GNU Lesser General Public | |||
| 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |||
| 18 | */ | |||
| 19 | #ifdef _WIN32 | |||
| 20 | #include <windows.h> | |||
| 21 | #else | |||
| 22 | #include <sys/types.h> | |||
| 23 | #include <sys/mman.h> | |||
| 24 | #endif | |||
| 25 | #include <stdarg.h> | |||
| 26 | #include <stdlib.h> | |||
| 27 | #include <stdio.h> | |||
| 28 | #include <string.h> | |||
| 29 | #include <inttypes.h> | |||
| 30 | ||||
| 31 | #include "config.h" | |||
| 32 | ||||
| 33 | #include "qemu-common.h" | |||
| 34 | #define NO_CPU_IO_DEFS | |||
| 35 | #include "cpu.h" | |||
| 36 | #include "disas/disas.h" | |||
| 37 | #include "tcg.h" | |||
| 38 | #if defined(CONFIG_USER_ONLY1) | |||
| 39 | #include "qemu.h" | |||
| 40 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |||
| 41 | #include <sys/param.h> | |||
| 42 | #if __FreeBSD_version >= 700104 | |||
| 43 | #define HAVE_KINFO_GETVMMAP | |||
| 44 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |||
| 45 | #include <sys/time.h> | |||
| 46 | #include <sys/proc.h> | |||
| 47 | #include <machine/profile.h> | |||
| 48 | #define _KERNEL | |||
| 49 | #include <sys/user.h> | |||
| 50 | #undef _KERNEL | |||
| 51 | #undef sigqueue | |||
| 52 | #include <libutil.h> | |||
| 53 | #endif | |||
| 54 | #endif | |||
| 55 | #else | |||
| 56 | #include "exec/address-spaces.h" | |||
| 57 | #endif | |||
| 58 | ||||
| 59 | #include "exec/cputlb.h" | |||
| 60 | #include "translate-all.h" | |||
| 61 | #include "qemu/timer.h" | |||
| 62 | ||||
| 63 | //#define DEBUG_TB_INVALIDATE | |||
| 64 | //#define DEBUG_FLUSH | |||
| 65 | /* make various TB consistency checks */ | |||
| 66 | //#define DEBUG_TB_CHECK | |||
| 67 | ||||
| 68 | #if !defined(CONFIG_USER_ONLY1) | |||
| 69 | /* TB consistency checks only implemented for usermode emulation. */ | |||
| 70 | #undef DEBUG_TB_CHECK | |||
| 71 | #endif | |||
| 72 | ||||
| 73 | #define SMC_BITMAP_USE_THRESHOLD10 10 | |||
| 74 | ||||
| 75 | typedef struct PageDesc { | |||
| 76 | /* list of TBs intersecting this ram page */ | |||
| 77 | TranslationBlock *first_tb; | |||
| 78 | /* in order to optimize self modifying code, we count the number | |||
| 79 | of lookups we do to a given page to use a bitmap */ | |||
| 80 | unsigned int code_write_count; | |||
| 81 | uint8_t *code_bitmap; | |||
| 82 | #if defined(CONFIG_USER_ONLY1) | |||
| 83 | unsigned long flags; | |||
| 84 | #endif | |||
| 85 | } PageDesc; | |||
| 86 | ||||
| 87 | /* In system mode we want L1_MAP to be based on ram offsets, | |||
| 88 | while in user mode we want it to be based on virtual addresses. */ | |||
| 89 | #if !defined(CONFIG_USER_ONLY1) | |||
| 90 | #if HOST_LONG_BITS64 < TARGET_PHYS_ADDR_SPACE_BITS52 | |||
| 91 | # define L1_MAP_ADDR_SPACE_BITS47 HOST_LONG_BITS64 | |||
| 92 | #else | |||
| 93 | # define L1_MAP_ADDR_SPACE_BITS47 TARGET_PHYS_ADDR_SPACE_BITS52 | |||
| 94 | #endif | |||
| 95 | #else | |||
| 96 | # define L1_MAP_ADDR_SPACE_BITS47 TARGET_VIRT_ADDR_SPACE_BITS47 | |||
| 97 | #endif | |||
| 98 | ||||
| 99 | /* Size of the L2 (and L3, etc) page tables. */ | |||
| 100 | #define V_L2_BITS10 10 | |||
| 101 | #define V_L2_SIZE(1 << 10) (1 << V_L2_BITS10) | |||
| 102 | ||||
| 103 | /* The bits remaining after N lower levels of page tables. */ | |||
| 104 | #define V_L1_BITS_REM((47 - 12) % 10) \ | |||
| 105 | ((L1_MAP_ADDR_SPACE_BITS47 - TARGET_PAGE_BITS12) % V_L2_BITS10) | |||
| 106 | ||||
| 107 | #if V_L1_BITS_REM((47 - 12) % 10) < 4 | |||
| 108 | #define V_L1_BITS((47 - 12) % 10) (V_L1_BITS_REM((47 - 12) % 10) + V_L2_BITS10) | |||
| 109 | #else | |||
| 110 | #define V_L1_BITS((47 - 12) % 10) V_L1_BITS_REM((47 - 12) % 10) | |||
| 111 | #endif | |||
| 112 | ||||
| 113 | #define V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)) ((target_ulong)1 << V_L1_BITS((47 - 12) % 10)) | |||
| 114 | ||||
| 115 | #define V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) (L1_MAP_ADDR_SPACE_BITS47 - TARGET_PAGE_BITS12 - V_L1_BITS((47 - 12) % 10)) | |||
| 116 | ||||
| 117 | uintptr_t qemu_real_host_page_size; | |||
| 118 | uintptr_t qemu_host_page_size; | |||
| 119 | uintptr_t qemu_host_page_mask; | |||
| 120 | ||||
| 121 | /* This is a multi-level map on the virtual address space. | |||
| 122 | The bottom level has pointers to PageDesc. */ | |||
| 123 | static void *l1_map[V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10))]; | |||
| 124 | ||||
| 125 | /* code generation context */ | |||
| 126 | TCGContext tcg_ctx; | |||
| 127 | ||||
| 128 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |||
| 129 | tb_page_addr_t phys_page2); | |||
| 130 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); | |||
| 131 | ||||
| 132 | void cpu_gen_init(void) | |||
| 133 | { | |||
| 134 | tcg_context_init(&tcg_ctx); | |||
| 135 | } | |||
| 136 | ||||
| 137 | /* return non zero if the very first instruction is invalid so that | |||
| 138 | the virtual CPU can trigger an exception. | |||
| 139 | ||||
| 140 | '*gen_code_size_ptr' contains the size of the generated code (host | |||
| 141 | code). | |||
| 142 | */ | |||
| 143 | int cpu_gen_codecpu_x86_gen_code(CPUArchStatestruct CPUX86State *env, TranslationBlock *tb, int *gen_code_size_ptr) | |||
| 144 | { | |||
| 145 | TCGContext *s = &tcg_ctx; | |||
| 146 | uint8_t *gen_code_buf; | |||
| 147 | int gen_code_size; | |||
| 148 | #ifdef CONFIG_PROFILER | |||
| 149 | int64_t ti; | |||
| 150 | #endif | |||
| 151 | ||||
| 152 | #ifdef CONFIG_PROFILER | |||
| 153 | s->tb_count1++; /* includes aborted translations because of | |||
| 154 | exceptions */ | |||
| 155 | ti = profile_getclock(); | |||
| 156 | #endif | |||
| 157 | tcg_func_start(s); | |||
| 158 | ||||
| 159 | gen_intermediate_code(env, tb); | |||
| 160 | ||||
| 161 | /* generate machine code */ | |||
| 162 | gen_code_buf = tb->tc_ptr; | |||
| 163 | tb->tb_next_offset[0] = 0xffff; | |||
| 164 | tb->tb_next_offset[1] = 0xffff; | |||
| 165 | s->tb_next_offset = tb->tb_next_offset; | |||
| 166 | #ifdef USE_DIRECT_JUMP | |||
| 167 | s->tb_jmp_offset = tb->tb_jmp_offset; | |||
| 168 | s->tb_next = NULL((void*)0); | |||
| 169 | #else | |||
| 170 | s->tb_jmp_offset = NULL((void*)0); | |||
| 171 | s->tb_next = tb->tb_next; | |||
| 172 | #endif | |||
| 173 | ||||
| 174 | #ifdef CONFIG_PROFILER | |||
| 175 | s->tb_count++; | |||
| 176 | s->interm_time += profile_getclock() - ti; | |||
| 177 | s->code_time -= profile_getclock(); | |||
| 178 | #endif | |||
| 179 | gen_code_size = tcg_gen_code(s, gen_code_buf); | |||
| 180 | *gen_code_size_ptr = gen_code_size; | |||
| 181 | #ifdef CONFIG_PROFILER | |||
| 182 | s->code_time += profile_getclock(); | |||
| 183 | s->code_in_len += tb->size; | |||
| 184 | s->code_out_len += gen_code_size; | |||
| 185 | #endif | |||
| 186 | ||||
| 187 | #ifdef DEBUG_DISAS | |||
| 188 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM(1 << 0))) { | |||
| 189 | qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr); | |||
| 190 | log_disas(tb->tc_ptr, *gen_code_size_ptr); | |||
| 191 | qemu_log("\n"); | |||
| 192 | qemu_log_flush(); | |||
| 193 | } | |||
| 194 | #endif | |||
| 195 | return 0; | |||
| 196 | } | |||
| 197 | ||||
| 198 | /* The cpu state corresponding to 'searched_pc' is restored. | |||
| 199 | */ | |||
| 200 | static int cpu_restore_state_from_tb(TranslationBlock *tb, CPUArchStatestruct CPUX86State *env, | |||
| 201 | uintptr_t searched_pc) | |||
| 202 | { | |||
| 203 | TCGContext *s = &tcg_ctx; | |||
| 204 | int j; | |||
| 205 | uintptr_t tc_ptr; | |||
| 206 | #ifdef CONFIG_PROFILER | |||
| 207 | int64_t ti; | |||
| 208 | #endif | |||
| 209 | ||||
| 210 | #ifdef CONFIG_PROFILER | |||
| 211 | ti = profile_getclock(); | |||
| 212 | #endif | |||
| 213 | tcg_func_start(s); | |||
| 214 | ||||
| 215 | gen_intermediate_code_pc(env, tb); | |||
| 216 | ||||
| 217 | if (use_icount) { | |||
| 218 | /* Reset the cycle counter to the start of the block. */ | |||
| 219 | env->icount_decr.u16.low += tb->icount; | |||
| 220 | /* Clear the IO flag. */ | |||
| 221 | env->can_do_io = 0; | |||
| 222 | } | |||
| 223 | ||||
| 224 | /* find opc index corresponding to search_pc */ | |||
| 225 | tc_ptr = (uintptr_t)tb->tc_ptr; | |||
| 226 | if (searched_pc < tc_ptr) | |||
| 227 | return -1; | |||
| 228 | ||||
| 229 | s->tb_next_offset = tb->tb_next_offset; | |||
| 230 | #ifdef USE_DIRECT_JUMP | |||
| 231 | s->tb_jmp_offset = tb->tb_jmp_offset; | |||
| 232 | s->tb_next = NULL((void*)0); | |||
| 233 | #else | |||
| 234 | s->tb_jmp_offset = NULL((void*)0); | |||
| 235 | s->tb_next = tb->tb_next; | |||
| 236 | #endif | |||
| 237 | j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr); | |||
| 238 | if (j < 0) | |||
| 239 | return -1; | |||
| 240 | /* now find start of instruction before */ | |||
| 241 | while (s->gen_opc_instr_start[j] == 0) { | |||
| 242 | j--; | |||
| 243 | } | |||
| 244 | env->icount_decr.u16.low -= s->gen_opc_icount[j]; | |||
| ||||
| 245 | ||||
| 246 | restore_state_to_opc(env, tb, j); | |||
| 247 | ||||
| 248 | #ifdef CONFIG_PROFILER | |||
| 249 | s->restore_time += profile_getclock() - ti; | |||
| 250 | s->restore_count++; | |||
| 251 | #endif | |||
| 252 | return 0; | |||
| 253 | } | |||
| 254 | ||||
| 255 | bool_Bool cpu_restore_state(CPUArchStatestruct CPUX86State *env, uintptr_t retaddr) | |||
| 256 | { | |||
| 257 | TranslationBlock *tb; | |||
| 258 | ||||
| 259 | tb = tb_find_pc(retaddr); | |||
| 260 | if (tb) { | |||
| 261 | cpu_restore_state_from_tb(tb, env, retaddr); | |||
| 262 | return true1; | |||
| 263 | } | |||
| 264 | return false0; | |||
| 265 | } | |||
| 266 | ||||
| 267 | #ifdef _WIN32 | |||
| 268 | static inline void map_exec(void *addr, long size) | |||
| 269 | { | |||
| 270 | DWORD old_protect; | |||
| 271 | VirtualProtect(addr, size, | |||
| 272 | PAGE_EXECUTE_READWRITE, &old_protect); | |||
| 273 | } | |||
| 274 | #else | |||
| 275 | static inline void map_exec(void *addr, long size) | |||
| 276 | { | |||
| 277 | unsigned long start, end, page_size; | |||
| 278 | ||||
| 279 | page_size = getpagesize(); | |||
| 280 | start = (unsigned long)addr; | |||
| 281 | start &= ~(page_size - 1); | |||
| 282 | ||||
| 283 | end = (unsigned long)addr + size; | |||
| 284 | end += page_size - 1; | |||
| 285 | end &= ~(page_size - 1); | |||
| 286 | ||||
| 287 | mprotect((void *)start, end - start, | |||
| 288 | PROT_READ0x1 | PROT_WRITE0x2 | PROT_EXEC0x4); | |||
| 289 | } | |||
| 290 | #endif | |||
| 291 | ||||
| 292 | static void page_init(void) | |||
| 293 | { | |||
| 294 | /* NOTE: we can always suppose that qemu_host_page_size >= | |||
| 295 | TARGET_PAGE_SIZE */ | |||
| 296 | #ifdef _WIN32 | |||
| 297 | { | |||
| 298 | SYSTEM_INFO system_info; | |||
| 299 | ||||
| 300 | GetSystemInfo(&system_info); | |||
| 301 | qemu_real_host_page_size = system_info.dwPageSize; | |||
| 302 | } | |||
| 303 | #else | |||
| 304 | qemu_real_host_page_size = getpagesize(); | |||
| 305 | #endif | |||
| 306 | if (qemu_host_page_size == 0) { | |||
| 307 | qemu_host_page_size = qemu_real_host_page_size; | |||
| 308 | } | |||
| 309 | if (qemu_host_page_size < TARGET_PAGE_SIZE(1 << 12)) { | |||
| 310 | qemu_host_page_size = TARGET_PAGE_SIZE(1 << 12); | |||
| 311 | } | |||
| 312 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |||
| 313 | ||||
| 314 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY1) | |||
| 315 | { | |||
| 316 | #ifdef HAVE_KINFO_GETVMMAP | |||
| 317 | struct kinfo_vmentry *freep; | |||
| 318 | int i, cnt; | |||
| 319 | ||||
| 320 | freep = kinfo_getvmmap(getpid(), &cnt); | |||
| 321 | if (freep) { | |||
| 322 | mmap_lock(); | |||
| 323 | for (i = 0; i < cnt; i++) { | |||
| 324 | unsigned long startaddr, endaddr; | |||
| 325 | ||||
| 326 | startaddr = freep[i].kve_start; | |||
| 327 | endaddr = freep[i].kve_end; | |||
| 328 | if (h2g_valid(startaddr)({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
| 329 | startaddr = h2g(startaddr)({ ((({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(startaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 329, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(startaddr) - guest_base; (abi_ulong)__ret; }); }) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 330 | ||||
| 331 | if (h2g_valid(endaddr)({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
| 332 | endaddr = h2g(endaddr)({ ((({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(endaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 332, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(endaddr) - guest_base; (abi_ulong)__ret; }); }); | |||
| 333 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
| 334 | } else { | |||
| 335 | #if TARGET_ABI_BITS64 <= L1_MAP_ADDR_SPACE_BITS47 | |||
| 336 | endaddr = ~0ul; | |||
| 337 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
| 338 | #endif | |||
| 339 | } | |||
| 340 | } | |||
| 341 | } | |||
| 342 | free(freep); | |||
| 343 | mmap_unlock(); | |||
| 344 | } | |||
| 345 | #else | |||
| 346 | FILE *f; | |||
| 347 | ||||
| 348 | last_brk = (unsigned long)sbrk(0); | |||
| 349 | ||||
| 350 | f = fopen("/compat/linux/proc/self/maps", "r"); | |||
| 351 | if (f) { | |||
| 352 | mmap_lock(); | |||
| 353 | ||||
| 354 | do { | |||
| 355 | unsigned long startaddr, endaddr; | |||
| 356 | int n; | |||
| 357 | ||||
| 358 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |||
| 359 | ||||
| 360 | if (n == 2 && h2g_valid(startaddr)({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
| 361 | startaddr = h2g(startaddr)({ ((({ unsigned long __guest = (unsigned long)(startaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(startaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 361, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(startaddr) - guest_base; (abi_ulong)__ret; }); }) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 362 | ||||
| 363 | if (h2g_valid(endaddr)({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) { | |||
| 364 | endaddr = h2g(endaddr)({ ((({ unsigned long __guest = (unsigned long)(endaddr) - guest_base ; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })) ? (void) (0) : __assert_fail ("({ unsigned long __guest = (unsigned long)(endaddr) - guest_base; (__guest < (1ul << 47)) && (!reserved_va || (__guest < reserved_va)); })" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 364, __PRETTY_FUNCTION__)); ({ unsigned long __ret = (unsigned long )(endaddr) - guest_base; (abi_ulong)__ret; }); }); | |||
| 365 | } else { | |||
| 366 | endaddr = ~0ul; | |||
| 367 | } | |||
| 368 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |||
| 369 | } | |||
| 370 | } while (!feof(f)); | |||
| 371 | ||||
| 372 | fclose(f); | |||
| 373 | mmap_unlock(); | |||
| 374 | } | |||
| 375 | #endif | |||
| 376 | } | |||
| 377 | #endif | |||
| 378 | } | |||
| 379 | ||||
| 380 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |||
| 381 | { | |||
| 382 | PageDesc *pd; | |||
| 383 | void **lp; | |||
| 384 | int i; | |||
| 385 | ||||
| 386 | #if defined(CONFIG_USER_ONLY1) | |||
| 387 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |||
| 388 | # define ALLOC(P, SIZE) \ | |||
| 389 | do { \ | |||
| 390 | P = mmap(NULL((void*)0), SIZE, PROT_READ0x1 | PROT_WRITE0x2, \ | |||
| 391 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); \ | |||
| 392 | } while (0) | |||
| 393 | #else | |||
| 394 | # define ALLOC(P, SIZE) \ | |||
| 395 | do { P = g_malloc0(SIZE); } while (0) | |||
| 396 | #endif | |||
| 397 | ||||
| 398 | /* Level 1. Always allocated. */ | |||
| 399 | lp = l1_map + ((index >> V_L1_SHIFT(47 - 12 - ((47 - 12) % 10))) & (V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)) - 1)); | |||
| 400 | ||||
| 401 | /* Level 2..N-1. */ | |||
| 402 | for (i = V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1; i > 0; i--) { | |||
| 403 | void **p = *lp; | |||
| 404 | ||||
| 405 | if (p == NULL((void*)0)) { | |||
| 406 | if (!alloc) { | |||
| 407 | return NULL((void*)0); | |||
| 408 | } | |||
| 409 | ALLOC(p, sizeof(void *) * V_L2_SIZE(1 << 10)); | |||
| 410 | *lp = p; | |||
| 411 | } | |||
| 412 | ||||
| 413 | lp = p + ((index >> (i * V_L2_BITS10)) & (V_L2_SIZE(1 << 10) - 1)); | |||
| 414 | } | |||
| 415 | ||||
| 416 | pd = *lp; | |||
| 417 | if (pd == NULL((void*)0)) { | |||
| 418 | if (!alloc) { | |||
| 419 | return NULL((void*)0); | |||
| 420 | } | |||
| 421 | ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE(1 << 10)); | |||
| 422 | *lp = pd; | |||
| 423 | } | |||
| 424 | ||||
| 425 | #undef ALLOC | |||
| 426 | ||||
| 427 | return pd + (index & (V_L2_SIZE(1 << 10) - 1)); | |||
| 428 | } | |||
| 429 | ||||
| 430 | static inline PageDesc *page_find(tb_page_addr_t index) | |||
| 431 | { | |||
| 432 | return page_find_alloc(index, 0); | |||
| 433 | } | |||
| 434 | ||||
| 435 | #if !defined(CONFIG_USER_ONLY1) | |||
| 436 | #define mmap_lock() do { } while (0) | |||
| 437 | #define mmap_unlock() do { } while (0) | |||
| 438 | #endif | |||
| 439 | ||||
| 440 | #if defined(CONFIG_USER_ONLY1) | |||
| 441 | /* Currently it is not recommended to allocate big chunks of data in | |||
| 442 | user mode. It will change when a dedicated libc will be used. */ | |||
| 443 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |||
| 444 | region in which the guest needs to run. Revisit this. */ | |||
| 445 | #define USE_STATIC_CODE_GEN_BUFFER | |||
| 446 | #endif | |||
| 447 | ||||
| 448 | /* ??? Should configure for this, not list operating systems here. */ | |||
| 449 | #if (defined(__linux__1) \ | |||
| 450 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |||
| 451 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |||
| 452 | || defined(__NetBSD__)) | |||
| 453 | # define USE_MMAP | |||
| 454 | #endif | |||
| 455 | ||||
| 456 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |||
| 457 | but not so small that we can't have a fair number of TB's live. */ | |||
| 458 | #define MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024) (1024u * 1024) | |||
| 459 | ||||
| 460 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |||
| 461 | indicated, this is constrained by the range of direct branches on the | |||
| 462 | host cpu, as used by the TCG implementation of goto_tb. */ | |||
| 463 | #if defined(__x86_64__1) | |||
| 464 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (2ul * 1024 * 1024 * 1024) | |||
| 465 | #elif defined(__sparc__) | |||
| 466 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (2ul * 1024 * 1024 * 1024) | |||
| 467 | #elif defined(__aarch64__) | |||
| 468 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (128ul * 1024 * 1024) | |||
| 469 | #elif defined(__arm__) | |||
| 470 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (16u * 1024 * 1024) | |||
| 471 | #elif defined(__s390x__) | |||
| 472 | /* We have a +- 4GB range on the branches; leave some slop. */ | |||
| 473 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) (3ul * 1024 * 1024 * 1024) | |||
| 474 | #else | |||
| 475 | # define MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) ((size_t)-1) | |||
| 476 | #endif | |||
| 477 | ||||
| 478 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) (32u * 1024 * 1024) | |||
| 479 | ||||
| 480 | #define DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024)) \ | |||
| 481 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) < MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024) \ | |||
| 482 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1(32u * 1024 * 1024) : MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024)) | |||
| 483 | ||||
| 484 | static inline size_t size_code_gen_buffer(size_t tb_size) | |||
| 485 | { | |||
| 486 | /* Size the buffer. */ | |||
| 487 | if (tb_size == 0) { | |||
| 488 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |||
| 489 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024)); | |||
| 490 | #else | |||
| 491 | /* ??? Needs adjustments. */ | |||
| 492 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |||
| 493 | static buffer, we could size this on RESERVED_VA, on the text | |||
| 494 | segment size of the executable, or continue to use the default. */ | |||
| 495 | tb_size = (unsigned long)(ram_size / 4); | |||
| 496 | #endif | |||
| 497 | } | |||
| 498 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024)) { | |||
| 499 | tb_size = MIN_CODE_GEN_BUFFER_SIZE(1024u * 1024); | |||
| 500 | } | |||
| 501 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024)) { | |||
| 502 | tb_size = MAX_CODE_GEN_BUFFER_SIZE(2ul * 1024 * 1024 * 1024); | |||
| 503 | } | |||
| 504 | tcg_ctx.code_gen_buffer_size = tb_size; | |||
| 505 | return tb_size; | |||
| 506 | } | |||
| 507 | ||||
| 508 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |||
| 509 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE((32u * 1024 * 1024) < (2ul * 1024 * 1024 * 1024) ? (32u * 1024 * 1024) : (2ul * 1024 * 1024 * 1024))] | |||
| 510 | __attribute__((aligned(CODE_GEN_ALIGN16))); | |||
| 511 | ||||
| 512 | static inline void *alloc_code_gen_buffer(void) | |||
| 513 | { | |||
| 514 | map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |||
| 515 | return static_code_gen_buffer; | |||
| 516 | } | |||
| 517 | #elif defined(USE_MMAP) | |||
| 518 | static inline void *alloc_code_gen_buffer(void) | |||
| 519 | { | |||
| 520 | int flags = MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20; | |||
| 521 | uintptr_t start = 0; | |||
| 522 | void *buf; | |||
| 523 | ||||
| 524 | /* Constrain the position of the buffer based on the host cpu. | |||
| 525 | Note that these addresses are chosen in concert with the | |||
| 526 | addresses assigned in the relevant linker script file. */ | |||
| 527 | # if defined(__PIE__) || defined(__PIC__) | |||
| 528 | /* Don't bother setting a preferred location if we're building | |||
| 529 | a position-independent executable. We're more likely to get | |||
| 530 | an address near the main executable if we let the kernel | |||
| 531 | choose the address. */ | |||
| 532 | # elif defined(__x86_64__1) && defined(MAP_32BIT0x40) | |||
| 533 | /* Force the memory down into low memory with the executable. | |||
| 534 | Leave the choice of exact location with the kernel. */ | |||
| 535 | flags |= MAP_32BIT0x40; | |||
| 536 | /* Cannot expect to map more than 800MB in low memory. */ | |||
| 537 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { | |||
| 538 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |||
| 539 | } | |||
| 540 | # elif defined(__sparc__) | |||
| 541 | start = 0x40000000ul; | |||
| 542 | # elif defined(__s390x__) | |||
| 543 | start = 0x90000000ul; | |||
| 544 | # endif | |||
| 545 | ||||
| 546 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, | |||
| 547 | PROT_WRITE0x2 | PROT_READ0x1 | PROT_EXEC0x4, flags, -1, 0); | |||
| 548 | return buf == MAP_FAILED((void *) -1) ? NULL((void*)0) : buf; | |||
| 549 | } | |||
| 550 | #else | |||
| 551 | static inline void *alloc_code_gen_buffer(void) | |||
| 552 | { | |||
| 553 | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); | |||
| 554 | ||||
| 555 | if (buf) { | |||
| 556 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |||
| 557 | } | |||
| 558 | return buf; | |||
| 559 | } | |||
| 560 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |||
| 561 | ||||
| 562 | static inline void code_gen_alloc(size_t tb_size) | |||
| 563 | { | |||
| 564 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); | |||
| 565 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |||
| 566 | if (tcg_ctx.code_gen_buffer == NULL((void*)0)) { | |||
| 567 | fprintf(stderrstderr, "Could not allocate dynamic translator buffer\n"); | |||
| 568 | exit(1); | |||
| 569 | } | |||
| 570 | ||||
| 571 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, | |||
| 572 | QEMU_MADV_HUGEPAGE14); | |||
| 573 | ||||
| 574 | /* Steal room for the prologue at the end of the buffer. This ensures | |||
| 575 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |||
| 576 | from TB's to the prologue are going to be in range. It also means | |||
| 577 | that we don't need to mark (additional) portions of the data segment | |||
| 578 | as executable. */ | |||
| 579 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + | |||
| 580 | tcg_ctx.code_gen_buffer_size - 1024; | |||
| 581 | tcg_ctx.code_gen_buffer_size -= 1024; | |||
| 582 | ||||
| 583 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - | |||
| 584 | (TCG_MAX_OP_SIZE192 * OPC_BUF_SIZE640); | |||
| 585 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / | |||
| 586 | CODE_GEN_AVG_BLOCK_SIZE64; | |||
| 587 | tcg_ctx.tb_ctx.tbs = | |||
| 588 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |||
| 589 | } | |||
| 590 | ||||
| 591 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |||
| 592 | (in bytes) allocated to the translation buffer. Zero means default | |||
| 593 | size. */ | |||
| 594 | void tcg_exec_init(unsigned long tb_size) | |||
| 595 | { | |||
| 596 | cpu_gen_init(); | |||
| 597 | code_gen_alloc(tb_size); | |||
| 598 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |||
| 599 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |||
| 600 | page_init(); | |||
| 601 | #if !defined(CONFIG_USER_ONLY1) || !defined(CONFIG_USE_GUEST_BASE1) | |||
| 602 | /* There's no guest base to take into account, so go ahead and | |||
| 603 | initialize the prologue now. */ | |||
| 604 | tcg_prologue_init(&tcg_ctx); | |||
| 605 | #endif | |||
| 606 | } | |||
| 607 | ||||
| 608 | bool_Bool tcg_enabled(void) | |||
| 609 | { | |||
| 610 | return tcg_ctx.code_gen_buffer != NULL((void*)0); | |||
| 611 | } | |||
| 612 | ||||
| 613 | /* Allocate a new translation block. Flush the translation buffer if | |||
| 614 | too many translation blocks or too much generated code. */ | |||
| 615 | static TranslationBlock *tb_alloc(target_ulong pc) | |||
| 616 | { | |||
| 617 | TranslationBlock *tb; | |||
| 618 | ||||
| 619 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || | |||
| 620 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= | |||
| 621 | tcg_ctx.code_gen_buffer_max_size) { | |||
| 622 | return NULL((void*)0); | |||
| 623 | } | |||
| 624 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; | |||
| 625 | tb->pc = pc; | |||
| 626 | tb->cflags = 0; | |||
| 627 | return tb; | |||
| 628 | } | |||
| 629 | ||||
| 630 | void tb_free(TranslationBlock *tb) | |||
| 631 | { | |||
| 632 | /* In practice this is mostly used for single use temporary TB | |||
| 633 | Ignore the hard cases and just back up if this TB happens to | |||
| 634 | be the last one generated. */ | |||
| 635 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && | |||
| 636 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |||
| 637 | tcg_ctx.code_gen_ptr = tb->tc_ptr; | |||
| 638 | tcg_ctx.tb_ctx.nb_tbs--; | |||
| 639 | } | |||
| 640 | } | |||
| 641 | ||||
| 642 | static inline void invalidate_page_bitmap(PageDesc *p) | |||
| 643 | { | |||
| 644 | if (p->code_bitmap) { | |||
| 645 | g_free(p->code_bitmap); | |||
| 646 | p->code_bitmap = NULL((void*)0); | |||
| 647 | } | |||
| 648 | p->code_write_count = 0; | |||
| 649 | } | |||
| 650 | ||||
| 651 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |||
| 652 | static void page_flush_tb_1(int level, void **lp) | |||
| 653 | { | |||
| 654 | int i; | |||
| 655 | ||||
| 656 | if (*lp == NULL((void*)0)) { | |||
| 657 | return; | |||
| 658 | } | |||
| 659 | if (level == 0) { | |||
| 660 | PageDesc *pd = *lp; | |||
| 661 | ||||
| 662 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
| 663 | pd[i].first_tb = NULL((void*)0); | |||
| 664 | invalidate_page_bitmap(pd + i); | |||
| 665 | } | |||
| 666 | } else { | |||
| 667 | void **pp = *lp; | |||
| 668 | ||||
| 669 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
| 670 | page_flush_tb_1(level - 1, pp + i); | |||
| 671 | } | |||
| 672 | } | |||
| 673 | } | |||
| 674 | ||||
| 675 | static void page_flush_tb(void) | |||
| 676 | { | |||
| 677 | int i; | |||
| 678 | ||||
| 679 | for (i = 0; i < V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)); i++) { | |||
| 680 | page_flush_tb_1(V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1, l1_map + i); | |||
| 681 | } | |||
| 682 | } | |||
| 683 | ||||
| 684 | /* flush all the translation blocks */ | |||
| 685 | /* XXX: tb_flush is currently not thread safe */ | |||
| 686 | void tb_flush(CPUArchStatestruct CPUX86State *env1) | |||
| 687 | { | |||
| 688 | CPUState *cpu; | |||
| 689 | ||||
| 690 | #if defined(DEBUG_FLUSH) | |||
| 691 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |||
| 692 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), | |||
| 693 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? | |||
| 694 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / | |||
| 695 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
| 696 | #endif | |||
| 697 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) | |||
| 698 | > tcg_ctx.code_gen_buffer_size) { | |||
| 699 | cpu_abort(env1, "Internal error: code buffer overflow\n"); | |||
| 700 | } | |||
| 701 | tcg_ctx.tb_ctx.nb_tbs = 0; | |||
| 702 | ||||
| 703 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { | |||
| 704 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
| 705 | ||||
| 706 | memset(env->tb_jmp_cache, 0, sizeof(env->tb_jmp_cache)); | |||
| 707 | } | |||
| 708 | ||||
| 709 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); | |||
| 710 | page_flush_tb(); | |||
| 711 | ||||
| 712 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | |||
| 713 | /* XXX: flush processor icache at this point if cache flush is | |||
| 714 | expensive */ | |||
| 715 | tcg_ctx.tb_ctx.tb_flush_count++; | |||
| 716 | } | |||
| 717 | ||||
| 718 | #ifdef DEBUG_TB_CHECK | |||
| 719 | ||||
| 720 | static void tb_invalidate_check(target_ulong address) | |||
| 721 | { | |||
| 722 | TranslationBlock *tb; | |||
| 723 | int i; | |||
| 724 | ||||
| 725 | address &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 726 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE(1 << 15); i++) { | |||
| 727 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL((void*)0); tb = tb->phys_hash_next) { | |||
| 728 | if (!(address + TARGET_PAGE_SIZE(1 << 12) <= tb->pc || | |||
| 729 | address >= tb->pc + tb->size)) { | |||
| 730 | printf("ERROR invalidate: address=" TARGET_FMT_lx"%016" "l" "x" | |||
| 731 | " PC=%08lx size=%04x\n", | |||
| 732 | address, (long)tb->pc, tb->size); | |||
| 733 | } | |||
| 734 | } | |||
| 735 | } | |||
| 736 | } | |||
| 737 | ||||
| 738 | /* verify that all the pages have correct rights for code */ | |||
| 739 | static void tb_page_check(void) | |||
| 740 | { | |||
| 741 | TranslationBlock *tb; | |||
| 742 | int i, flags1, flags2; | |||
| 743 | ||||
| 744 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE(1 << 15); i++) { | |||
| 745 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL((void*)0); | |||
| 746 | tb = tb->phys_hash_next) { | |||
| 747 | flags1 = page_get_flags(tb->pc); | |||
| 748 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |||
| 749 | if ((flags1 & PAGE_WRITE0x0002) || (flags2 & PAGE_WRITE0x0002)) { | |||
| 750 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |||
| 751 | (long)tb->pc, tb->size, flags1, flags2); | |||
| 752 | } | |||
| 753 | } | |||
| 754 | } | |||
| 755 | } | |||
| 756 | ||||
| 757 | #endif | |||
| 758 | ||||
| 759 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) | |||
| 760 | { | |||
| 761 | TranslationBlock *tb1; | |||
| 762 | ||||
| 763 | for (;;) { | |||
| 764 | tb1 = *ptb; | |||
| 765 | if (tb1 == tb) { | |||
| 766 | *ptb = tb1->phys_hash_next; | |||
| 767 | break; | |||
| 768 | } | |||
| 769 | ptb = &tb1->phys_hash_next; | |||
| 770 | } | |||
| 771 | } | |||
| 772 | ||||
| 773 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |||
| 774 | { | |||
| 775 | TranslationBlock *tb1; | |||
| 776 | unsigned int n1; | |||
| 777 | ||||
| 778 | for (;;) { | |||
| 779 | tb1 = *ptb; | |||
| 780 | n1 = (uintptr_t)tb1 & 3; | |||
| 781 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
| 782 | if (tb1 == tb) { | |||
| 783 | *ptb = tb1->page_next[n1]; | |||
| 784 | break; | |||
| 785 | } | |||
| 786 | ptb = &tb1->page_next[n1]; | |||
| 787 | } | |||
| 788 | } | |||
| 789 | ||||
| 790 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |||
| 791 | { | |||
| 792 | TranslationBlock *tb1, **ptb; | |||
| 793 | unsigned int n1; | |||
| 794 | ||||
| 795 | ptb = &tb->jmp_next[n]; | |||
| 796 | tb1 = *ptb; | |||
| 797 | if (tb1) { | |||
| 798 | /* find tb(n) in circular list */ | |||
| 799 | for (;;) { | |||
| 800 | tb1 = *ptb; | |||
| 801 | n1 = (uintptr_t)tb1 & 3; | |||
| 802 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
| 803 | if (n1 == n && tb1 == tb) { | |||
| 804 | break; | |||
| 805 | } | |||
| 806 | if (n1 == 2) { | |||
| 807 | ptb = &tb1->jmp_first; | |||
| 808 | } else { | |||
| 809 | ptb = &tb1->jmp_next[n1]; | |||
| 810 | } | |||
| 811 | } | |||
| 812 | /* now we can suppress tb(n) from the list */ | |||
| 813 | *ptb = tb->jmp_next[n]; | |||
| 814 | ||||
| 815 | tb->jmp_next[n] = NULL((void*)0); | |||
| 816 | } | |||
| 817 | } | |||
| 818 | ||||
| 819 | /* reset the jump entry 'n' of a TB so that it is not chained to | |||
| 820 | another TB */ | |||
| 821 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |||
| 822 | { | |||
| 823 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |||
| 824 | } | |||
| 825 | ||||
| 826 | /* invalidate one TB */ | |||
| 827 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | |||
| 828 | { | |||
| 829 | CPUState *cpu; | |||
| 830 | PageDesc *p; | |||
| 831 | unsigned int h, n1; | |||
| 832 | tb_page_addr_t phys_pc; | |||
| 833 | TranslationBlock *tb1, *tb2; | |||
| 834 | ||||
| 835 | /* remove the TB from the hash list */ | |||
| 836 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
| 837 | h = tb_phys_hash_func(phys_pc); | |||
| 838 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); | |||
| 839 | ||||
| 840 | /* remove the TB from the page list */ | |||
| 841 | if (tb->page_addr[0] != page_addr) { | |||
| 842 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS12); | |||
| 843 | tb_page_remove(&p->first_tb, tb); | |||
| 844 | invalidate_page_bitmap(p); | |||
| 845 | } | |||
| 846 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |||
| 847 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS12); | |||
| 848 | tb_page_remove(&p->first_tb, tb); | |||
| 849 | invalidate_page_bitmap(p); | |||
| 850 | } | |||
| 851 | ||||
| 852 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |||
| 853 | ||||
| 854 | /* remove the TB from the hash list */ | |||
| 855 | h = tb_jmp_cache_hash_func(tb->pc); | |||
| 856 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { | |||
| 857 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
| 858 | ||||
| 859 | if (env->tb_jmp_cache[h] == tb) { | |||
| 860 | env->tb_jmp_cache[h] = NULL((void*)0); | |||
| 861 | } | |||
| 862 | } | |||
| 863 | ||||
| 864 | /* suppress this TB from the two jump lists */ | |||
| 865 | tb_jmp_remove(tb, 0); | |||
| 866 | tb_jmp_remove(tb, 1); | |||
| 867 | ||||
| 868 | /* suppress any remaining jumps to this TB */ | |||
| 869 | tb1 = tb->jmp_first; | |||
| 870 | for (;;) { | |||
| 871 | n1 = (uintptr_t)tb1 & 3; | |||
| 872 | if (n1 == 2) { | |||
| 873 | break; | |||
| 874 | } | |||
| 875 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |||
| 876 | tb2 = tb1->jmp_next[n1]; | |||
| 877 | tb_reset_jump(tb1, n1); | |||
| 878 | tb1->jmp_next[n1] = NULL((void*)0); | |||
| 879 | tb1 = tb2; | |||
| 880 | } | |||
| 881 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |||
| 882 | ||||
| 883 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; | |||
| 884 | } | |||
| 885 | ||||
| 886 | static inline void set_bits(uint8_t *tab, int start, int len) | |||
| 887 | { | |||
| 888 | int end, mask, end1; | |||
| 889 | ||||
| 890 | end = start + len; | |||
| 891 | tab += start >> 3; | |||
| 892 | mask = 0xff << (start & 7); | |||
| 893 | if ((start & ~7) == (end & ~7)) { | |||
| 894 | if (start < end) { | |||
| 895 | mask &= ~(0xff << (end & 7)); | |||
| 896 | *tab |= mask; | |||
| 897 | } | |||
| 898 | } else { | |||
| 899 | *tab++ |= mask; | |||
| 900 | start = (start + 8) & ~7; | |||
| 901 | end1 = end & ~7; | |||
| 902 | while (start < end1) { | |||
| 903 | *tab++ = 0xff; | |||
| 904 | start += 8; | |||
| 905 | } | |||
| 906 | if (start < end) { | |||
| 907 | mask = ~(0xff << (end & 7)); | |||
| 908 | *tab |= mask; | |||
| 909 | } | |||
| 910 | } | |||
| 911 | } | |||
| 912 | ||||
| 913 | static void build_page_bitmap(PageDesc *p) | |||
| 914 | { | |||
| 915 | int n, tb_start, tb_end; | |||
| 916 | TranslationBlock *tb; | |||
| 917 | ||||
| 918 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE(1 << 12) / 8); | |||
| 919 | ||||
| 920 | tb = p->first_tb; | |||
| 921 | while (tb != NULL((void*)0)) { | |||
| 922 | n = (uintptr_t)tb & 3; | |||
| 923 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
| 924 | /* NOTE: this is subtle as a TB may span two physical pages */ | |||
| 925 | if (n == 0) { | |||
| 926 | /* NOTE: tb_end may be after the end of the page, but | |||
| 927 | it is not a problem */ | |||
| 928 | tb_start = tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 929 | tb_end = tb_start + tb->size; | |||
| 930 | if (tb_end > TARGET_PAGE_SIZE(1 << 12)) { | |||
| 931 | tb_end = TARGET_PAGE_SIZE(1 << 12); | |||
| 932 | } | |||
| 933 | } else { | |||
| 934 | tb_start = 0; | |||
| 935 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
| 936 | } | |||
| 937 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |||
| 938 | tb = tb->page_next[n]; | |||
| 939 | } | |||
| 940 | } | |||
| 941 | ||||
| 942 | TranslationBlock *tb_gen_code(CPUArchStatestruct CPUX86State *env, | |||
| 943 | target_ulong pc, target_ulong cs_base, | |||
| 944 | int flags, int cflags) | |||
| 945 | { | |||
| 946 | TranslationBlock *tb; | |||
| 947 | uint8_t *tc_ptr; | |||
| 948 | tb_page_addr_t phys_pc, phys_page2; | |||
| 949 | target_ulong virt_page2; | |||
| 950 | int code_gen_size; | |||
| 951 | ||||
| 952 | phys_pc = get_page_addr_code(env, pc); | |||
| 953 | tb = tb_alloc(pc); | |||
| 954 | if (!tb) { | |||
| 955 | /* flush must be done */ | |||
| 956 | tb_flush(env); | |||
| 957 | /* cannot fail at this point */ | |||
| 958 | tb = tb_alloc(pc); | |||
| 959 | /* Don't forget to invalidate previous TB info. */ | |||
| 960 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | |||
| 961 | } | |||
| 962 | tc_ptr = tcg_ctx.code_gen_ptr; | |||
| 963 | tb->tc_ptr = tc_ptr; | |||
| 964 | tb->cs_base = cs_base; | |||
| 965 | tb->flags = flags; | |||
| 966 | tb->cflags = cflags; | |||
| 967 | cpu_gen_codecpu_x86_gen_code(env, tb, &code_gen_size); | |||
| 968 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + | |||
| 969 | code_gen_size + CODE_GEN_ALIGN16 - 1) & ~(CODE_GEN_ALIGN16 - 1)); | |||
| 970 | ||||
| 971 | /* check next page if needed */ | |||
| 972 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 973 | phys_page2 = -1; | |||
| 974 | if ((pc & TARGET_PAGE_MASK~((1 << 12) - 1)) != virt_page2) { | |||
| 975 | phys_page2 = get_page_addr_code(env, virt_page2); | |||
| 976 | } | |||
| 977 | tb_link_page(tb, phys_pc, phys_page2); | |||
| 978 | return tb; | |||
| 979 | } | |||
| 980 | ||||
| 981 | /* | |||
| 982 | * Invalidate all TBs which intersect with the target physical address range | |||
| 983 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |||
| 984 | * 'is_cpu_write_access' should be true if called from a real cpu write | |||
| 985 | * access: the virtual CPU will exit the current TB if code is modified inside | |||
| 986 | * this TB. | |||
| 987 | */ | |||
| 988 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |||
| 989 | int is_cpu_write_access) | |||
| 990 | { | |||
| 991 | while (start < end) { | |||
| 992 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |||
| 993 | start &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 994 | start += TARGET_PAGE_SIZE(1 << 12); | |||
| 995 | } | |||
| 996 | } | |||
| 997 | ||||
| 998 | /* | |||
| 999 | * Invalidate all TBs which intersect with the target physical address range | |||
| 1000 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |||
| 1001 | * 'is_cpu_write_access' should be true if called from a real cpu write | |||
| 1002 | * access: the virtual CPU will exit the current TB if code is modified inside | |||
| 1003 | * this TB. | |||
| 1004 | */ | |||
| 1005 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |||
| 1006 | int is_cpu_write_access) | |||
| 1007 | { | |||
| 1008 | TranslationBlock *tb, *tb_next, *saved_tb; | |||
| 1009 | CPUState *cpu = current_cputls__current_cpu; | |||
| 1010 | #if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY1) | |||
| 1011 | CPUArchStatestruct CPUX86State *env = NULL((void*)0); | |||
| 1012 | #endif | |||
| 1013 | tb_page_addr_t tb_start, tb_end; | |||
| 1014 | PageDesc *p; | |||
| 1015 | int n; | |||
| 1016 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1017 | int current_tb_not_found = is_cpu_write_access; | |||
| 1018 | TranslationBlock *current_tb = NULL((void*)0); | |||
| 1019 | int current_tb_modified = 0; | |||
| 1020 | target_ulong current_pc = 0; | |||
| 1021 | target_ulong current_cs_base = 0; | |||
| 1022 | int current_flags = 0; | |||
| 1023 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
| 1024 | ||||
| 1025 | p = page_find(start >> TARGET_PAGE_BITS12); | |||
| 1026 | if (!p) { | |||
| 1027 | return; | |||
| 1028 | } | |||
| 1029 | if (!p->code_bitmap && | |||
| 1030 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD10 && | |||
| 1031 | is_cpu_write_access) { | |||
| 1032 | /* build code bitmap */ | |||
| 1033 | build_page_bitmap(p); | |||
| 1034 | } | |||
| 1035 | #if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY1) | |||
| 1036 | if (cpu != NULL((void*)0)) { | |||
| 1037 | env = cpu->env_ptr; | |||
| 1038 | } | |||
| 1039 | #endif | |||
| 1040 | ||||
| 1041 | /* we remove all the TBs in the range [start, end[ */ | |||
| 1042 | /* XXX: see if in some cases it could be faster to invalidate all | |||
| 1043 | the code */ | |||
| 1044 | tb = p->first_tb; | |||
| 1045 | while (tb != NULL((void*)0)) { | |||
| 1046 | n = (uintptr_t)tb & 3; | |||
| 1047 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
| 1048 | tb_next = tb->page_next[n]; | |||
| 1049 | /* NOTE: this is subtle as a TB may span two physical pages */ | |||
| 1050 | if (n == 0) { | |||
| 1051 | /* NOTE: tb_end may be after the end of the page, but | |||
| 1052 | it is not a problem */ | |||
| 1053 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
| 1054 | tb_end = tb_start + tb->size; | |||
| 1055 | } else { | |||
| 1056 | tb_start = tb->page_addr[1]; | |||
| 1057 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
| 1058 | } | |||
| 1059 | if (!(tb_end <= start || tb_start >= end)) { | |||
| 1060 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1061 | if (current_tb_not_found) { | |||
| 1062 | current_tb_not_found = 0; | |||
| 1063 | current_tb = NULL((void*)0); | |||
| 1064 | if (env->mem_io_pc) { | |||
| 1065 | /* now we have a real cpu fault */ | |||
| 1066 | current_tb = tb_find_pc(env->mem_io_pc); | |||
| 1067 | } | |||
| 1068 | } | |||
| 1069 | if (current_tb == tb && | |||
| 1070 | (current_tb->cflags & CF_COUNT_MASK0x7fff) != 1) { | |||
| 1071 | /* If we are modifying the current TB, we must stop | |||
| 1072 | its execution. We could be more precise by checking | |||
| 1073 | that the modification is after the current PC, but it | |||
| 1074 | would require a specialized function to partially | |||
| 1075 | restore the CPU state */ | |||
| 1076 | ||||
| 1077 | current_tb_modified = 1; | |||
| 1078 | cpu_restore_state_from_tb(current_tb, env, env->mem_io_pc); | |||
| 1079 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |||
| 1080 | ¤t_flags); | |||
| 1081 | } | |||
| 1082 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
| 1083 | /* we need to do that to handle the case where a signal | |||
| 1084 | occurs while doing tb_phys_invalidate() */ | |||
| 1085 | saved_tb = NULL((void*)0); | |||
| 1086 | if (cpu != NULL((void*)0)) { | |||
| 1087 | saved_tb = cpu->current_tb; | |||
| 1088 | cpu->current_tb = NULL((void*)0); | |||
| 1089 | } | |||
| 1090 | tb_phys_invalidate(tb, -1); | |||
| 1091 | if (cpu != NULL((void*)0)) { | |||
| 1092 | cpu->current_tb = saved_tb; | |||
| 1093 | if (cpu->interrupt_request && cpu->current_tb) { | |||
| 1094 | cpu_interrupt(cpu, cpu->interrupt_request); | |||
| 1095 | } | |||
| 1096 | } | |||
| 1097 | } | |||
| 1098 | tb = tb_next; | |||
| 1099 | } | |||
| 1100 | #if !defined(CONFIG_USER_ONLY1) | |||
| 1101 | /* if no code remaining, no need to continue to use slow writes */ | |||
| 1102 | if (!p->first_tb) { | |||
| 1103 | invalidate_page_bitmap(p); | |||
| 1104 | if (is_cpu_write_access) { | |||
| 1105 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | |||
| 1106 | } | |||
| 1107 | } | |||
| 1108 | #endif | |||
| 1109 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1110 | if (current_tb_modified) { | |||
| 1111 | /* we generate a block containing just the instruction | |||
| 1112 | modifying the memory. It will ensure that it cannot modify | |||
| 1113 | itself */ | |||
| 1114 | cpu->current_tb = NULL((void*)0); | |||
| 1115 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |||
| 1116 | cpu_resume_from_signal(env, NULL((void*)0)); | |||
| 1117 | } | |||
| 1118 | #endif | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | /* len must be <= 8 and start must be a multiple of len */ | |||
| 1122 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |||
| 1123 | { | |||
| 1124 | PageDesc *p; | |||
| 1125 | int offset, b; | |||
| 1126 | ||||
| 1127 | #if 0 | |||
| 1128 | if (1) { | |||
| 1129 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |||
| 1130 | cpu_single_env->mem_io_vaddr, len, | |||
| 1131 | cpu_single_env->eip, | |||
| 1132 | cpu_single_env->eip + | |||
| 1133 | (intptr_t)cpu_single_env->segs[R_CS1].base); | |||
| 1134 | } | |||
| 1135 | #endif | |||
| 1136 | p = page_find(start >> TARGET_PAGE_BITS12); | |||
| 1137 | if (!p) { | |||
| 1138 | return; | |||
| 1139 | } | |||
| 1140 | if (p->code_bitmap) { | |||
| 1141 | offset = start & ~TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 1142 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |||
| 1143 | if (b & ((1 << len) - 1)) { | |||
| 1144 | goto do_invalidate; | |||
| 1145 | } | |||
| 1146 | } else { | |||
| 1147 | do_invalidate: | |||
| 1148 | tb_invalidate_phys_page_range(start, start + len, 1); | |||
| 1149 | } | |||
| 1150 | } | |||
| 1151 | ||||
| 1152 | #if !defined(CONFIG_SOFTMMU) | |||
| 1153 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |||
| 1154 | uintptr_t pc, void *puc, | |||
| 1155 | bool_Bool locked) | |||
| 1156 | { | |||
| 1157 | TranslationBlock *tb; | |||
| 1158 | PageDesc *p; | |||
| 1159 | int n; | |||
| 1160 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1161 | TranslationBlock *current_tb = NULL((void*)0); | |||
| 1162 | CPUState *cpu = current_cputls__current_cpu; | |||
| 1163 | CPUArchStatestruct CPUX86State *env = NULL((void*)0); | |||
| 1164 | int current_tb_modified = 0; | |||
| 1165 | target_ulong current_pc = 0; | |||
| 1166 | target_ulong current_cs_base = 0; | |||
| 1167 | int current_flags = 0; | |||
| 1168 | #endif | |||
| 1169 | ||||
| 1170 | addr &= TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 1171 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
| 1172 | if (!p) { | |||
| 1173 | return; | |||
| 1174 | } | |||
| 1175 | tb = p->first_tb; | |||
| 1176 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1177 | if (tb && pc != 0) { | |||
| 1178 | current_tb = tb_find_pc(pc); | |||
| 1179 | } | |||
| 1180 | if (cpu != NULL((void*)0)) { | |||
| 1181 | env = cpu->env_ptr; | |||
| 1182 | } | |||
| 1183 | #endif | |||
| 1184 | while (tb != NULL((void*)0)) { | |||
| 1185 | n = (uintptr_t)tb & 3; | |||
| 1186 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |||
| 1187 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1188 | if (current_tb == tb && | |||
| 1189 | (current_tb->cflags & CF_COUNT_MASK0x7fff) != 1) { | |||
| 1190 | /* If we are modifying the current TB, we must stop | |||
| 1191 | its execution. We could be more precise by checking | |||
| 1192 | that the modification is after the current PC, but it | |||
| 1193 | would require a specialized function to partially | |||
| 1194 | restore the CPU state */ | |||
| 1195 | ||||
| 1196 | current_tb_modified = 1; | |||
| 1197 | cpu_restore_state_from_tb(current_tb, env, pc); | |||
| 1198 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |||
| 1199 | ¤t_flags); | |||
| 1200 | } | |||
| 1201 | #endif /* TARGET_HAS_PRECISE_SMC */ | |||
| 1202 | tb_phys_invalidate(tb, addr); | |||
| 1203 | tb = tb->page_next[n]; | |||
| 1204 | } | |||
| 1205 | p->first_tb = NULL((void*)0); | |||
| 1206 | #ifdef TARGET_HAS_PRECISE_SMC | |||
| 1207 | if (current_tb_modified) { | |||
| 1208 | /* we generate a block containing just the instruction | |||
| 1209 | modifying the memory. It will ensure that it cannot modify | |||
| 1210 | itself */ | |||
| 1211 | cpu->current_tb = NULL((void*)0); | |||
| 1212 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |||
| 1213 | if (locked) { | |||
| 1214 | mmap_unlock(); | |||
| 1215 | } | |||
| 1216 | cpu_resume_from_signal(env, puc); | |||
| 1217 | } | |||
| 1218 | #endif | |||
| 1219 | } | |||
| 1220 | #endif | |||
| 1221 | ||||
| 1222 | /* add the tb in the target page and protect it if necessary */ | |||
| 1223 | static inline void tb_alloc_page(TranslationBlock *tb, | |||
| 1224 | unsigned int n, tb_page_addr_t page_addr) | |||
| 1225 | { | |||
| 1226 | PageDesc *p; | |||
| 1227 | #ifndef CONFIG_USER_ONLY1 | |||
| 1228 | bool_Bool page_already_protected; | |||
| 1229 | #endif | |||
| 1230 | ||||
| 1231 | tb->page_addr[n] = page_addr; | |||
| 1232 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS12, 1); | |||
| 1233 | tb->page_next[n] = p->first_tb; | |||
| 1234 | #ifndef CONFIG_USER_ONLY1 | |||
| 1235 | page_already_protected = p->first_tb != NULL((void*)0); | |||
| 1236 | #endif | |||
| 1237 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |||
| 1238 | invalidate_page_bitmap(p); | |||
| 1239 | ||||
| 1240 | #if defined(TARGET_HAS_SMC) || 1 | |||
| 1241 | ||||
| 1242 | #if defined(CONFIG_USER_ONLY1) | |||
| 1243 | if (p->flags & PAGE_WRITE0x0002) { | |||
| 1244 | target_ulong addr; | |||
| 1245 | PageDesc *p2; | |||
| 1246 | int prot; | |||
| 1247 | ||||
| 1248 | /* force the host page as non writable (writes will have a | |||
| 1249 | page fault + mprotect overhead) */ | |||
| 1250 | page_addr &= qemu_host_page_mask; | |||
| 1251 | prot = 0; | |||
| 1252 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |||
| 1253 | addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
| 1254 | ||||
| 1255 | p2 = page_find(addr >> TARGET_PAGE_BITS12); | |||
| 1256 | if (!p2) { | |||
| 1257 | continue; | |||
| 1258 | } | |||
| 1259 | prot |= p2->flags; | |||
| 1260 | p2->flags &= ~PAGE_WRITE0x0002; | |||
| 1261 | } | |||
| 1262 | mprotect(g2h(page_addr)((void *)((unsigned long)(target_ulong)(page_addr) + guest_base )), qemu_host_page_size, | |||
| 1263 | (prot & PAGE_BITS(0x0001 | 0x0002 | 0x0004)) & ~PAGE_WRITE0x0002); | |||
| 1264 | #ifdef DEBUG_TB_INVALIDATE | |||
| 1265 | printf("protecting code page: 0x" TARGET_FMT_lx"%016" "l" "x" "\n", | |||
| 1266 | page_addr); | |||
| 1267 | #endif | |||
| 1268 | } | |||
| 1269 | #else | |||
| 1270 | /* if some code is already present, then the pages are already | |||
| 1271 | protected. So we handle the case where only the first TB is | |||
| 1272 | allocated in a physical page */ | |||
| 1273 | if (!page_already_protected) { | |||
| 1274 | tlb_protect_code(page_addr); | |||
| 1275 | } | |||
| 1276 | #endif | |||
| 1277 | ||||
| 1278 | #endif /* TARGET_HAS_SMC */ | |||
| 1279 | } | |||
| 1280 | ||||
| 1281 | /* add a new TB and link it to the physical page tables. phys_page2 is | |||
| 1282 | (-1) to indicate that only one page contains the TB. */ | |||
| 1283 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |||
| 1284 | tb_page_addr_t phys_page2) | |||
| 1285 | { | |||
| 1286 | unsigned int h; | |||
| 1287 | TranslationBlock **ptb; | |||
| 1288 | ||||
| 1289 | /* Grab the mmap lock to stop another thread invalidating this TB | |||
| 1290 | before we are done. */ | |||
| 1291 | mmap_lock(); | |||
| 1292 | /* add in the physical hash table */ | |||
| 1293 | h = tb_phys_hash_func(phys_pc); | |||
| 1294 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |||
| 1295 | tb->phys_hash_next = *ptb; | |||
| 1296 | *ptb = tb; | |||
| 1297 | ||||
| 1298 | /* add in the page list */ | |||
| 1299 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK~((1 << 12) - 1)); | |||
| 1300 | if (phys_page2 != -1) { | |||
| 1301 | tb_alloc_page(tb, 1, phys_page2); | |||
| 1302 | } else { | |||
| 1303 | tb->page_addr[1] = -1; | |||
| 1304 | } | |||
| 1305 | ||||
| 1306 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |||
| 1307 | tb->jmp_next[0] = NULL((void*)0); | |||
| 1308 | tb->jmp_next[1] = NULL((void*)0); | |||
| 1309 | ||||
| 1310 | /* init original jump addresses */ | |||
| 1311 | if (tb->tb_next_offset[0] != 0xffff) { | |||
| 1312 | tb_reset_jump(tb, 0); | |||
| 1313 | } | |||
| 1314 | if (tb->tb_next_offset[1] != 0xffff) { | |||
| 1315 | tb_reset_jump(tb, 1); | |||
| 1316 | } | |||
| 1317 | ||||
| 1318 | #ifdef DEBUG_TB_CHECK | |||
| 1319 | tb_page_check(); | |||
| 1320 | #endif | |||
| 1321 | mmap_unlock(); | |||
| 1322 | } | |||
| 1323 | ||||
| 1324 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |||
| 1325 | tb[1].tc_ptr. Return NULL if not found */ | |||
| 1326 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) | |||
| 1327 | { | |||
| 1328 | int m_min, m_max, m; | |||
| 1329 | uintptr_t v; | |||
| 1330 | TranslationBlock *tb; | |||
| 1331 | ||||
| 1332 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { | |||
| 1333 | return NULL((void*)0); | |||
| 1334 | } | |||
| 1335 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || | |||
| 1336 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |||
| 1337 | return NULL((void*)0); | |||
| 1338 | } | |||
| 1339 | /* binary search (cf Knuth) */ | |||
| 1340 | m_min = 0; | |||
| 1341 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; | |||
| 1342 | while (m_min <= m_max) { | |||
| 1343 | m = (m_min + m_max) >> 1; | |||
| 1344 | tb = &tcg_ctx.tb_ctx.tbs[m]; | |||
| 1345 | v = (uintptr_t)tb->tc_ptr; | |||
| 1346 | if (v == tc_ptr) { | |||
| 1347 | return tb; | |||
| 1348 | } else if (tc_ptr < v) { | |||
| 1349 | m_max = m - 1; | |||
| 1350 | } else { | |||
| 1351 | m_min = m + 1; | |||
| 1352 | } | |||
| 1353 | } | |||
| 1354 | return &tcg_ctx.tb_ctx.tbs[m_max]; | |||
| 1355 | } | |||
| 1356 | ||||
| 1357 | #if defined(TARGET_HAS_ICE1) && !defined(CONFIG_USER_ONLY1) | |||
| 1358 | void tb_invalidate_phys_addr(hwaddr addr) | |||
| 1359 | { | |||
| 1360 | ram_addr_t ram_addr; | |||
| 1361 | MemoryRegion *mr; | |||
| 1362 | hwaddr l = 1; | |||
| 1363 | ||||
| 1364 | mr = address_space_translate(&address_space_memory, addr, &addr, &l, false0); | |||
| 1365 | if (!(memory_region_is_ram(mr) | |||
| 1366 | || memory_region_is_romd(mr))) { | |||
| 1367 | return; | |||
| 1368 | } | |||
| 1369 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK~((1 << 12) - 1)) | |||
| 1370 | + addr; | |||
| 1371 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |||
| 1372 | } | |||
| 1373 | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | |||
| 1374 | ||||
| 1375 | void tb_check_watchpoint(CPUArchStatestruct CPUX86State *env) | |||
| 1376 | { | |||
| 1377 | TranslationBlock *tb; | |||
| 1378 | ||||
| 1379 | tb = tb_find_pc(env->mem_io_pc); | |||
| 1380 | if (!tb) { | |||
| 1381 | cpu_abort(env, "check_watchpoint: could not find TB for pc=%p", | |||
| 1382 | (void *)env->mem_io_pc); | |||
| 1383 | } | |||
| 1384 | cpu_restore_state_from_tb(tb, env, env->mem_io_pc); | |||
| 1385 | tb_phys_invalidate(tb, -1); | |||
| 1386 | } | |||
| 1387 | ||||
| 1388 | #ifndef CONFIG_USER_ONLY1 | |||
| 1389 | /* mask must never be zero, except for A20 change call */ | |||
| 1390 | static void tcg_handle_interrupt(CPUState *cpu, int mask) | |||
| 1391 | { | |||
| 1392 | CPUArchStatestruct CPUX86State *env = cpu->env_ptr; | |||
| 1393 | int old_mask; | |||
| 1394 | ||||
| 1395 | old_mask = cpu->interrupt_request; | |||
| 1396 | cpu->interrupt_request |= mask; | |||
| 1397 | ||||
| 1398 | /* | |||
| 1399 | * If called from iothread context, wake the target cpu in | |||
| 1400 | * case its halted. | |||
| 1401 | */ | |||
| 1402 | if (!qemu_cpu_is_self(cpu)) { | |||
| 1403 | qemu_cpu_kick(cpu); | |||
| 1404 | return; | |||
| 1405 | } | |||
| 1406 | ||||
| 1407 | if (use_icount) { | |||
| 1408 | env->icount_decr.u16.high = 0xffff; | |||
| 1409 | if (!can_do_io(env) | |||
| 1410 | && (mask & ~old_mask) != 0) { | |||
| 1411 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |||
| 1412 | } | |||
| 1413 | } else { | |||
| 1414 | cpu->tcg_exit_req = 1; | |||
| 1415 | } | |||
| 1416 | } | |||
| 1417 | ||||
| 1418 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |||
| 1419 | ||||
| 1420 | /* in deterministic execution mode, instructions doing device I/Os | |||
| 1421 | must be at the end of the TB */ | |||
| 1422 | void cpu_io_recompile(CPUArchStatestruct CPUX86State *env, uintptr_t retaddr) | |||
| 1423 | { | |||
| 1424 | TranslationBlock *tb; | |||
| 1425 | uint32_t n, cflags; | |||
| 1426 | target_ulong pc, cs_base; | |||
| 1427 | uint64_t flags; | |||
| 1428 | ||||
| 1429 | tb = tb_find_pc(retaddr); | |||
| 1430 | if (!tb) { | |||
| 1431 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |||
| 1432 | (void *)retaddr); | |||
| 1433 | } | |||
| 1434 | n = env->icount_decr.u16.low + tb->icount; | |||
| 1435 | cpu_restore_state_from_tb(tb, env, retaddr); | |||
| 1436 | /* Calculate how many instructions had been executed before the fault | |||
| 1437 | occurred. */ | |||
| 1438 | n = n - env->icount_decr.u16.low; | |||
| 1439 | /* Generate a new TB ending on the I/O insn. */ | |||
| 1440 | n++; | |||
| 1441 | /* On MIPS and SH, delay slot instructions can only be restarted if | |||
| 1442 | they were already the first instruction in the TB. If this is not | |||
| 1443 | the first instruction in a TB then re-execute the preceding | |||
| 1444 | branch. */ | |||
| 1445 | #if defined(TARGET_MIPS) | |||
| 1446 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |||
| 1447 | env->active_tc.PC -= 4; | |||
| 1448 | env->icount_decr.u16.low++; | |||
| 1449 | env->hflags &= ~MIPS_HFLAG_BMASK; | |||
| 1450 | } | |||
| 1451 | #elif defined(TARGET_SH4) | |||
| 1452 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |||
| 1453 | && n > 1) { | |||
| 1454 | env->pc -= 2; | |||
| 1455 | env->icount_decr.u16.low++; | |||
| 1456 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |||
| 1457 | } | |||
| 1458 | #endif | |||
| 1459 | /* This should never happen. */ | |||
| 1460 | if (n > CF_COUNT_MASK0x7fff) { | |||
| 1461 | cpu_abort(env, "TB too big during recompile"); | |||
| 1462 | } | |||
| 1463 | ||||
| 1464 | cflags = n | CF_LAST_IO0x8000; | |||
| 1465 | pc = tb->pc; | |||
| 1466 | cs_base = tb->cs_base; | |||
| 1467 | flags = tb->flags; | |||
| 1468 | tb_phys_invalidate(tb, -1); | |||
| 1469 | /* FIXME: In theory this could raise an exception. In practice | |||
| 1470 | we have already translated the block once so it's probably ok. */ | |||
| 1471 | tb_gen_code(env, pc, cs_base, flags, cflags); | |||
| 1472 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |||
| 1473 | the first in the TB) then we end up generating a whole new TB and | |||
| 1474 | repeating the fault, which is horribly inefficient. | |||
| 1475 | Better would be to execute just this insn uncached, or generate a | |||
| 1476 | second new TB. */ | |||
| 1477 | cpu_resume_from_signal(env, NULL((void*)0)); | |||
| 1478 | } | |||
| 1479 | ||||
| 1480 | void tb_flush_jmp_cache(CPUArchStatestruct CPUX86State *env, target_ulong addr) | |||
| 1481 | { | |||
| 1482 | unsigned int i; | |||
| 1483 | ||||
| 1484 | /* Discard jump cache entries for any tb which might potentially | |||
| 1485 | overlap the flushed page. */ | |||
| 1486 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE(1 << 12)); | |||
| 1487 | memset(&env->tb_jmp_cache[i], 0, | |||
| 1488 | TB_JMP_PAGE_SIZE(1 << (12 / 2)) * sizeof(TranslationBlock *)); | |||
| 1489 | ||||
| 1490 | i = tb_jmp_cache_hash_page(addr); | |||
| 1491 | memset(&env->tb_jmp_cache[i], 0, | |||
| 1492 | TB_JMP_PAGE_SIZE(1 << (12 / 2)) * sizeof(TranslationBlock *)); | |||
| 1493 | } | |||
| 1494 | ||||
| 1495 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |||
| 1496 | { | |||
| 1497 | int i, target_code_size, max_target_code_size; | |||
| 1498 | int direct_jmp_count, direct_jmp2_count, cross_page; | |||
| 1499 | TranslationBlock *tb; | |||
| 1500 | ||||
| 1501 | target_code_size = 0; | |||
| 1502 | max_target_code_size = 0; | |||
| 1503 | cross_page = 0; | |||
| 1504 | direct_jmp_count = 0; | |||
| 1505 | direct_jmp2_count = 0; | |||
| 1506 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { | |||
| 1507 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |||
| 1508 | target_code_size += tb->size; | |||
| 1509 | if (tb->size > max_target_code_size) { | |||
| 1510 | max_target_code_size = tb->size; | |||
| 1511 | } | |||
| 1512 | if (tb->page_addr[1] != -1) { | |||
| 1513 | cross_page++; | |||
| 1514 | } | |||
| 1515 | if (tb->tb_next_offset[0] != 0xffff) { | |||
| 1516 | direct_jmp_count++; | |||
| 1517 | if (tb->tb_next_offset[1] != 0xffff) { | |||
| 1518 | direct_jmp2_count++; | |||
| 1519 | } | |||
| 1520 | } | |||
| 1521 | } | |||
| 1522 | /* XXX: avoid using doubles ? */ | |||
| 1523 | cpu_fprintf(f, "Translation buffer state:\n"); | |||
| 1524 | cpu_fprintf(f, "gen code size %td/%zd\n", | |||
| 1525 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, | |||
| 1526 | tcg_ctx.code_gen_buffer_max_size); | |||
| 1527 | cpu_fprintf(f, "TB count %d/%d\n", | |||
| 1528 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); | |||
| 1529 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |||
| 1530 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / | |||
| 1531 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
| 1532 | max_target_code_size); | |||
| 1533 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", | |||
| 1534 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - | |||
| 1535 | tcg_ctx.code_gen_buffer) / | |||
| 1536 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
| 1537 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |||
| 1538 | tcg_ctx.code_gen_buffer) / | |||
| 1539 | target_code_size : 0); | |||
| 1540 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |||
| 1541 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |||
| 1542 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
| 1543 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |||
| 1544 | direct_jmp_count, | |||
| 1545 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / | |||
| 1546 | tcg_ctx.tb_ctx.nb_tbs : 0, | |||
| 1547 | direct_jmp2_count, | |||
| 1548 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / | |||
| 1549 | tcg_ctx.tb_ctx.nb_tbs : 0); | |||
| 1550 | cpu_fprintf(f, "\nStatistics:\n"); | |||
| 1551 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); | |||
| 1552 | cpu_fprintf(f, "TB invalidate count %d\n", | |||
| 1553 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |||
| 1554 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |||
| 1555 | tcg_dump_info(f, cpu_fprintf); | |||
| 1556 | } | |||
| 1557 | ||||
| 1558 | #else /* CONFIG_USER_ONLY */ | |||
| 1559 | ||||
| 1560 | void cpu_interrupt(CPUState *cpu, int mask) | |||
| 1561 | { | |||
| 1562 | cpu->interrupt_request |= mask; | |||
| 1563 | cpu->tcg_exit_req = 1; | |||
| 1564 | } | |||
| 1565 | ||||
| 1566 | /* | |||
| 1567 | * Walks guest process memory "regions" one by one | |||
| 1568 | * and calls callback function 'fn' for each region. | |||
| 1569 | */ | |||
| 1570 | struct walk_memory_regions_data { | |||
| 1571 | walk_memory_regions_fn fn; | |||
| 1572 | void *priv; | |||
| 1573 | uintptr_t start; | |||
| 1574 | int prot; | |||
| 1575 | }; | |||
| 1576 | ||||
| 1577 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |||
| 1578 | abi_ulong end, int new_prot) | |||
| 1579 | { | |||
| 1580 | if (data->start != -1ul) { | |||
| 1581 | int rc = data->fn(data->priv, data->start, end, data->prot); | |||
| 1582 | if (rc != 0) { | |||
| 1583 | return rc; | |||
| 1584 | } | |||
| 1585 | } | |||
| 1586 | ||||
| 1587 | data->start = (new_prot ? end : -1ul); | |||
| 1588 | data->prot = new_prot; | |||
| 1589 | ||||
| 1590 | return 0; | |||
| 1591 | } | |||
| 1592 | ||||
| 1593 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |||
| 1594 | abi_ulong base, int level, void **lp) | |||
| 1595 | { | |||
| 1596 | abi_ulong pa; | |||
| 1597 | int i, rc; | |||
| 1598 | ||||
| 1599 | if (*lp == NULL((void*)0)) { | |||
| 1600 | return walk_memory_regions_end(data, base, 0); | |||
| 1601 | } | |||
| 1602 | ||||
| 1603 | if (level == 0) { | |||
| 1604 | PageDesc *pd = *lp; | |||
| 1605 | ||||
| 1606 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
| 1607 | int prot = pd[i].flags; | |||
| 1608 | ||||
| 1609 | pa = base | (i << TARGET_PAGE_BITS12); | |||
| 1610 | if (prot != data->prot) { | |||
| 1611 | rc = walk_memory_regions_end(data, pa, prot); | |||
| 1612 | if (rc != 0) { | |||
| 1613 | return rc; | |||
| 1614 | } | |||
| 1615 | } | |||
| 1616 | } | |||
| 1617 | } else { | |||
| 1618 | void **pp = *lp; | |||
| 1619 | ||||
| 1620 | for (i = 0; i < V_L2_SIZE(1 << 10); ++i) { | |||
| 1621 | pa = base | ((abi_ulong)i << | |||
| 1622 | (TARGET_PAGE_BITS12 + V_L2_BITS10 * level)); | |||
| 1623 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | |||
| 1624 | if (rc != 0) { | |||
| 1625 | return rc; | |||
| 1626 | } | |||
| 1627 | } | |||
| 1628 | } | |||
| 1629 | ||||
| 1630 | return 0; | |||
| 1631 | } | |||
| 1632 | ||||
| 1633 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |||
| 1634 | { | |||
| 1635 | struct walk_memory_regions_data data; | |||
| 1636 | uintptr_t i; | |||
| 1637 | ||||
| 1638 | data.fn = fn; | |||
| 1639 | data.priv = priv; | |||
| 1640 | data.start = -1ul; | |||
| 1641 | data.prot = 0; | |||
| 1642 | ||||
| 1643 | for (i = 0; i < V_L1_SIZE((target_ulong)1 << ((47 - 12) % 10)); i++) { | |||
| 1644 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)), | |||
| 1645 | V_L1_SHIFT(47 - 12 - ((47 - 12) % 10)) / V_L2_BITS10 - 1, l1_map + i); | |||
| 1646 | ||||
| 1647 | if (rc != 0) { | |||
| 1648 | return rc; | |||
| 1649 | } | |||
| 1650 | } | |||
| 1651 | ||||
| 1652 | return walk_memory_regions_end(&data, 0, 0); | |||
| 1653 | } | |||
| 1654 | ||||
| 1655 | static int dump_region(void *priv, abi_ulong start, | |||
| 1656 | abi_ulong end, unsigned long prot) | |||
| 1657 | { | |||
| 1658 | FILE *f = (FILE *)priv; | |||
| 1659 | ||||
| 1660 | (void) fprintf(f, TARGET_ABI_FMT_lx"%016" "l" "x""-"TARGET_ABI_FMT_lx"%016" "l" "x" | |||
| 1661 | " "TARGET_ABI_FMT_lx"%016" "l" "x"" %c%c%c\n", | |||
| 1662 | start, end, end - start, | |||
| 1663 | ((prot & PAGE_READ0x0001) ? 'r' : '-'), | |||
| 1664 | ((prot & PAGE_WRITE0x0002) ? 'w' : '-'), | |||
| 1665 | ((prot & PAGE_EXEC0x0004) ? 'x' : '-')); | |||
| 1666 | ||||
| 1667 | return 0; | |||
| 1668 | } | |||
| 1669 | ||||
| 1670 | /* dump memory mappings */ | |||
| 1671 | void page_dump(FILE *f) | |||
| 1672 | { | |||
| 1673 | const int length = sizeof(abi_ulong) * 2; | |||
| 1674 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |||
| 1675 | length, "start", length, "end", length, "size", "prot"); | |||
| 1676 | walk_memory_regions(f, dump_region); | |||
| 1677 | } | |||
| 1678 | ||||
| 1679 | int page_get_flags(target_ulong address) | |||
| 1680 | { | |||
| 1681 | PageDesc *p; | |||
| 1682 | ||||
| 1683 | p = page_find(address >> TARGET_PAGE_BITS12); | |||
| 1684 | if (!p) { | |||
| 1685 | return 0; | |||
| 1686 | } | |||
| 1687 | return p->flags; | |||
| 1688 | } | |||
| 1689 | ||||
| 1690 | /* Modify the flags of a page and invalidate the code if necessary. | |||
| 1691 | The flag PAGE_WRITE_ORG is positioned automatically depending | |||
| 1692 | on PAGE_WRITE. The mmap_lock should already be held. */ | |||
| 1693 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |||
| 1694 | { | |||
| 1695 | target_ulong addr, len; | |||
| 1696 | ||||
| 1697 | /* This function should never be called with addresses outside the | |||
| 1698 | guest address space. If this assert fires, it probably indicates | |||
| 1699 | a missing call to h2g_valid. */ | |||
| 1700 | #if TARGET_ABI_BITS64 > L1_MAP_ADDR_SPACE_BITS47 | |||
| 1701 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS))((end < ((abi_ulong)1 << 47)) ? (void) (0) : __assert_fail ("end < ((abi_ulong)1 << 47)", "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c" , 1701, __PRETTY_FUNCTION__)); | |||
| 1702 | #endif | |||
| 1703 | assert(start < end)((start < end) ? (void) (0) : __assert_fail ("start < end" , "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c", 1703 , __PRETTY_FUNCTION__)); | |||
| 1704 | ||||
| 1705 | start = start & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 1706 | end = TARGET_PAGE_ALIGN(end)(((end) + (1 << 12) - 1) & ~((1 << 12) - 1)); | |||
| 1707 | ||||
| 1708 | if (flags & PAGE_WRITE0x0002) { | |||
| 1709 | flags |= PAGE_WRITE_ORG0x0010; | |||
| 1710 | } | |||
| 1711 | ||||
| 1712 | for (addr = start, len = end - start; | |||
| 1713 | len != 0; | |||
| 1714 | len -= TARGET_PAGE_SIZE(1 << 12), addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
| 1715 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS12, 1); | |||
| 1716 | ||||
| 1717 | /* If the write protection bit is set, then we invalidate | |||
| 1718 | the code inside. */ | |||
| 1719 | if (!(p->flags & PAGE_WRITE0x0002) && | |||
| 1720 | (flags & PAGE_WRITE0x0002) && | |||
| 1721 | p->first_tb) { | |||
| 1722 | tb_invalidate_phys_page(addr, 0, NULL((void*)0), false0); | |||
| 1723 | } | |||
| 1724 | p->flags = flags; | |||
| 1725 | } | |||
| 1726 | } | |||
| 1727 | ||||
| 1728 | int page_check_range(target_ulong start, target_ulong len, int flags) | |||
| 1729 | { | |||
| 1730 | PageDesc *p; | |||
| 1731 | target_ulong end; | |||
| 1732 | target_ulong addr; | |||
| 1733 | ||||
| 1734 | /* This function should never be called with addresses outside the | |||
| 1735 | guest address space. If this assert fires, it probably indicates | |||
| 1736 | a missing call to h2g_valid. */ | |||
| 1737 | #if TARGET_ABI_BITS64 > L1_MAP_ADDR_SPACE_BITS47 | |||
| 1738 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS))((start < ((abi_ulong)1 << 47)) ? (void) (0) : __assert_fail ("start < ((abi_ulong)1 << 47)", "/home/stefan/src/qemu/qemu.org/qemu/translate-all.c" , 1738, __PRETTY_FUNCTION__)); | |||
| 1739 | #endif | |||
| 1740 | ||||
| 1741 | if (len == 0) { | |||
| 1742 | return 0; | |||
| 1743 | } | |||
| 1744 | if (start + len - 1 < start) { | |||
| 1745 | /* We've wrapped around. */ | |||
| 1746 | return -1; | |||
| 1747 | } | |||
| 1748 | ||||
| 1749 | /* must do before we loose bits in the next step */ | |||
| 1750 | end = TARGET_PAGE_ALIGN(start + len)(((start + len) + (1 << 12) - 1) & ~((1 << 12 ) - 1)); | |||
| 1751 | start = start & TARGET_PAGE_MASK~((1 << 12) - 1); | |||
| 1752 | ||||
| 1753 | for (addr = start, len = end - start; | |||
| 1754 | len != 0; | |||
| 1755 | len -= TARGET_PAGE_SIZE(1 << 12), addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
| 1756 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
| 1757 | if (!p) { | |||
| 1758 | return -1; | |||
| 1759 | } | |||
| 1760 | if (!(p->flags & PAGE_VALID0x0008)) { | |||
| 1761 | return -1; | |||
| 1762 | } | |||
| 1763 | ||||
| 1764 | if ((flags & PAGE_READ0x0001) && !(p->flags & PAGE_READ0x0001)) { | |||
| 1765 | return -1; | |||
| 1766 | } | |||
| 1767 | if (flags & PAGE_WRITE0x0002) { | |||
| 1768 | if (!(p->flags & PAGE_WRITE_ORG0x0010)) { | |||
| 1769 | return -1; | |||
| 1770 | } | |||
| 1771 | /* unprotect the page if it was put read-only because it | |||
| 1772 | contains translated code */ | |||
| 1773 | if (!(p->flags & PAGE_WRITE0x0002)) { | |||
| 1774 | if (!page_unprotect(addr, 0, NULL((void*)0))) { | |||
| 1775 | return -1; | |||
| 1776 | } | |||
| 1777 | } | |||
| 1778 | return 0; | |||
| 1779 | } | |||
| 1780 | } | |||
| 1781 | return 0; | |||
| 1782 | } | |||
| 1783 | ||||
| 1784 | /* called from signal handler: invalidate the code and unprotect the | |||
| 1785 | page. Return TRUE if the fault was successfully handled. */ | |||
| 1786 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |||
| 1787 | { | |||
| 1788 | unsigned int prot; | |||
| 1789 | PageDesc *p; | |||
| 1790 | target_ulong host_start, host_end, addr; | |||
| 1791 | ||||
| 1792 | /* Technically this isn't safe inside a signal handler. However we | |||
| 1793 | know this only ever happens in a synchronous SEGV handler, so in | |||
| 1794 | practice it seems to be ok. */ | |||
| 1795 | mmap_lock(); | |||
| 1796 | ||||
| 1797 | p = page_find(address >> TARGET_PAGE_BITS12); | |||
| 1798 | if (!p) { | |||
| ||||
| 1799 | mmap_unlock(); | |||
| 1800 | return 0; | |||
| 1801 | } | |||
| 1802 | ||||
| 1803 | /* if the page was really writable, then we change its | |||
| 1804 | protection back to writable */ | |||
| 1805 | if ((p->flags & PAGE_WRITE_ORG0x0010) && !(p->flags & PAGE_WRITE0x0002)) { | |||
| 1806 | host_start = address & qemu_host_page_mask; | |||
| 1807 | host_end = host_start + qemu_host_page_size; | |||
| 1808 | ||||
| 1809 | prot = 0; | |||
| 1810 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE(1 << 12)) { | |||
| 1811 | p = page_find(addr >> TARGET_PAGE_BITS12); | |||
| 1812 | p->flags |= PAGE_WRITE0x0002; | |||
| 1813 | prot |= p->flags; | |||
| 1814 | ||||
| 1815 | /* and since the content will be modified, we must invalidate | |||
| 1816 | the corresponding translated code. */ | |||
| 1817 | tb_invalidate_phys_page(addr, pc, puc, true1); | |||
| 1818 | #ifdef DEBUG_TB_CHECK | |||
| 1819 | tb_invalidate_check(addr); | |||
| 1820 | #endif | |||
| 1821 | } | |||
| 1822 | mprotect((void *)g2h(host_start)((void *)((unsigned long)(target_ulong)(host_start) + guest_base )), qemu_host_page_size, | |||
| 1823 | prot & PAGE_BITS(0x0001 | 0x0002 | 0x0004)); | |||
| 1824 | ||||
| 1825 | mmap_unlock(); | |||
| 1826 | return 1; | |||
| 1827 | } | |||
| 1828 | mmap_unlock(); | |||
| 1829 | return 0; | |||
| 1830 | } | |||
| 1831 | #endif /* CONFIG_USER_ONLY */ |