File: | hw/audio/fmopl.c |
Location: | line 1232, column 30 |
Description: | Value stored to 'ptr' is never read |
1 | /* |
2 | ** |
3 | ** File: fmopl.c -- software implementation of FM sound generator |
4 | ** |
5 | ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development |
6 | ** |
7 | ** Version 0.37a |
8 | ** |
9 | */ |
10 | |
11 | /* |
12 | preliminary : |
13 | Problem : |
14 | note: |
15 | */ |
16 | |
17 | /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. |
18 | * |
19 | * This library is free software; you can redistribute it and/or |
20 | * modify it under the terms of the GNU Lesser General Public |
21 | * License as published by the Free Software Foundation; either |
22 | * version 2.1 of the License, or (at your option) any later version. |
23 | * |
24 | * This library is distributed in the hope that it will be useful, |
25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | * Lesser General Public License for more details. |
28 | * |
29 | * You should have received a copy of the GNU Lesser General Public |
30 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
31 | */ |
32 | |
33 | #define INLINEstatic inline static inline |
34 | #define HAS_YM38121 1 |
35 | |
36 | #include <stdio.h> |
37 | #include <stdlib.h> |
38 | #include <string.h> |
39 | #include <stdarg.h> |
40 | #include <math.h> |
41 | //#include "driver.h" /* use M.A.M.E. */ |
42 | #include "fmopl.h" |
43 | |
44 | #ifndef PI3.14159265358979323846 |
45 | #define PI3.14159265358979323846 3.14159265358979323846 |
46 | #endif |
47 | |
48 | #ifndef ARRAY_SIZE |
49 | #define ARRAY_SIZE(x)(sizeof(x) / sizeof((x)[0])) (sizeof(x) / sizeof((x)[0])) |
50 | #endif |
51 | |
52 | /* -------------------- for debug --------------------- */ |
53 | /* #define OPL_OUTPUT_LOG */ |
54 | #ifdef OPL_OUTPUT_LOG |
55 | static FILE *opl_dbg_fp = NULL((void*)0); |
56 | static FM_OPL *opl_dbg_opl[16]; |
57 | static int opl_dbg_maxchip,opl_dbg_chip; |
58 | #endif |
59 | |
60 | /* -------------------- preliminary define section --------------------- */ |
61 | /* attack/decay rate time rate */ |
62 | #define OPL_ARRATE141280 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ |
63 | #define OPL_DRRATE1956000 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ |
64 | |
65 | #define DELTAT_MIXING_LEVEL(1) (1) /* DELTA-T ADPCM MIXING LEVEL */ |
66 | |
67 | #define FREQ_BITS24 24 /* frequency turn */ |
68 | |
69 | /* counter bits = 20 , octerve 7 */ |
70 | #define FREQ_RATE(1<<(24 -20)) (1<<(FREQ_BITS24-20)) |
71 | #define TL_BITS(24 +2) (FREQ_BITS24+2) |
72 | |
73 | /* final output shift , limit minimum and maximum */ |
74 | #define OPL_OUTSB((24 +2)+3-16) (TL_BITS(24 +2)+3-16) /* OPL output final shift 16bit */ |
75 | #define OPL_MAXOUT(0x7fff<<((24 +2)+3-16)) (0x7fff<<OPL_OUTSB((24 +2)+3-16)) |
76 | #define OPL_MINOUT(-0x8000<<((24 +2)+3-16)) (-0x8000<<OPL_OUTSB((24 +2)+3-16)) |
77 | |
78 | /* -------------------- quality selection --------------------- */ |
79 | |
80 | /* sinwave entries */ |
81 | /* used static memory = SIN_ENT * 4 (byte) */ |
82 | #define SIN_ENT2048 2048 |
83 | |
84 | /* output level entries (envelope,sinwave) */ |
85 | /* envelope counter lower bits */ |
86 | #define ENV_BITS16 16 |
87 | /* envelope output entries */ |
88 | #define EG_ENT4096 4096 |
89 | /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ |
90 | /* used static memory = EG_ENT*4 (byte) */ |
91 | |
92 | #define EG_OFF((2*4096)<<16) ((2*EG_ENT4096)<<ENV_BITS16) /* OFF */ |
93 | #define EG_DED((2*4096)<<16) EG_OFF((2*4096)<<16) |
94 | #define EG_DST(4096<<16) (EG_ENT4096<<ENV_BITS16) /* DECAY START */ |
95 | #define EG_AED(4096<<16) EG_DST(4096<<16) |
96 | #define EG_AST0 0 /* ATTACK START */ |
97 | |
98 | #define EG_STEP(96.0/4096) (96.0/EG_ENT4096) /* OPL is 0.1875 dB step */ |
99 | |
100 | /* LFO table entries */ |
101 | #define VIB_ENT512 512 |
102 | #define VIB_SHIFT(32-9) (32-9) |
103 | #define AMS_ENT512 512 |
104 | #define AMS_SHIFT(32-9) (32-9) |
105 | |
106 | #define VIB_RATE256 256 |
107 | |
108 | /* -------------------- local defines , macros --------------------- */ |
109 | |
110 | /* register number to channel number , slot offset */ |
111 | #define SLOT10 0 |
112 | #define SLOT21 1 |
113 | |
114 | /* envelope phase */ |
115 | #define ENV_MOD_RR0x00 0x00 |
116 | #define ENV_MOD_DR0x01 0x01 |
117 | #define ENV_MOD_AR0x02 0x02 |
118 | |
119 | /* -------------------- tables --------------------- */ |
120 | static const int slot_array[32]= |
121 | { |
122 | 0, 2, 4, 1, 3, 5,-1,-1, |
123 | 6, 8,10, 7, 9,11,-1,-1, |
124 | 12,14,16,13,15,17,-1,-1, |
125 | -1,-1,-1,-1,-1,-1,-1,-1 |
126 | }; |
127 | |
128 | /* key scale level */ |
129 | /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ |
130 | #define DV (EG_STEP(96.0/4096)/2) |
131 | static const UINT32 KSL_TABLE[8*16]= |
132 | { |
133 | /* OCT 0 */ |
134 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
135 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
136 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
137 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
138 | /* OCT 1 */ |
139 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
140 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
141 | 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, |
142 | 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, |
143 | /* OCT 2 */ |
144 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
145 | 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, |
146 | 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, |
147 | 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, |
148 | /* OCT 3 */ |
149 | 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, |
150 | 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, |
151 | 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, |
152 | 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, |
153 | /* OCT 4 */ |
154 | 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, |
155 | 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, |
156 | 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, |
157 | 10.875/DV,11.250/DV,11.625/DV,12.000/DV, |
158 | /* OCT 5 */ |
159 | 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, |
160 | 9.000/DV,10.125/DV,10.875/DV,11.625/DV, |
161 | 12.000/DV,12.750/DV,13.125/DV,13.500/DV, |
162 | 13.875/DV,14.250/DV,14.625/DV,15.000/DV, |
163 | /* OCT 6 */ |
164 | 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, |
165 | 12.000/DV,13.125/DV,13.875/DV,14.625/DV, |
166 | 15.000/DV,15.750/DV,16.125/DV,16.500/DV, |
167 | 16.875/DV,17.250/DV,17.625/DV,18.000/DV, |
168 | /* OCT 7 */ |
169 | 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, |
170 | 15.000/DV,16.125/DV,16.875/DV,17.625/DV, |
171 | 18.000/DV,18.750/DV,19.125/DV,19.500/DV, |
172 | 19.875/DV,20.250/DV,20.625/DV,21.000/DV |
173 | }; |
174 | #undef DV |
175 | |
176 | /* sustain lebel table (3db per step) */ |
177 | /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ |
178 | #define SC(db) (db*((3/EG_STEP(96.0/4096))*(1<<ENV_BITS16)))+EG_DST(4096<<16) |
179 | static const INT32 SL_TABLE[16]={ |
180 | SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), |
181 | SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) |
182 | }; |
183 | #undef SC |
184 | |
185 | #define TL_MAX(4096*2) (EG_ENT4096*2) /* limit(tl + ksr + envelope) + sinwave */ |
186 | /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ |
187 | /* TL_TABLE[ 0 to TL_MAX ] : plus section */ |
188 | /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ |
189 | static INT32 *TL_TABLE; |
190 | |
191 | /* pointers to TL_TABLE with sinwave output offset */ |
192 | static INT32 **SIN_TABLE; |
193 | |
194 | /* LFO table */ |
195 | static INT32 *AMS_TABLE; |
196 | static INT32 *VIB_TABLE; |
197 | |
198 | /* envelope output curve table */ |
199 | /* attack + decay + OFF */ |
200 | static INT32 ENV_CURVE[2*EG_ENT4096+1]; |
201 | |
202 | /* multiple table */ |
203 | #define ML 2 |
204 | static const UINT32 MUL_TABLE[16]= { |
205 | /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ |
206 | 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, |
207 | 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML |
208 | }; |
209 | #undef ML |
210 | |
211 | /* dummy attack / decay rate ( when rate == 0 ) */ |
212 | static INT32 RATE_0[16]= |
213 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
214 | |
215 | /* -------------------- static state --------------------- */ |
216 | |
217 | /* lock level of common table */ |
218 | static int num_lock = 0; |
219 | |
220 | /* work table */ |
221 | static void *cur_chip = NULL((void*)0); /* current chip point */ |
222 | /* currenct chip state */ |
223 | /* static OPLSAMPLE *bufL,*bufR; */ |
224 | static OPL_CH *S_CH; |
225 | static OPL_CH *E_CH; |
226 | OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; |
227 | |
228 | static INT32 outd[1]; |
229 | static INT32 ams; |
230 | static INT32 vib; |
231 | INT32 *ams_table; |
232 | INT32 *vib_table; |
233 | static INT32 amsIncr; |
234 | static INT32 vibIncr; |
235 | static INT32 feedback2; /* connect for SLOT 2 */ |
236 | |
237 | /* log output level */ |
238 | #define LOG_ERR3 3 /* ERROR */ |
239 | #define LOG_WAR2 2 /* WARNING */ |
240 | #define LOG_INF1 1 /* INFORMATION */ |
241 | |
242 | //#define LOG_LEVEL LOG_INF |
243 | #define LOG_LEVEL3 LOG_ERR3 |
244 | |
245 | //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x |
246 | #define LOG(n,x) |
247 | |
248 | /* --------------------- subroutines --------------------- */ |
249 | |
250 | INLINEstatic inline int Limit( int val, int max, int min ) { |
251 | if ( val > max ) |
252 | val = max; |
253 | else if ( val < min ) |
254 | val = min; |
255 | |
256 | return val; |
257 | } |
258 | |
259 | /* status set and IRQ handling */ |
260 | INLINEstatic inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) |
261 | { |
262 | /* set status flag */ |
263 | OPL->status |= flag; |
264 | if(!(OPL->status & 0x80)) |
265 | { |
266 | if(OPL->status & OPL->statusmask) |
267 | { /* IRQ on */ |
268 | OPL->status |= 0x80; |
269 | /* callback user interrupt handler (IRQ is OFF to ON) */ |
270 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); |
271 | } |
272 | } |
273 | } |
274 | |
275 | /* status reset and IRQ handling */ |
276 | INLINEstatic inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) |
277 | { |
278 | /* reset status flag */ |
279 | OPL->status &=~flag; |
280 | if((OPL->status & 0x80)) |
281 | { |
282 | if (!(OPL->status & OPL->statusmask) ) |
283 | { |
284 | OPL->status &= 0x7f; |
285 | /* callback user interrupt handler (IRQ is ON to OFF) */ |
286 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); |
287 | } |
288 | } |
289 | } |
290 | |
291 | /* IRQ mask set */ |
292 | INLINEstatic inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) |
293 | { |
294 | OPL->statusmask = flag; |
295 | /* IRQ handling check */ |
296 | OPL_STATUS_SET(OPL,0); |
297 | OPL_STATUS_RESET(OPL,0); |
298 | } |
299 | |
300 | /* ----- key on ----- */ |
301 | INLINEstatic inline void OPL_KEYON(OPL_SLOT *SLOT) |
302 | { |
303 | /* sin wave restart */ |
304 | SLOT->Cnt = 0; |
305 | /* set attack */ |
306 | SLOT->evm = ENV_MOD_AR0x02; |
307 | SLOT->evs = SLOT->evsa; |
308 | SLOT->evc = EG_AST0; |
309 | SLOT->eve = EG_AED(4096<<16); |
310 | } |
311 | /* ----- key off ----- */ |
312 | INLINEstatic inline void OPL_KEYOFF(OPL_SLOT *SLOT) |
313 | { |
314 | if( SLOT->evm > ENV_MOD_RR0x00) |
315 | { |
316 | /* set envelope counter from envleope output */ |
317 | SLOT->evm = ENV_MOD_RR0x00; |
318 | if( !(SLOT->evc&EG_DST(4096<<16)) ) |
319 | //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; |
320 | SLOT->evc = EG_DST(4096<<16); |
321 | SLOT->eve = EG_DED((2*4096)<<16); |
322 | SLOT->evs = SLOT->evsr; |
323 | } |
324 | } |
325 | |
326 | /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ |
327 | /* return : envelope output */ |
328 | INLINEstatic inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) |
329 | { |
330 | /* calcrate envelope generator */ |
331 | if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) |
332 | { |
333 | switch( SLOT->evm ){ |
334 | case ENV_MOD_AR0x02: /* ATTACK -> DECAY1 */ |
335 | /* next DR */ |
336 | SLOT->evm = ENV_MOD_DR0x01; |
337 | SLOT->evc = EG_DST(4096<<16); |
338 | SLOT->eve = SLOT->SL; |
339 | SLOT->evs = SLOT->evsd; |
340 | break; |
341 | case ENV_MOD_DR0x01: /* DECAY -> SL or RR */ |
342 | SLOT->evc = SLOT->SL; |
343 | SLOT->eve = EG_DED((2*4096)<<16); |
344 | if(SLOT->eg_typ) |
345 | { |
346 | SLOT->evs = 0; |
347 | } |
348 | else |
349 | { |
350 | SLOT->evm = ENV_MOD_RR0x00; |
351 | SLOT->evs = SLOT->evsr; |
352 | } |
353 | break; |
354 | case ENV_MOD_RR0x00: /* RR -> OFF */ |
355 | SLOT->evc = EG_OFF((2*4096)<<16); |
356 | SLOT->eve = EG_OFF((2*4096)<<16)+1; |
357 | SLOT->evs = 0; |
358 | break; |
359 | } |
360 | } |
361 | /* calcrate envelope */ |
362 | return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS16]+(SLOT->ams ? ams : 0); |
363 | } |
364 | |
365 | /* set algorithm connection */ |
366 | static void set_algorithm( OPL_CH *CH) |
367 | { |
368 | INT32 *carrier = &outd[0]; |
369 | CH->connect1 = CH->CON ? carrier : &feedback2; |
370 | CH->connect2 = carrier; |
371 | } |
372 | |
373 | /* ---------- frequency counter for operater update ---------- */ |
374 | INLINEstatic inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) |
375 | { |
376 | int ksr; |
377 | |
378 | /* frequency step counter */ |
379 | SLOT->Incr = CH->fc * SLOT->mul; |
380 | ksr = CH->kcode >> SLOT->KSR; |
381 | |
382 | if( SLOT->ksr != ksr ) |
383 | { |
384 | SLOT->ksr = ksr; |
385 | /* attack , decay rate recalcration */ |
386 | SLOT->evsa = SLOT->AR[ksr]; |
387 | SLOT->evsd = SLOT->DR[ksr]; |
388 | SLOT->evsr = SLOT->RR[ksr]; |
389 | } |
390 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); |
391 | } |
392 | |
393 | /* set multi,am,vib,EG-TYP,KSR,mul */ |
394 | INLINEstatic inline void set_mul(FM_OPL *OPL,int slot,int v) |
395 | { |
396 | OPL_CH *CH = &OPL->P_CH[slot/2]; |
397 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
398 | |
399 | SLOT->mul = MUL_TABLE[v&0x0f]; |
400 | SLOT->KSR = (v&0x10) ? 0 : 2; |
401 | SLOT->eg_typ = (v&0x20)>>5; |
402 | SLOT->vib = (v&0x40); |
403 | SLOT->ams = (v&0x80); |
404 | CALC_FCSLOT(CH,SLOT); |
405 | } |
406 | |
407 | /* set ksl & tl */ |
408 | INLINEstatic inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) |
409 | { |
410 | OPL_CH *CH = &OPL->P_CH[slot/2]; |
411 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
412 | int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ |
413 | |
414 | SLOT->ksl = ksl ? 3-ksl : 31; |
415 | SLOT->TL = (v&0x3f)*(0.75/EG_STEP(96.0/4096)); /* 0.75db step */ |
416 | |
417 | if( !(OPL->mode&0x80) ) |
418 | { /* not CSM latch total level */ |
419 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); |
420 | } |
421 | } |
422 | |
423 | /* set attack rate & decay rate */ |
424 | INLINEstatic inline void set_ar_dr(FM_OPL *OPL,int slot,int v) |
425 | { |
426 | OPL_CH *CH = &OPL->P_CH[slot/2]; |
427 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
428 | int ar = v>>4; |
429 | int dr = v&0x0f; |
430 | |
431 | SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; |
432 | SLOT->evsa = SLOT->AR[SLOT->ksr]; |
433 | if( SLOT->evm == ENV_MOD_AR0x02 ) SLOT->evs = SLOT->evsa; |
434 | |
435 | SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; |
436 | SLOT->evsd = SLOT->DR[SLOT->ksr]; |
437 | if( SLOT->evm == ENV_MOD_DR0x01 ) SLOT->evs = SLOT->evsd; |
438 | } |
439 | |
440 | /* set sustain level & release rate */ |
441 | INLINEstatic inline void set_sl_rr(FM_OPL *OPL,int slot,int v) |
442 | { |
443 | OPL_CH *CH = &OPL->P_CH[slot/2]; |
444 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
445 | int sl = v>>4; |
446 | int rr = v & 0x0f; |
447 | |
448 | SLOT->SL = SL_TABLE[sl]; |
449 | if( SLOT->evm == ENV_MOD_DR0x01 ) SLOT->eve = SLOT->SL; |
450 | SLOT->RR = &OPL->DR_TABLE[rr<<2]; |
451 | SLOT->evsr = SLOT->RR[SLOT->ksr]; |
452 | if( SLOT->evm == ENV_MOD_RR0x00 ) SLOT->evs = SLOT->evsr; |
453 | } |
454 | |
455 | /* operator output calcrator */ |
456 | #define OP_OUT(slot,env,con)slot->wavetable[((slot->Cnt+con)/(0x1000000/2048))& (2048 -1)][env] slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT2048))&(SIN_ENT2048-1)][env] |
457 | /* ---------- calcrate one of channel ---------- */ |
458 | INLINEstatic inline void OPL_CALC_CH( OPL_CH *CH ) |
459 | { |
460 | UINT32 env_out; |
461 | OPL_SLOT *SLOT; |
462 | |
463 | feedback2 = 0; |
464 | /* SLOT 1 */ |
465 | SLOT = &CH->SLOT[SLOT10]; |
466 | env_out=OPL_CALC_SLOT(SLOT); |
467 | if( env_out < EG_ENT4096-1 ) |
468 | { |
469 | /* PG */ |
470 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE256); |
471 | else SLOT->Cnt += SLOT->Incr; |
472 | /* connectoion */ |
473 | if(CH->FB) |
474 | { |
475 | int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; |
476 | CH->op1_out[1] = CH->op1_out[0]; |
477 | *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1)SLOT->wavetable[((SLOT->Cnt+feedback1)/(0x1000000/2048) )&(2048 -1)][env_out]; |
478 | } |
479 | else |
480 | { |
481 | *CH->connect1 += OP_OUT(SLOT,env_out,0)SLOT->wavetable[((SLOT->Cnt+0)/(0x1000000/2048))&(2048 -1)][env_out]; |
482 | } |
483 | }else |
484 | { |
485 | CH->op1_out[1] = CH->op1_out[0]; |
486 | CH->op1_out[0] = 0; |
487 | } |
488 | /* SLOT 2 */ |
489 | SLOT = &CH->SLOT[SLOT21]; |
490 | env_out=OPL_CALC_SLOT(SLOT); |
491 | if( env_out < EG_ENT4096-1 ) |
492 | { |
493 | /* PG */ |
494 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE256); |
495 | else SLOT->Cnt += SLOT->Incr; |
496 | /* connectoion */ |
497 | outd[0] += OP_OUT(SLOT,env_out, feedback2)SLOT->wavetable[((SLOT->Cnt+feedback2)/(0x1000000/2048) )&(2048 -1)][env_out]; |
498 | } |
499 | } |
500 | |
501 | /* ---------- calcrate rhythm block ---------- */ |
502 | #define WHITE_NOISE_db6.0 6.0 |
503 | INLINEstatic inline void OPL_CALC_RH( OPL_CH *CH ) |
504 | { |
505 | UINT32 env_tam,env_sd,env_top,env_hh; |
506 | int whitenoise = (rand()&1)*(WHITE_NOISE_db6.0/EG_STEP(96.0/4096)); |
507 | INT32 tone8; |
508 | |
509 | OPL_SLOT *SLOT; |
510 | int env_out; |
511 | |
512 | /* BD : same as FM serial mode and output level is large */ |
513 | feedback2 = 0; |
514 | /* SLOT 1 */ |
515 | SLOT = &CH[6].SLOT[SLOT10]; |
516 | env_out=OPL_CALC_SLOT(SLOT); |
517 | if( env_out < EG_ENT4096-1 ) |
518 | { |
519 | /* PG */ |
520 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE256); |
521 | else SLOT->Cnt += SLOT->Incr; |
522 | /* connectoion */ |
523 | if(CH[6].FB) |
524 | { |
525 | int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; |
526 | CH[6].op1_out[1] = CH[6].op1_out[0]; |
527 | feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1)SLOT->wavetable[((SLOT->Cnt+feedback1)/(0x1000000/2048) )&(2048 -1)][env_out]; |
528 | } |
529 | else |
530 | { |
531 | feedback2 = OP_OUT(SLOT,env_out,0)SLOT->wavetable[((SLOT->Cnt+0)/(0x1000000/2048))&(2048 -1)][env_out]; |
532 | } |
533 | }else |
534 | { |
535 | feedback2 = 0; |
536 | CH[6].op1_out[1] = CH[6].op1_out[0]; |
537 | CH[6].op1_out[0] = 0; |
538 | } |
539 | /* SLOT 2 */ |
540 | SLOT = &CH[6].SLOT[SLOT21]; |
541 | env_out=OPL_CALC_SLOT(SLOT); |
542 | if( env_out < EG_ENT4096-1 ) |
543 | { |
544 | /* PG */ |
545 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE256); |
546 | else SLOT->Cnt += SLOT->Incr; |
547 | /* connectoion */ |
548 | outd[0] += OP_OUT(SLOT,env_out, feedback2)SLOT->wavetable[((SLOT->Cnt+feedback2)/(0x1000000/2048) )&(2048 -1)][env_out]*2; |
549 | } |
550 | |
551 | // SD (17) = mul14[fnum7] + white noise |
552 | // TAM (15) = mul15[fnum8] |
553 | // TOP (18) = fnum6(mul18[fnum8]+whitenoise) |
554 | // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise |
555 | env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; |
556 | env_tam=OPL_CALC_SLOT(SLOT8_1); |
557 | env_top=OPL_CALC_SLOT(SLOT8_2); |
558 | env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; |
559 | |
560 | /* PG */ |
561 | if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE256); |
562 | else SLOT7_1->Cnt += 2*SLOT7_1->Incr; |
563 | if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE256); |
564 | else SLOT7_2->Cnt += (CH[7].fc*8); |
565 | if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE256); |
566 | else SLOT8_1->Cnt += SLOT8_1->Incr; |
567 | if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE256); |
568 | else SLOT8_2->Cnt += (CH[8].fc*48); |
569 | |
570 | tone8 = OP_OUT(SLOT8_2,whitenoise,0 )SLOT8_2->wavetable[((SLOT8_2->Cnt+0)/(0x1000000/2048))& (2048 -1)][whitenoise]; |
571 | |
572 | /* SD */ |
573 | if( env_sd < EG_ENT4096-1 ) |
574 | outd[0] += OP_OUT(SLOT7_1,env_sd, 0)SLOT7_1->wavetable[((SLOT7_1->Cnt+0)/(0x1000000/2048))& (2048 -1)][env_sd]*8; |
575 | /* TAM */ |
576 | if( env_tam < EG_ENT4096-1 ) |
577 | outd[0] += OP_OUT(SLOT8_1,env_tam, 0)SLOT8_1->wavetable[((SLOT8_1->Cnt+0)/(0x1000000/2048))& (2048 -1)][env_tam]*2; |
578 | /* TOP-CY */ |
579 | if( env_top < EG_ENT4096-1 ) |
580 | outd[0] += OP_OUT(SLOT7_2,env_top,tone8)SLOT7_2->wavetable[((SLOT7_2->Cnt+tone8)/(0x1000000/2048 ))&(2048 -1)][env_top]*2; |
581 | /* HH */ |
582 | if( env_hh < EG_ENT4096-1 ) |
583 | outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)SLOT7_2->wavetable[((SLOT7_2->Cnt+tone8)/(0x1000000/2048 ))&(2048 -1)][env_hh]*2; |
584 | } |
585 | |
586 | /* ----------- initialize time tabls ----------- */ |
587 | static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) |
588 | { |
589 | int i; |
590 | double rate; |
591 | |
592 | /* make attack rate & decay rate tables */ |
593 | for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; |
594 | for (i = 4;i <= 60;i++){ |
595 | rate = OPL->freqbase; /* frequency rate */ |
596 | if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ |
597 | rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ |
598 | rate *= (double)(EG_ENT4096<<ENV_BITS16); |
599 | OPL->AR_TABLE[i] = rate / ARRATE; |
600 | OPL->DR_TABLE[i] = rate / DRRATE; |
601 | } |
602 | for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE)(sizeof(OPL->AR_TABLE) / sizeof((OPL->AR_TABLE)[0])); i++) |
603 | { |
604 | OPL->AR_TABLE[i] = EG_AED(4096<<16)-1; |
605 | OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; |
606 | } |
607 | #if 0 |
608 | for (i = 0;i < 64 ;i++){ /* make for overflow area */ |
609 | LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, |
610 | ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), |
611 | ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); |
612 | } |
613 | #endif |
614 | } |
615 | |
616 | /* ---------- generic table initialize ---------- */ |
617 | static int OPLOpenTable( void ) |
618 | { |
619 | int s,t; |
620 | double rate; |
621 | int i,j; |
622 | double pom; |
623 | |
624 | /* allocate dynamic tables */ |
625 | if( (TL_TABLE = malloc(TL_MAX(4096*2)*2*sizeof(INT32))) == NULL((void*)0)) |
626 | return 0; |
627 | if( (SIN_TABLE = malloc(SIN_ENT2048*4 *sizeof(INT32 *))) == NULL((void*)0)) |
628 | { |
629 | free(TL_TABLE); |
630 | return 0; |
631 | } |
632 | if( (AMS_TABLE = malloc(AMS_ENT512*2 *sizeof(INT32))) == NULL((void*)0)) |
633 | { |
634 | free(TL_TABLE); |
635 | free(SIN_TABLE); |
636 | return 0; |
637 | } |
638 | if( (VIB_TABLE = malloc(VIB_ENT512*2 *sizeof(INT32))) == NULL((void*)0)) |
639 | { |
640 | free(TL_TABLE); |
641 | free(SIN_TABLE); |
642 | free(AMS_TABLE); |
643 | return 0; |
644 | } |
645 | /* make total level table */ |
646 | for (t = 0;t < EG_ENT4096-1 ;t++){ |
647 | rate = ((1<<TL_BITS(24 +2))-1)/pow(10,EG_STEP(96.0/4096)*t/20); /* dB -> voltage */ |
648 | TL_TABLE[ t] = (int)rate; |
649 | TL_TABLE[TL_MAX(4096*2)+t] = -TL_TABLE[t]; |
650 | /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ |
651 | } |
652 | /* fill volume off area */ |
653 | for ( t = EG_ENT4096-1; t < TL_MAX(4096*2) ;t++){ |
654 | TL_TABLE[t] = TL_TABLE[TL_MAX(4096*2)+t] = 0; |
655 | } |
656 | |
657 | /* make sinwave table (total level offet) */ |
658 | /* degree 0 = degree 180 = off */ |
659 | SIN_TABLE[0] = SIN_TABLE[SIN_ENT2048/2] = &TL_TABLE[EG_ENT4096-1]; |
660 | for (s = 1;s <= SIN_ENT2048/4;s++){ |
661 | pom = sin(2*PI3.14159265358979323846*s/SIN_ENT2048); /* sin */ |
662 | pom = 20*log10(1/pom); /* decibel */ |
663 | j = pom / EG_STEP(96.0/4096); /* TL_TABLE steps */ |
664 | |
665 | /* degree 0 - 90 , degree 180 - 90 : plus section */ |
666 | SIN_TABLE[ s] = SIN_TABLE[SIN_ENT2048/2-s] = &TL_TABLE[j]; |
667 | /* degree 180 - 270 , degree 360 - 270 : minus section */ |
668 | SIN_TABLE[SIN_ENT2048/2+s] = SIN_TABLE[SIN_ENT2048 -s] = &TL_TABLE[TL_MAX(4096*2)+j]; |
669 | /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ |
670 | } |
671 | for (s = 0;s < SIN_ENT2048;s++) |
672 | { |
673 | SIN_TABLE[SIN_ENT2048*1+s] = s<(SIN_ENT2048/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT4096]; |
674 | SIN_TABLE[SIN_ENT2048*2+s] = SIN_TABLE[s % (SIN_ENT2048/2)]; |
675 | SIN_TABLE[SIN_ENT2048*3+s] = (s/(SIN_ENT2048/4))&1 ? &TL_TABLE[EG_ENT4096] : SIN_TABLE[SIN_ENT2048*2+s]; |
676 | } |
677 | |
678 | /* envelope counter -> envelope output table */ |
679 | for (i=0; i<EG_ENT4096; i++) |
680 | { |
681 | /* ATTACK curve */ |
682 | pom = pow( ((double)(EG_ENT4096-1-i)/EG_ENT4096) , 8 ) * EG_ENT4096; |
683 | /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ |
684 | ENV_CURVE[i] = (int)pom; |
685 | /* DECAY ,RELEASE curve */ |
686 | ENV_CURVE[(EG_DST(4096<<16)>>ENV_BITS16)+i]= i; |
687 | } |
688 | /* off */ |
689 | ENV_CURVE[EG_OFF((2*4096)<<16)>>ENV_BITS16]= EG_ENT4096-1; |
690 | /* make LFO ams table */ |
691 | for (i=0; i<AMS_ENT512; i++) |
692 | { |
693 | pom = (1.0+sin(2*PI3.14159265358979323846*i/AMS_ENT512))/2; /* sin */ |
694 | AMS_TABLE[i] = (1.0/EG_STEP(96.0/4096))*pom; /* 1dB */ |
695 | AMS_TABLE[AMS_ENT512+i] = (4.8/EG_STEP(96.0/4096))*pom; /* 4.8dB */ |
696 | } |
697 | /* make LFO vibrate table */ |
698 | for (i=0; i<VIB_ENT512; i++) |
699 | { |
700 | /* 100cent = 1seminote = 6% ?? */ |
701 | pom = (double)VIB_RATE256*0.06*sin(2*PI3.14159265358979323846*i/VIB_ENT512); /* +-100sect step */ |
702 | VIB_TABLE[i] = VIB_RATE256 + (pom*0.07); /* +- 7cent */ |
703 | VIB_TABLE[VIB_ENT512+i] = VIB_RATE256 + (pom*0.14); /* +-14cent */ |
704 | /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ |
705 | } |
706 | return 1; |
707 | } |
708 | |
709 | |
710 | static void OPLCloseTable( void ) |
711 | { |
712 | free(TL_TABLE); |
713 | free(SIN_TABLE); |
714 | free(AMS_TABLE); |
715 | free(VIB_TABLE); |
716 | } |
717 | |
718 | /* CSM Key Control */ |
719 | INLINEstatic inline void CSMKeyControll(OPL_CH *CH) |
720 | { |
721 | OPL_SLOT *slot1 = &CH->SLOT[SLOT10]; |
722 | OPL_SLOT *slot2 = &CH->SLOT[SLOT21]; |
723 | /* all key off */ |
724 | OPL_KEYOFF(slot1); |
725 | OPL_KEYOFF(slot2); |
726 | /* total level latch */ |
727 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); |
728 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); |
729 | /* key on */ |
730 | CH->op1_out[0] = CH->op1_out[1] = 0; |
731 | OPL_KEYON(slot1); |
732 | OPL_KEYON(slot2); |
733 | } |
734 | |
735 | /* ---------- opl initialize ---------- */ |
736 | static void OPL_initialize(FM_OPL *OPL) |
737 | { |
738 | int fn; |
739 | |
740 | /* frequency base */ |
741 | OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; |
742 | /* Timer base time */ |
743 | OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); |
744 | /* make time tables */ |
745 | init_timetables( OPL , OPL_ARRATE141280 , OPL_DRRATE1956000 ); |
746 | /* make fnumber -> increment counter table */ |
747 | for( fn=0 ; fn < 1024 ; fn++ ) |
748 | { |
749 | OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE(1<<(24 -20)) * (1<<7) / 2; |
750 | } |
751 | /* LFO freq.table */ |
752 | OPL->amsIncr = OPL->rate ? (double)AMS_ENT512*(1<<AMS_SHIFT(32-9)) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; |
753 | OPL->vibIncr = OPL->rate ? (double)VIB_ENT512*(1<<VIB_SHIFT(32-9)) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; |
754 | } |
755 | |
756 | /* ---------- write a OPL registers ---------- */ |
757 | static void OPLWriteReg(FM_OPL *OPL, int r, int v) |
758 | { |
759 | OPL_CH *CH; |
760 | int slot; |
761 | int block_fnum; |
762 | |
763 | switch(r&0xe0) |
764 | { |
765 | case 0x00: /* 00-1f:control */ |
766 | switch(r&0x1f) |
767 | { |
768 | case 0x01: |
769 | /* wave selector enable */ |
770 | if(OPL->type&OPL_TYPE_WAVESEL0x01) |
771 | { |
772 | OPL->wavesel = v&0x20; |
773 | if(!OPL->wavesel) |
774 | { |
775 | /* preset compatible mode */ |
776 | int c; |
777 | for(c=0;c<OPL->max_ch;c++) |
778 | { |
779 | OPL->P_CH[c].SLOT[SLOT10].wavetable = &SIN_TABLE[0]; |
780 | OPL->P_CH[c].SLOT[SLOT21].wavetable = &SIN_TABLE[0]; |
781 | } |
782 | } |
783 | } |
784 | return; |
785 | case 0x02: /* Timer 1 */ |
786 | OPL->T[0] = (256-v)*4; |
787 | break; |
788 | case 0x03: /* Timer 2 */ |
789 | OPL->T[1] = (256-v)*16; |
790 | return; |
791 | case 0x04: /* IRQ clear / mask and Timer enable */ |
792 | if(v&0x80) |
793 | { /* IRQ flag clear */ |
794 | OPL_STATUS_RESET(OPL,0x7f); |
795 | } |
796 | else |
797 | { /* set IRQ mask ,timer enable*/ |
798 | UINT8 st1 = v&1; |
799 | UINT8 st2 = (v>>1)&1; |
800 | /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ |
801 | OPL_STATUS_RESET(OPL,v&0x78); |
802 | OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); |
803 | /* timer 2 */ |
804 | if(OPL->st[1] != st2) |
805 | { |
806 | double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; |
807 | OPL->st[1] = st2; |
808 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); |
809 | } |
810 | /* timer 1 */ |
811 | if(OPL->st[0] != st1) |
812 | { |
813 | double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; |
814 | OPL->st[0] = st1; |
815 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); |
816 | } |
817 | } |
818 | return; |
819 | #if BUILD_Y89500 |
820 | case 0x06: /* Key Board OUT */ |
821 | if(OPL->type&OPL_TYPE_KEYBOARD0x04) |
822 | { |
823 | if(OPL->keyboardhandler_w) |
824 | OPL->keyboardhandler_w(OPL->keyboard_param,v); |
825 | else |
826 | LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); |
827 | } |
828 | return; |
829 | case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ |
830 | if(OPL->type&OPL_TYPE_ADPCM0x02) |
831 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); |
832 | return; |
833 | case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ |
834 | OPL->mode = v; |
835 | v&=0x1f; /* for DELTA-T unit */ |
836 | case 0x09: /* START ADD */ |
837 | case 0x0a: |
838 | case 0x0b: /* STOP ADD */ |
839 | case 0x0c: |
840 | case 0x0d: /* PRESCALE */ |
841 | case 0x0e: |
842 | case 0x0f: /* ADPCM data */ |
843 | case 0x10: /* DELTA-N */ |
844 | case 0x11: /* DELTA-N */ |
845 | case 0x12: /* EG-CTRL */ |
846 | if(OPL->type&OPL_TYPE_ADPCM0x02) |
847 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); |
848 | return; |
849 | #if 0 |
850 | case 0x15: /* DAC data */ |
851 | case 0x16: |
852 | case 0x17: /* SHIFT */ |
853 | return; |
854 | case 0x18: /* I/O CTRL (Direction) */ |
855 | if(OPL->type&OPL_TYPE_IO0x08) |
856 | OPL->portDirection = v&0x0f; |
857 | return; |
858 | case 0x19: /* I/O DATA */ |
859 | if(OPL->type&OPL_TYPE_IO0x08) |
860 | { |
861 | OPL->portLatch = v; |
862 | if(OPL->porthandler_w) |
863 | OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); |
864 | } |
865 | return; |
866 | case 0x1a: /* PCM data */ |
867 | return; |
868 | #endif |
869 | #endif |
870 | } |
871 | break; |
872 | case 0x20: /* am,vib,ksr,eg type,mul */ |
873 | slot = slot_array[r&0x1f]; |
874 | if(slot == -1) return; |
875 | set_mul(OPL,slot,v); |
876 | return; |
877 | case 0x40: |
878 | slot = slot_array[r&0x1f]; |
879 | if(slot == -1) return; |
880 | set_ksl_tl(OPL,slot,v); |
881 | return; |
882 | case 0x60: |
883 | slot = slot_array[r&0x1f]; |
884 | if(slot == -1) return; |
885 | set_ar_dr(OPL,slot,v); |
886 | return; |
887 | case 0x80: |
888 | slot = slot_array[r&0x1f]; |
889 | if(slot == -1) return; |
890 | set_sl_rr(OPL,slot,v); |
891 | return; |
892 | case 0xa0: |
893 | switch(r) |
894 | { |
895 | case 0xbd: |
896 | /* amsep,vibdep,r,bd,sd,tom,tc,hh */ |
897 | { |
898 | UINT8 rkey = OPL->rhythm^v; |
899 | OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT512 : 0]; |
900 | OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT512 : 0]; |
901 | OPL->rhythm = v&0x3f; |
902 | if(OPL->rhythm&0x20) |
903 | { |
904 | #if 0 |
905 | usrintf_showmessage("OPL Rhythm mode select"); |
906 | #endif |
907 | /* BD key on/off */ |
908 | if(rkey&0x10) |
909 | { |
910 | if(v&0x10) |
911 | { |
912 | OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; |
913 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT10]); |
914 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT21]); |
915 | } |
916 | else |
917 | { |
918 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT10]); |
919 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT21]); |
920 | } |
921 | } |
922 | /* SD key on/off */ |
923 | if(rkey&0x08) |
924 | { |
925 | if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT21]); |
926 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT21]); |
927 | }/* TAM key on/off */ |
928 | if(rkey&0x04) |
929 | { |
930 | if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT10]); |
931 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT10]); |
932 | } |
933 | /* TOP-CY key on/off */ |
934 | if(rkey&0x02) |
935 | { |
936 | if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT21]); |
937 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT21]); |
938 | } |
939 | /* HH key on/off */ |
940 | if(rkey&0x01) |
941 | { |
942 | if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT10]); |
943 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT10]); |
944 | } |
945 | } |
946 | } |
947 | return; |
948 | } |
949 | /* keyon,block,fnum */ |
950 | if( (r&0x0f) > 8) return; |
951 | CH = &OPL->P_CH[r&0x0f]; |
952 | if(!(r&0x10)) |
953 | { /* a0-a8 */ |
954 | block_fnum = (CH->block_fnum&0x1f00) | v; |
955 | } |
956 | else |
957 | { /* b0-b8 */ |
958 | int keyon = (v>>5)&1; |
959 | block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); |
960 | if(CH->keyon != keyon) |
961 | { |
962 | if( (CH->keyon=keyon) ) |
963 | { |
964 | CH->op1_out[0] = CH->op1_out[1] = 0; |
965 | OPL_KEYON(&CH->SLOT[SLOT10]); |
966 | OPL_KEYON(&CH->SLOT[SLOT21]); |
967 | } |
968 | else |
969 | { |
970 | OPL_KEYOFF(&CH->SLOT[SLOT10]); |
971 | OPL_KEYOFF(&CH->SLOT[SLOT21]); |
972 | } |
973 | } |
974 | } |
975 | /* update */ |
976 | if(CH->block_fnum != block_fnum) |
977 | { |
978 | int blockRv = 7-(block_fnum>>10); |
979 | int fnum = block_fnum&0x3ff; |
980 | CH->block_fnum = block_fnum; |
981 | |
982 | CH->ksl_base = KSL_TABLE[block_fnum>>6]; |
983 | CH->fc = OPL->FN_TABLE[fnum]>>blockRv; |
984 | CH->kcode = CH->block_fnum>>9; |
985 | if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; |
986 | CALC_FCSLOT(CH,&CH->SLOT[SLOT10]); |
987 | CALC_FCSLOT(CH,&CH->SLOT[SLOT21]); |
988 | } |
989 | return; |
990 | case 0xc0: |
991 | /* FB,C */ |
992 | if( (r&0x0f) > 8) return; |
993 | CH = &OPL->P_CH[r&0x0f]; |
994 | { |
995 | int feedback = (v>>1)&7; |
996 | CH->FB = feedback ? (8+1) - feedback : 0; |
997 | CH->CON = v&1; |
998 | set_algorithm(CH); |
999 | } |
1000 | return; |
1001 | case 0xe0: /* wave type */ |
1002 | slot = slot_array[r&0x1f]; |
1003 | if(slot == -1) return; |
1004 | CH = &OPL->P_CH[slot/2]; |
1005 | if(OPL->wavesel) |
1006 | { |
1007 | /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ |
1008 | CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT2048]; |
1009 | } |
1010 | return; |
1011 | } |
1012 | } |
1013 | |
1014 | /* lock/unlock for common table */ |
1015 | static int OPL_LockTable(void) |
1016 | { |
1017 | num_lock++; |
1018 | if(num_lock>1) return 0; |
1019 | /* first time */ |
1020 | cur_chip = NULL((void*)0); |
1021 | /* allocate total level table (128kb space) */ |
1022 | if( !OPLOpenTable() ) |
1023 | { |
1024 | num_lock--; |
1025 | return -1; |
1026 | } |
1027 | return 0; |
1028 | } |
1029 | |
1030 | static void OPL_UnLockTable(void) |
1031 | { |
1032 | if(num_lock) num_lock--; |
1033 | if(num_lock) return; |
1034 | /* last time */ |
1035 | cur_chip = NULL((void*)0); |
1036 | OPLCloseTable(); |
1037 | } |
1038 | |
1039 | #if (BUILD_YM3812(1) || BUILD_YM3526) |
1040 | /*******************************************************************************/ |
1041 | /* YM3812 local section */ |
1042 | /*******************************************************************************/ |
1043 | |
1044 | /* ---------- update one of chip ----------- */ |
1045 | void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) |
1046 | { |
1047 | int i; |
1048 | int data; |
1049 | OPLSAMPLE *buf = buffer; |
1050 | UINT32 amsCnt = OPL->amsCnt; |
1051 | UINT32 vibCnt = OPL->vibCnt; |
1052 | UINT8 rhythm = OPL->rhythm&0x20; |
1053 | OPL_CH *CH,*R_CH; |
1054 | |
1055 | if( (void *)OPL != cur_chip ){ |
1056 | cur_chip = (void *)OPL; |
1057 | /* channel pointers */ |
1058 | S_CH = OPL->P_CH; |
1059 | E_CH = &S_CH[9]; |
1060 | /* rhythm slot */ |
1061 | SLOT7_1 = &S_CH[7].SLOT[SLOT10]; |
1062 | SLOT7_2 = &S_CH[7].SLOT[SLOT21]; |
1063 | SLOT8_1 = &S_CH[8].SLOT[SLOT10]; |
1064 | SLOT8_2 = &S_CH[8].SLOT[SLOT21]; |
1065 | /* LFO state */ |
1066 | amsIncr = OPL->amsIncr; |
1067 | vibIncr = OPL->vibIncr; |
1068 | ams_table = OPL->ams_table; |
1069 | vib_table = OPL->vib_table; |
1070 | } |
1071 | R_CH = rhythm ? &S_CH[6] : E_CH; |
1072 | for( i=0; i < length ; i++ ) |
1073 | { |
1074 | /* channel A channel B channel C */ |
1075 | /* LFO */ |
1076 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT(32-9)]; |
1077 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT(32-9)]; |
1078 | outd[0] = 0; |
1079 | /* FM part */ |
1080 | for(CH=S_CH ; CH < R_CH ; CH++) |
1081 | OPL_CALC_CH(CH); |
1082 | /* Rythn part */ |
1083 | if(rhythm) |
1084 | OPL_CALC_RH(S_CH); |
1085 | /* limit check */ |
1086 | data = Limit( outd[0] , OPL_MAXOUT(0x7fff<<((24 +2)+3-16)), OPL_MINOUT(-0x8000<<((24 +2)+3-16)) ); |
1087 | /* store to sound buffer */ |
1088 | buf[i] = data >> OPL_OUTSB((24 +2)+3-16); |
1089 | } |
1090 | |
1091 | OPL->amsCnt = amsCnt; |
1092 | OPL->vibCnt = vibCnt; |
1093 | #ifdef OPL_OUTPUT_LOG |
1094 | if(opl_dbg_fp) |
1095 | { |
1096 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) |
1097 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; |
1098 | fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); |
1099 | } |
1100 | #endif |
1101 | } |
1102 | #endif /* (BUILD_YM3812 || BUILD_YM3526) */ |
1103 | |
1104 | #if BUILD_Y89500 |
1105 | |
1106 | void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) |
1107 | { |
1108 | int i; |
1109 | int data; |
1110 | OPLSAMPLE *buf = buffer; |
1111 | UINT32 amsCnt = OPL->amsCnt; |
1112 | UINT32 vibCnt = OPL->vibCnt; |
1113 | UINT8 rhythm = OPL->rhythm&0x20; |
1114 | OPL_CH *CH,*R_CH; |
1115 | YM_DELTAT *DELTAT = OPL->deltat; |
1116 | |
1117 | /* setup DELTA-T unit */ |
1118 | YM_DELTAT_DECODE_PRESET(DELTAT); |
1119 | |
1120 | if( (void *)OPL != cur_chip ){ |
1121 | cur_chip = (void *)OPL; |
1122 | /* channel pointers */ |
1123 | S_CH = OPL->P_CH; |
1124 | E_CH = &S_CH[9]; |
1125 | /* rhythm slot */ |
1126 | SLOT7_1 = &S_CH[7].SLOT[SLOT10]; |
1127 | SLOT7_2 = &S_CH[7].SLOT[SLOT21]; |
1128 | SLOT8_1 = &S_CH[8].SLOT[SLOT10]; |
1129 | SLOT8_2 = &S_CH[8].SLOT[SLOT21]; |
1130 | /* LFO state */ |
1131 | amsIncr = OPL->amsIncr; |
1132 | vibIncr = OPL->vibIncr; |
1133 | ams_table = OPL->ams_table; |
1134 | vib_table = OPL->vib_table; |
1135 | } |
1136 | R_CH = rhythm ? &S_CH[6] : E_CH; |
1137 | for( i=0; i < length ; i++ ) |
1138 | { |
1139 | /* channel A channel B channel C */ |
1140 | /* LFO */ |
1141 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT(32-9)]; |
1142 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT(32-9)]; |
1143 | outd[0] = 0; |
1144 | /* deltaT ADPCM */ |
1145 | if( DELTAT->portstate ) |
1146 | YM_DELTAT_ADPCM_CALC(DELTAT); |
1147 | /* FM part */ |
1148 | for(CH=S_CH ; CH < R_CH ; CH++) |
1149 | OPL_CALC_CH(CH); |
1150 | /* Rythn part */ |
1151 | if(rhythm) |
1152 | OPL_CALC_RH(S_CH); |
1153 | /* limit check */ |
1154 | data = Limit( outd[0] , OPL_MAXOUT(0x7fff<<((24 +2)+3-16)), OPL_MINOUT(-0x8000<<((24 +2)+3-16)) ); |
1155 | /* store to sound buffer */ |
1156 | buf[i] = data >> OPL_OUTSB((24 +2)+3-16); |
1157 | } |
1158 | OPL->amsCnt = amsCnt; |
1159 | OPL->vibCnt = vibCnt; |
1160 | /* deltaT START flag */ |
1161 | if( !DELTAT->portstate ) |
1162 | OPL->status &= 0xfe; |
1163 | } |
1164 | #endif |
1165 | |
1166 | /* ---------- reset one of chip ---------- */ |
1167 | void OPLResetChip(FM_OPL *OPL) |
1168 | { |
1169 | int c,s; |
1170 | int i; |
1171 | |
1172 | /* reset chip */ |
1173 | OPL->mode = 0; /* normal mode */ |
1174 | OPL_STATUS_RESET(OPL,0x7f); |
1175 | /* reset with register write */ |
1176 | OPLWriteReg(OPL,0x01,0); /* wabesel disable */ |
1177 | OPLWriteReg(OPL,0x02,0); /* Timer1 */ |
1178 | OPLWriteReg(OPL,0x03,0); /* Timer2 */ |
1179 | OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ |
1180 | for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); |
1181 | /* reset OPerator paramater */ |
1182 | for( c = 0 ; c < OPL->max_ch ; c++ ) |
1183 | { |
1184 | OPL_CH *CH = &OPL->P_CH[c]; |
1185 | /* OPL->P_CH[c].PAN = OPN_CENTER; */ |
1186 | for(s = 0 ; s < 2 ; s++ ) |
1187 | { |
1188 | /* wave table */ |
1189 | CH->SLOT[s].wavetable = &SIN_TABLE[0]; |
1190 | /* CH->SLOT[s].evm = ENV_MOD_RR; */ |
1191 | CH->SLOT[s].evc = EG_OFF((2*4096)<<16); |
1192 | CH->SLOT[s].eve = EG_OFF((2*4096)<<16)+1; |
1193 | CH->SLOT[s].evs = 0; |
1194 | } |
1195 | } |
1196 | #if BUILD_Y89500 |
1197 | if(OPL->type&OPL_TYPE_ADPCM0x02) |
1198 | { |
1199 | YM_DELTAT *DELTAT = OPL->deltat; |
1200 | |
1201 | DELTAT->freqbase = OPL->freqbase; |
1202 | DELTAT->output_pointer = outd; |
1203 | DELTAT->portshift = 5; |
1204 | DELTAT->output_range = DELTAT_MIXING_LEVEL(1)<<TL_BITS(24 +2); |
1205 | YM_DELTAT_ADPCM_Reset(DELTAT,0); |
1206 | } |
1207 | #endif |
1208 | } |
1209 | |
1210 | /* ---------- Create one of vietual YM3812 ---------- */ |
1211 | /* 'rate' is sampling rate and 'bufsiz' is the size of the */ |
1212 | FM_OPL *OPLCreate(int type, int clock, int rate) |
1213 | { |
1214 | char *ptr; |
1215 | FM_OPL *OPL; |
1216 | int state_size; |
1217 | int max_ch = 9; /* normaly 9 channels */ |
1218 | |
1219 | if( OPL_LockTable() ==-1) return NULL((void*)0); |
1220 | /* allocate OPL state space */ |
1221 | state_size = sizeof(FM_OPL); |
1222 | state_size += sizeof(OPL_CH)*max_ch; |
1223 | #if BUILD_Y89500 |
1224 | if(type&OPL_TYPE_ADPCM0x02) state_size+= sizeof(YM_DELTAT); |
1225 | #endif |
1226 | /* allocate memory block */ |
1227 | ptr = malloc(state_size); |
1228 | if(ptr==NULL((void*)0)) return NULL((void*)0); |
1229 | /* clear */ |
1230 | memset(ptr,0,state_size); |
1231 | OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); |
1232 | OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; |
Value stored to 'ptr' is never read | |
1233 | #if BUILD_Y89500 |
1234 | if(type&OPL_TYPE_ADPCM0x02) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); |
1235 | #endif |
1236 | /* set channel state pointer */ |
1237 | OPL->type = type; |
1238 | OPL->clock = clock; |
1239 | OPL->rate = rate; |
1240 | OPL->max_ch = max_ch; |
1241 | /* init grobal tables */ |
1242 | OPL_initialize(OPL); |
1243 | /* reset chip */ |
1244 | OPLResetChip(OPL); |
1245 | #ifdef OPL_OUTPUT_LOG |
1246 | if(!opl_dbg_fp) |
1247 | { |
1248 | opl_dbg_fp = fopen("opllog.opl","wb"); |
1249 | opl_dbg_maxchip = 0; |
1250 | } |
1251 | if(opl_dbg_fp) |
1252 | { |
1253 | opl_dbg_opl[opl_dbg_maxchip] = OPL; |
1254 | fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, |
1255 | type, |
1256 | clock&0xff, |
1257 | (clock/0x100)&0xff, |
1258 | (clock/0x10000)&0xff, |
1259 | (clock/0x1000000)&0xff); |
1260 | opl_dbg_maxchip++; |
1261 | } |
1262 | #endif |
1263 | return OPL; |
1264 | } |
1265 | |
1266 | /* ---------- Destroy one of vietual YM3812 ---------- */ |
1267 | void OPLDestroy(FM_OPL *OPL) |
1268 | { |
1269 | #ifdef OPL_OUTPUT_LOG |
1270 | if(opl_dbg_fp) |
1271 | { |
1272 | fclose(opl_dbg_fp); |
1273 | opl_dbg_fp = NULL((void*)0); |
1274 | } |
1275 | #endif |
1276 | OPL_UnLockTable(); |
1277 | free(OPL); |
1278 | } |
1279 | |
1280 | /* ---------- Option handlers ---------- */ |
1281 | |
1282 | void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) |
1283 | { |
1284 | OPL->TimerHandler = TimerHandler; |
1285 | OPL->TimerParam = channelOffset; |
1286 | } |
1287 | void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) |
1288 | { |
1289 | OPL->IRQHandler = IRQHandler; |
1290 | OPL->IRQParam = param; |
1291 | } |
1292 | void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) |
1293 | { |
1294 | OPL->UpdateHandler = UpdateHandler; |
1295 | OPL->UpdateParam = param; |
1296 | } |
1297 | #if BUILD_Y89500 |
1298 | void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) |
1299 | { |
1300 | OPL->porthandler_w = PortHandler_w; |
1301 | OPL->porthandler_r = PortHandler_r; |
1302 | OPL->port_param = param; |
1303 | } |
1304 | |
1305 | void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) |
1306 | { |
1307 | OPL->keyboardhandler_w = KeyboardHandler_w; |
1308 | OPL->keyboardhandler_r = KeyboardHandler_r; |
1309 | OPL->keyboard_param = param; |
1310 | } |
1311 | #endif |
1312 | /* ---------- YM3812 I/O interface ---------- */ |
1313 | int OPLWrite(FM_OPL *OPL,int a,int v) |
1314 | { |
1315 | if( !(a&1) ) |
1316 | { /* address port */ |
1317 | OPL->address = v & 0xff; |
1318 | } |
1319 | else |
1320 | { /* data port */ |
1321 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); |
1322 | #ifdef OPL_OUTPUT_LOG |
1323 | if(opl_dbg_fp) |
1324 | { |
1325 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) |
1326 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; |
1327 | fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); |
1328 | } |
1329 | #endif |
1330 | OPLWriteReg(OPL,OPL->address,v); |
1331 | } |
1332 | return OPL->status>>7; |
1333 | } |
1334 | |
1335 | unsigned char OPLRead(FM_OPL *OPL,int a) |
1336 | { |
1337 | if( !(a&1) ) |
1338 | { /* status port */ |
1339 | return OPL->status & (OPL->statusmask|0x80); |
1340 | } |
1341 | /* data port */ |
1342 | switch(OPL->address) |
1343 | { |
1344 | case 0x05: /* KeyBoard IN */ |
1345 | if(OPL->type&OPL_TYPE_KEYBOARD0x04) |
1346 | { |
1347 | if(OPL->keyboardhandler_r) |
1348 | return OPL->keyboardhandler_r(OPL->keyboard_param); |
1349 | else { |
1350 | LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); |
1351 | } |
1352 | } |
1353 | return 0; |
1354 | #if 0 |
1355 | case 0x0f: /* ADPCM-DATA */ |
1356 | return 0; |
1357 | #endif |
1358 | case 0x19: /* I/O DATA */ |
1359 | if(OPL->type&OPL_TYPE_IO0x08) |
1360 | { |
1361 | if(OPL->porthandler_r) |
1362 | return OPL->porthandler_r(OPL->port_param); |
1363 | else { |
1364 | LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); |
1365 | } |
1366 | } |
1367 | return 0; |
1368 | case 0x1a: /* PCM-DATA */ |
1369 | return 0; |
1370 | } |
1371 | return 0; |
1372 | } |
1373 | |
1374 | int OPLTimerOver(FM_OPL *OPL,int c) |
1375 | { |
1376 | if( c ) |
1377 | { /* Timer B */ |
1378 | OPL_STATUS_SET(OPL,0x20); |
1379 | } |
1380 | else |
1381 | { /* Timer A */ |
1382 | OPL_STATUS_SET(OPL,0x40); |
1383 | /* CSM mode key,TL control */ |
1384 | if( OPL->mode & 0x80 ) |
1385 | { /* CSM mode total level latch and auto key on */ |
1386 | int ch; |
1387 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); |
1388 | for(ch=0;ch<9;ch++) |
1389 | CSMKeyControll( &OPL->P_CH[ch] ); |
1390 | } |
1391 | } |
1392 | /* reload timer */ |
1393 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); |
1394 | return OPL->status>>7; |
1395 | } |