File: | linux-user/elfload.c |
Location: | line 2563, column 5 |
Description: | Value stored to 'bytes_written' is never read |
1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
2 | #include <sys/time.h> |
3 | #include <sys/param.h> |
4 | |
5 | #include <stdio.h> |
6 | #include <sys/types.h> |
7 | #include <fcntl.h> |
8 | #include <errno(*__errno_location ()).h> |
9 | #include <unistd.h> |
10 | #include <sys/mman.h> |
11 | #include <sys/resource.h> |
12 | #include <stdlib.h> |
13 | #include <string.h> |
14 | #include <time.h> |
15 | |
16 | #include "qemu.h" |
17 | #include "disas/disas.h" |
18 | |
19 | #ifdef _ARCH_PPC64 |
20 | #undef ARCH_DLINFO |
21 | #undef ELF_PLATFORM(((void*)0)) |
22 | #undef ELF_HWCAP0 |
23 | #undef ELF_CLASS1 |
24 | #undef ELF_DATA2 |
25 | #undef ELF_ARCH8 |
26 | #endif |
27 | |
28 | #define ELF_OSABI0 ELFOSABI_SYSV0 |
29 | |
30 | /* from personality.h */ |
31 | |
32 | /* |
33 | * Flags for bug emulation. |
34 | * |
35 | * These occupy the top three bytes. |
36 | */ |
37 | enum { |
38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to |
40 | descriptors (signal handling) */ |
41 | MMAP_PAGE_ZERO = 0x0100000, |
42 | ADDR_COMPAT_LAYOUT = 0x0200000, |
43 | READ_IMPLIES_EXEC = 0x0400000, |
44 | ADDR_LIMIT_32BIT = 0x0800000, |
45 | SHORT_INODE = 0x1000000, |
46 | WHOLE_SECONDS = 0x2000000, |
47 | STICKY_TIMEOUTS = 0x4000000, |
48 | ADDR_LIMIT_3GB = 0x8000000, |
49 | }; |
50 | |
51 | /* |
52 | * Personality types. |
53 | * |
54 | * These go in the low byte. Avoid using the top bit, it will |
55 | * conflict with error returns. |
56 | */ |
57 | enum { |
58 | PER_LINUX = 0x0000, |
59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, |
60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, |
61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, |
63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, |
64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, |
65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, |
66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, |
67 | PER_BSD = 0x0006, |
68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, |
69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, |
70 | PER_LINUX32 = 0x0008, |
71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, |
72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ |
73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ |
74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ |
75 | PER_RISCOS = 0x000c, |
76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, |
77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ |
79 | PER_HPUX = 0x0010, |
80 | PER_MASK = 0x00ff, |
81 | }; |
82 | |
83 | /* |
84 | * Return the base personality without flags. |
85 | */ |
86 | #define personality(pers)(pers & PER_MASK) (pers & PER_MASK) |
87 | |
88 | /* this flag is uneffective under linux too, should be deleted */ |
89 | #ifndef MAP_DENYWRITE0x00800 |
90 | #define MAP_DENYWRITE0x00800 0 |
91 | #endif |
92 | |
93 | /* should probably go in elf.h */ |
94 | #ifndef ELIBBAD80 |
95 | #define ELIBBAD80 80 |
96 | #endif |
97 | |
98 | #ifdef TARGET_WORDS_BIGENDIAN1 |
99 | #define ELF_DATA2 ELFDATA2MSB2 |
100 | #else |
101 | #define ELF_DATA2 ELFDATA2LSB1 |
102 | #endif |
103 | |
104 | #ifdef TARGET_ABI_MIPSN32 |
105 | typedef abi_ullong target_elf_greg_t; |
106 | #define tswapreg(ptr)tswapal(ptr) tswap64(ptr) |
107 | #else |
108 | typedef abi_ulong target_elf_greg_t; |
109 | #define tswapreg(ptr)tswapal(ptr) tswapal(ptr) |
110 | #endif |
111 | |
112 | #ifdef USE_UID16 |
113 | typedef abi_ushort target_uid_t; |
114 | typedef abi_ushort target_gid_t; |
115 | #else |
116 | typedef abi_uint target_uid_t; |
117 | typedef abi_uint target_gid_t; |
118 | #endif |
119 | typedef abi_int target_pid_t; |
120 | |
121 | #ifdef TARGET_I386 |
122 | |
123 | #define ELF_PLATFORM(((void*)0)) get_elf_platform() |
124 | |
125 | static const char *get_elf_platform(void) |
126 | { |
127 | static char elf_platform[] = "i386"; |
128 | int family = object_property_get_int(OBJECT(thread_cpu)((Object *)(thread_cpu)), "family", NULL((void*)0)); |
129 | if (family > 6) |
130 | family = 6; |
131 | if (family >= 3) |
132 | elf_platform[1] = '0' + family; |
133 | return elf_platform; |
134 | } |
135 | |
136 | #define ELF_HWCAP0 get_elf_hwcap() |
137 | |
138 | static uint32_t get_elf_hwcap(void) |
139 | { |
140 | X86CPU *cpu = X86_CPU(thread_cpu); |
141 | |
142 | return cpu->env.features[FEAT_1_EDX]; |
143 | } |
144 | |
145 | #ifdef TARGET_X86_64 |
146 | #define ELF_START_MMAP0x80000000 0x2aaaaab000ULL |
147 | #define elf_check_arch(x)( (x) == 8 ) ( ((x) == ELF_ARCH8) ) |
148 | |
149 | #define ELF_CLASS1 ELFCLASS642 |
150 | #define ELF_ARCH8 EM_X86_6462 |
151 | |
152 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
153 | { |
154 | regs->rax = 0; |
155 | regs->rsp = infop->start_stack; |
156 | regs->rip = infop->entry; |
157 | } |
158 | |
159 | #define ELF_NREG45 27 |
160 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
161 | |
162 | /* |
163 | * Note that ELF_NREG should be 29 as there should be place for |
164 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
165 | * those. |
166 | * |
167 | * See linux kernel: arch/x86/include/asm/elf.h |
168 | */ |
169 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
170 | { |
171 | (*regs)[0] = env->regs[15]; |
172 | (*regs)[1] = env->regs[14]; |
173 | (*regs)[2] = env->regs[13]; |
174 | (*regs)[3] = env->regs[12]; |
175 | (*regs)[4] = env->regs[R_EBP]; |
176 | (*regs)[5] = env->regs[R_EBX]; |
177 | (*regs)[6] = env->regs[11]; |
178 | (*regs)[7] = env->regs[10]; |
179 | (*regs)[8] = env->regs[9]; |
180 | (*regs)[9] = env->regs[8]; |
181 | (*regs)[10] = env->regs[R_EAX]; |
182 | (*regs)[11] = env->regs[R_ECX]; |
183 | (*regs)[12] = env->regs[R_EDX]; |
184 | (*regs)[13] = env->regs[R_ESI]; |
185 | (*regs)[14] = env->regs[R_EDI]; |
186 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ |
187 | (*regs)[16] = env->eip; |
188 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; |
189 | (*regs)[18] = env->eflags; |
190 | (*regs)[19] = env->regs[R_ESP]; |
191 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; |
192 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; |
193 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; |
194 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; |
195 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; |
196 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; |
197 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; |
198 | } |
199 | |
200 | #else |
201 | |
202 | #define ELF_START_MMAP0x80000000 0x80000000 |
203 | |
204 | /* |
205 | * This is used to ensure we don't load something for the wrong architecture. |
206 | */ |
207 | #define elf_check_arch(x)( (x) == 8 ) ( ((x) == EM_3863) || ((x) == EM_4866) ) |
208 | |
209 | /* |
210 | * These are used to set parameters in the core dumps. |
211 | */ |
212 | #define ELF_CLASS1 ELFCLASS321 |
213 | #define ELF_ARCH8 EM_3863 |
214 | |
215 | static inline void init_thread(struct target_pt_regs *regs, |
216 | struct image_info *infop) |
217 | { |
218 | regs->esp = infop->start_stack; |
219 | regs->eip = infop->entry; |
220 | |
221 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
222 | starts %edx contains a pointer to a function which might be |
223 | registered using `atexit'. This provides a mean for the |
224 | dynamic linker to call DT_FINI functions for shared libraries |
225 | that have been loaded before the code runs. |
226 | |
227 | A value of 0 tells we have no such handler. */ |
228 | regs->edx = 0; |
229 | } |
230 | |
231 | #define ELF_NREG45 17 |
232 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
233 | |
234 | /* |
235 | * Note that ELF_NREG should be 19 as there should be place for |
236 | * TRAPNO and ERR "registers" as well but linux doesn't dump |
237 | * those. |
238 | * |
239 | * See linux kernel: arch/x86/include/asm/elf.h |
240 | */ |
241 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
242 | { |
243 | (*regs)[0] = env->regs[R_EBX]; |
244 | (*regs)[1] = env->regs[R_ECX]; |
245 | (*regs)[2] = env->regs[R_EDX]; |
246 | (*regs)[3] = env->regs[R_ESI]; |
247 | (*regs)[4] = env->regs[R_EDI]; |
248 | (*regs)[5] = env->regs[R_EBP]; |
249 | (*regs)[6] = env->regs[R_EAX]; |
250 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; |
251 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; |
252 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; |
253 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; |
254 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ |
255 | (*regs)[12] = env->eip; |
256 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; |
257 | (*regs)[14] = env->eflags; |
258 | (*regs)[15] = env->regs[R_ESP]; |
259 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; |
260 | } |
261 | #endif |
262 | |
263 | #define USE_ELF_CORE_DUMP |
264 | #define ELF_EXEC_PAGESIZE4096 4096 |
265 | |
266 | #endif |
267 | |
268 | #ifdef TARGET_ARM |
269 | |
270 | #define ELF_START_MMAP0x80000000 0x80000000 |
271 | |
272 | #define elf_check_arch(x)( (x) == 8 ) ((x) == ELF_MACHINE8) |
273 | |
274 | #define ELF_ARCH8 ELF_MACHINE8 |
275 | |
276 | #ifdef TARGET_AARCH64 |
277 | #define ELF_CLASS1 ELFCLASS642 |
278 | #else |
279 | #define ELF_CLASS1 ELFCLASS321 |
280 | #endif |
281 | |
282 | static inline void init_thread(struct target_pt_regs *regs, |
283 | struct image_info *infop) |
284 | { |
285 | abi_long stack = infop->start_stack; |
286 | memset(regs, 0, sizeof(*regs)); |
287 | |
288 | #ifdef TARGET_AARCH64 |
289 | regs->pc = infop->entry & ~0x3ULL; |
290 | regs->sp = stack; |
291 | #else |
292 | regs->ARM_cpsr = 0x10; |
293 | if (infop->entry & 1) |
294 | regs->ARM_cpsr |= CPSR_T; |
295 | regs->ARM_pc = infop->entry & 0xfffffffe; |
296 | regs->ARM_sp = infop->start_stack; |
297 | /* FIXME - what to for failure of get_user()? */ |
298 | get_user_ual(regs->ARM_r2, stack + 8)({ abi_ulong __gaddr = ((stack + 8)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->ARM_r2))) = (typeof(*__hptr))( __builtin_choose_expr (sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr(sizeof (*(__hptr)) == 2, lduw_be_p, __builtin_choose_expr(sizeof(*(__hptr )) == 4, ldl_be_p, __builtin_choose_expr(sizeof(*(__hptr)) == 8, ldq_be_p, abort)))) (__hptr)), 0); unlock_user(__hptr, __gaddr , 0); } else { ((regs->ARM_r2)) = 0; __ret = -14; } __ret; }); /* envp */ |
299 | get_user_ual(regs->ARM_r1, stack + 4)({ abi_ulong __gaddr = ((stack + 4)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->ARM_r1))) = (typeof(*__hptr))( __builtin_choose_expr (sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr(sizeof (*(__hptr)) == 2, lduw_be_p, __builtin_choose_expr(sizeof(*(__hptr )) == 4, ldl_be_p, __builtin_choose_expr(sizeof(*(__hptr)) == 8, ldq_be_p, abort)))) (__hptr)), 0); unlock_user(__hptr, __gaddr , 0); } else { ((regs->ARM_r1)) = 0; __ret = -14; } __ret; }); /* envp */ |
300 | /* XXX: it seems that r0 is zeroed after ! */ |
301 | regs->ARM_r0 = 0; |
302 | /* For uClinux PIC binaries. */ |
303 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
304 | regs->ARM_r10 = infop->start_data; |
305 | #endif |
306 | } |
307 | |
308 | #define ELF_NREG45 18 |
309 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
310 | |
311 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
312 | { |
313 | (*regs)[0] = tswapreg(env->regs[0])tswapal(env->regs[0]); |
314 | (*regs)[1] = tswapreg(env->regs[1])tswapal(env->regs[1]); |
315 | (*regs)[2] = tswapreg(env->regs[2])tswapal(env->regs[2]); |
316 | (*regs)[3] = tswapreg(env->regs[3])tswapal(env->regs[3]); |
317 | (*regs)[4] = tswapreg(env->regs[4])tswapal(env->regs[4]); |
318 | (*regs)[5] = tswapreg(env->regs[5])tswapal(env->regs[5]); |
319 | (*regs)[6] = tswapreg(env->regs[6])tswapal(env->regs[6]); |
320 | (*regs)[7] = tswapreg(env->regs[7])tswapal(env->regs[7]); |
321 | (*regs)[8] = tswapreg(env->regs[8])tswapal(env->regs[8]); |
322 | (*regs)[9] = tswapreg(env->regs[9])tswapal(env->regs[9]); |
323 | (*regs)[10] = tswapreg(env->regs[10])tswapal(env->regs[10]); |
324 | (*regs)[11] = tswapreg(env->regs[11])tswapal(env->regs[11]); |
325 | (*regs)[12] = tswapreg(env->regs[12])tswapal(env->regs[12]); |
326 | (*regs)[13] = tswapreg(env->regs[13])tswapal(env->regs[13]); |
327 | (*regs)[14] = tswapreg(env->regs[14])tswapal(env->regs[14]); |
328 | (*regs)[15] = tswapreg(env->regs[15])tswapal(env->regs[15]); |
329 | |
330 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env))tswapal(cpsr_read((CPUARMState *)env)); |
331 | (*regs)[17] = tswapreg(env->regs[0])tswapal(env->regs[0]); /* XXX */ |
332 | } |
333 | |
334 | #define USE_ELF_CORE_DUMP |
335 | #define ELF_EXEC_PAGESIZE4096 4096 |
336 | |
337 | enum |
338 | { |
339 | ARM_HWCAP_ARM_SWP = 1 << 0, |
340 | ARM_HWCAP_ARM_HALF = 1 << 1, |
341 | ARM_HWCAP_ARM_THUMB = 1 << 2, |
342 | ARM_HWCAP_ARM_26BIT = 1 << 3, |
343 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
344 | ARM_HWCAP_ARM_FPA = 1 << 5, |
345 | ARM_HWCAP_ARM_VFP = 1 << 6, |
346 | ARM_HWCAP_ARM_EDSP = 1 << 7, |
347 | ARM_HWCAP_ARM_JAVA = 1 << 8, |
348 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, |
349 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, |
350 | ARM_HWCAP_ARM_NEON = 1 << 11, |
351 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, |
352 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, |
353 | }; |
354 | |
355 | #define TARGET_HAS_VALIDATE_GUEST_SPACE |
356 | /* Return 1 if the proposed guest space is suitable for the guest. |
357 | * Return 0 if the proposed guest space isn't suitable, but another |
358 | * address space should be tried. |
359 | * Return -1 if there is no way the proposed guest space can be |
360 | * valid regardless of the base. |
361 | * The guest code may leave a page mapped and populate it if the |
362 | * address is suitable. |
363 | */ |
364 | static int validate_guest_space(unsigned long guest_base, |
365 | unsigned long guest_size) |
366 | { |
367 | unsigned long real_start, test_page_addr; |
368 | |
369 | /* We need to check that we can force a fault on access to the |
370 | * commpage at 0xffff0fxx |
371 | */ |
372 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); |
373 | |
374 | /* If the commpage lies within the already allocated guest space, |
375 | * then there is no way we can allocate it. |
376 | */ |
377 | if (test_page_addr >= guest_base |
378 | && test_page_addr <= (guest_base + guest_size)) { |
379 | return -1; |
380 | } |
381 | |
382 | /* Note it needs to be writeable to let us initialise it */ |
383 | real_start = (unsigned long) |
384 | mmap((void *)test_page_addr, qemu_host_page_size, |
385 | PROT_READ0x1 | PROT_WRITE0x2, |
386 | MAP_ANONYMOUS0x20 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
387 | |
388 | /* If we can't map it then try another address */ |
389 | if (real_start == -1ul) { |
390 | return 0; |
391 | } |
392 | |
393 | if (real_start != test_page_addr) { |
394 | /* OS didn't put the page where we asked - unmap and reject */ |
395 | munmap((void *)real_start, qemu_host_page_size); |
396 | return 0; |
397 | } |
398 | |
399 | /* Leave the page mapped |
400 | * Populate it (mmap should have left it all 0'd) |
401 | */ |
402 | |
403 | /* Kernel helper versions */ |
404 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul))(__builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 1, stb_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 2, stw_be_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 4, stl_be_p , __builtin_choose_expr(sizeof(*((uint32_t *)((void *)((unsigned long)(target_ulong)(0xffff0ffcul) + guest_base)))) == 8, stq_be_p , abort)))) (((uint32_t *)((void *)((unsigned long)(target_ulong )(0xffff0ffcul) + guest_base))), (5)), 0); |
405 | |
406 | /* Now it's populated make it RO */ |
407 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ0x1)) { |
408 | perror("Protecting guest commpage"); |
409 | exit(-1); |
410 | } |
411 | |
412 | return 1; /* All good */ |
413 | } |
414 | |
415 | |
416 | #define ELF_HWCAP0 get_elf_hwcap() |
417 | |
418 | static uint32_t get_elf_hwcap(void) |
419 | { |
420 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
421 | uint32_t hwcaps = 0; |
422 | |
423 | hwcaps |= ARM_HWCAP_ARM_SWP; |
424 | hwcaps |= ARM_HWCAP_ARM_HALF; |
425 | hwcaps |= ARM_HWCAP_ARM_THUMB; |
426 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; |
427 | hwcaps |= ARM_HWCAP_ARM_FPA; |
428 | |
429 | /* probe for the extra features */ |
430 | #define GET_FEATURE(feat, hwcap) \ |
431 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
432 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); |
433 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); |
434 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); |
435 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); |
436 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); |
437 | GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16); |
438 | #undef GET_FEATURE |
439 | |
440 | return hwcaps; |
441 | } |
442 | |
443 | #endif |
444 | |
445 | #ifdef TARGET_UNICORE32 |
446 | |
447 | #define ELF_START_MMAP0x80000000 0x80000000 |
448 | |
449 | #define elf_check_arch(x)( (x) == 8 ) ((x) == EM_UNICORE32110) |
450 | |
451 | #define ELF_CLASS1 ELFCLASS321 |
452 | #define ELF_DATA2 ELFDATA2LSB1 |
453 | #define ELF_ARCH8 EM_UNICORE32110 |
454 | |
455 | static inline void init_thread(struct target_pt_regs *regs, |
456 | struct image_info *infop) |
457 | { |
458 | abi_long stack = infop->start_stack; |
459 | memset(regs, 0, sizeof(*regs)); |
460 | regs->UC32_REG_asr = 0x10; |
461 | regs->UC32_REG_pc = infop->entry & 0xfffffffe; |
462 | regs->UC32_REG_sp = infop->start_stack; |
463 | /* FIXME - what to for failure of get_user()? */ |
464 | get_user_ual(regs->UC32_REG_02, stack + 8)({ abi_ulong __gaddr = ((stack + 8)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->UC32_REG_02))) = (typeof(*__hptr ))( __builtin_choose_expr(sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr (sizeof(*(__hptr)) == 2, lduw_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 4, ldl_be_p, __builtin_choose_expr(sizeof(*(__hptr )) == 8, ldq_be_p, abort)))) (__hptr)), 0); unlock_user(__hptr , __gaddr, 0); } else { ((regs->UC32_REG_02)) = 0; __ret = -14; } __ret; }); /* envp */ |
465 | get_user_ual(regs->UC32_REG_01, stack + 4)({ abi_ulong __gaddr = ((stack + 4)); abi_ulong *__hptr; abi_long __ret; if ((__hptr = lock_user(0, __gaddr, sizeof(abi_ulong) , 1))) { __ret = ((((regs->UC32_REG_01))) = (typeof(*__hptr ))( __builtin_choose_expr(sizeof(*(__hptr)) == 1, ldub_p, __builtin_choose_expr (sizeof(*(__hptr)) == 2, lduw_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 4, ldl_be_p, __builtin_choose_expr(sizeof(*(__hptr )) == 8, ldq_be_p, abort)))) (__hptr)), 0); unlock_user(__hptr , __gaddr, 0); } else { ((regs->UC32_REG_01)) = 0; __ret = -14; } __ret; }); /* envp */ |
466 | /* XXX: it seems that r0 is zeroed after ! */ |
467 | regs->UC32_REG_00 = 0; |
468 | } |
469 | |
470 | #define ELF_NREG45 34 |
471 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
472 | |
473 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) |
474 | { |
475 | (*regs)[0] = env->regs[0]; |
476 | (*regs)[1] = env->regs[1]; |
477 | (*regs)[2] = env->regs[2]; |
478 | (*regs)[3] = env->regs[3]; |
479 | (*regs)[4] = env->regs[4]; |
480 | (*regs)[5] = env->regs[5]; |
481 | (*regs)[6] = env->regs[6]; |
482 | (*regs)[7] = env->regs[7]; |
483 | (*regs)[8] = env->regs[8]; |
484 | (*regs)[9] = env->regs[9]; |
485 | (*regs)[10] = env->regs[10]; |
486 | (*regs)[11] = env->regs[11]; |
487 | (*regs)[12] = env->regs[12]; |
488 | (*regs)[13] = env->regs[13]; |
489 | (*regs)[14] = env->regs[14]; |
490 | (*regs)[15] = env->regs[15]; |
491 | (*regs)[16] = env->regs[16]; |
492 | (*regs)[17] = env->regs[17]; |
493 | (*regs)[18] = env->regs[18]; |
494 | (*regs)[19] = env->regs[19]; |
495 | (*regs)[20] = env->regs[20]; |
496 | (*regs)[21] = env->regs[21]; |
497 | (*regs)[22] = env->regs[22]; |
498 | (*regs)[23] = env->regs[23]; |
499 | (*regs)[24] = env->regs[24]; |
500 | (*regs)[25] = env->regs[25]; |
501 | (*regs)[26] = env->regs[26]; |
502 | (*regs)[27] = env->regs[27]; |
503 | (*regs)[28] = env->regs[28]; |
504 | (*regs)[29] = env->regs[29]; |
505 | (*regs)[30] = env->regs[30]; |
506 | (*regs)[31] = env->regs[31]; |
507 | |
508 | (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); |
509 | (*regs)[33] = env->regs[0]; /* XXX */ |
510 | } |
511 | |
512 | #define USE_ELF_CORE_DUMP |
513 | #define ELF_EXEC_PAGESIZE4096 4096 |
514 | |
515 | #define ELF_HWCAP0 (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) |
516 | |
517 | #endif |
518 | |
519 | #ifdef TARGET_SPARC |
520 | #ifdef TARGET_SPARC64 |
521 | |
522 | #define ELF_START_MMAP0x80000000 0x80000000 |
523 | #define ELF_HWCAP0 (HWCAP_SPARC_FLUSH1 | HWCAP_SPARC_STBAR2 | HWCAP_SPARC_SWAP4 \ |
524 | | HWCAP_SPARC_MULDIV8 | HWCAP_SPARC_V916) |
525 | #ifndef TARGET_ABI321 |
526 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_SPARCV943 || (x) == EM_SPARC32PLUS18 ) |
527 | #else |
528 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_SPARC32PLUS18 || (x) == EM_SPARC2 ) |
529 | #endif |
530 | |
531 | #define ELF_CLASS1 ELFCLASS642 |
532 | #define ELF_ARCH8 EM_SPARCV943 |
533 | |
534 | #define STACK_BIAS 2047 |
535 | |
536 | static inline void init_thread(struct target_pt_regs *regs, |
537 | struct image_info *infop) |
538 | { |
539 | #ifndef TARGET_ABI321 |
540 | regs->tstate = 0; |
541 | #endif |
542 | regs->pc = infop->entry; |
543 | regs->npc = regs->pc + 4; |
544 | regs->y = 0; |
545 | #ifdef TARGET_ABI321 |
546 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
547 | #else |
548 | if (personality(infop->personality)(infop->personality & PER_MASK) == PER_LINUX32) |
549 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
550 | else |
551 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; |
552 | #endif |
553 | } |
554 | |
555 | #else |
556 | #define ELF_START_MMAP0x80000000 0x80000000 |
557 | #define ELF_HWCAP0 (HWCAP_SPARC_FLUSH1 | HWCAP_SPARC_STBAR2 | HWCAP_SPARC_SWAP4 \ |
558 | | HWCAP_SPARC_MULDIV8) |
559 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_SPARC2 ) |
560 | |
561 | #define ELF_CLASS1 ELFCLASS321 |
562 | #define ELF_ARCH8 EM_SPARC2 |
563 | |
564 | static inline void init_thread(struct target_pt_regs *regs, |
565 | struct image_info *infop) |
566 | { |
567 | regs->psr = 0; |
568 | regs->pc = infop->entry; |
569 | regs->npc = regs->pc + 4; |
570 | regs->y = 0; |
571 | regs->u_regs[14] = infop->start_stack - 16 * 4; |
572 | } |
573 | |
574 | #endif |
575 | #endif |
576 | |
577 | #ifdef TARGET_PPC |
578 | |
579 | #define ELF_START_MMAP0x80000000 0x80000000 |
580 | |
581 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI321) |
582 | |
583 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_PPC6421 ) |
584 | |
585 | #define ELF_CLASS1 ELFCLASS642 |
586 | |
587 | #else |
588 | |
589 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_PPC20 ) |
590 | |
591 | #define ELF_CLASS1 ELFCLASS321 |
592 | |
593 | #endif |
594 | |
595 | #define ELF_ARCH8 EM_PPC20 |
596 | |
597 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
598 | See arch/powerpc/include/asm/cputable.h. */ |
599 | enum { |
600 | QEMU_PPC_FEATURE_32 = 0x80000000, |
601 | QEMU_PPC_FEATURE_64 = 0x40000000, |
602 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, |
603 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, |
604 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, |
605 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, |
606 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, |
607 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, |
608 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, |
609 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, |
610 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, |
611 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, |
612 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, |
613 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, |
614 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, |
615 | QEMU_PPC_FEATURE_CELL = 0x00010000, |
616 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, |
617 | QEMU_PPC_FEATURE_SMT = 0x00004000, |
618 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, |
619 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, |
620 | QEMU_PPC_FEATURE_PA6T = 0x00000800, |
621 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, |
622 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, |
623 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, |
624 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, |
625 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, |
626 | |
627 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, |
628 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, |
629 | }; |
630 | |
631 | #define ELF_HWCAP0 get_elf_hwcap() |
632 | |
633 | static uint32_t get_elf_hwcap(void) |
634 | { |
635 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
636 | uint32_t features = 0; |
637 | |
638 | /* We don't have to be terribly complete here; the high points are |
639 | Altivec/FP/SPE support. Anything else is just a bonus. */ |
640 | #define GET_FEATURE(flag, feature) \ |
641 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
642 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
643 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); |
644 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); |
645 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); |
646 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); |
647 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); |
648 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); |
649 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); |
650 | #undef GET_FEATURE |
651 | |
652 | return features; |
653 | } |
654 | |
655 | /* |
656 | * The requirements here are: |
657 | * - keep the final alignment of sp (sp & 0xf) |
658 | * - make sure the 32-bit value at the first 16 byte aligned position of |
659 | * AUXV is greater than 16 for glibc compatibility. |
660 | * AT_IGNOREPPC is used for that. |
661 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
662 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
663 | */ |
664 | #define DLINFO_ARCH_ITEMS 5 |
665 | #define ARCH_DLINFO \ |
666 | do { \ |
667 | NEW_AUX_ENT(AT_DCACHEBSIZE19, 0x20); \ |
668 | NEW_AUX_ENT(AT_ICACHEBSIZE20, 0x20); \ |
669 | NEW_AUX_ENT(AT_UCACHEBSIZE21, 0); \ |
670 | /* \ |
671 | * Now handle glibc compatibility. \ |
672 | */ \ |
673 | NEW_AUX_ENT(AT_IGNOREPPC22, AT_IGNOREPPC22); \ |
674 | NEW_AUX_ENT(AT_IGNOREPPC22, AT_IGNOREPPC22); \ |
675 | } while (0) |
676 | |
677 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
678 | { |
679 | _regs->gpr[1] = infop->start_stack; |
680 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI321) |
681 | _regs->gpr[2] = ldq_raw(infop->entry + 8)ldq_be_p(((void *)((unsigned long)(target_ulong)((infop->entry + 8)) + guest_base))) + infop->load_bias; |
682 | infop->entry = ldq_raw(infop->entry)ldq_be_p(((void *)((unsigned long)(target_ulong)((infop->entry )) + guest_base))) + infop->load_bias; |
683 | #endif |
684 | _regs->nip = infop->entry; |
685 | } |
686 | |
687 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
688 | #define ELF_NREG45 48 |
689 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
690 | |
691 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
692 | { |
693 | int i; |
694 | target_ulong ccr = 0; |
695 | |
696 | for (i = 0; i < ARRAY_SIZE(env->gpr)(sizeof(env->gpr) / sizeof((env->gpr)[0])); i++) { |
697 | (*regs)[i] = tswapreg(env->gpr[i])tswapal(env->gpr[i]); |
698 | } |
699 | |
700 | (*regs)[32] = tswapreg(env->nip)tswapal(env->nip); |
701 | (*regs)[33] = tswapreg(env->msr)tswapal(env->msr); |
702 | (*regs)[35] = tswapreg(env->ctr)tswapal(env->ctr); |
703 | (*regs)[36] = tswapreg(env->lr)tswapal(env->lr); |
704 | (*regs)[37] = tswapreg(env->xer)tswapal(env->xer); |
705 | |
706 | for (i = 0; i < ARRAY_SIZE(env->crf)(sizeof(env->crf) / sizeof((env->crf)[0])); i++) { |
707 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
708 | } |
709 | (*regs)[38] = tswapreg(ccr)tswapal(ccr); |
710 | } |
711 | |
712 | #define USE_ELF_CORE_DUMP |
713 | #define ELF_EXEC_PAGESIZE4096 4096 |
714 | |
715 | #endif |
716 | |
717 | #ifdef TARGET_MIPS1 |
718 | |
719 | #define ELF_START_MMAP0x80000000 0x80000000 |
720 | |
721 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_MIPS8 ) |
722 | |
723 | #ifdef TARGET_MIPS64 |
724 | #define ELF_CLASS1 ELFCLASS642 |
725 | #else |
726 | #define ELF_CLASS1 ELFCLASS321 |
727 | #endif |
728 | #define ELF_ARCH8 EM_MIPS8 |
729 | |
730 | static inline void init_thread(struct target_pt_regs *regs, |
731 | struct image_info *infop) |
732 | { |
733 | regs->cp0_status = 2 << CP0St_KSU3; |
734 | regs->cp0_epc = infop->entry; |
735 | regs->regs[29] = infop->start_stack; |
736 | } |
737 | |
738 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
739 | #define ELF_NREG45 45 |
740 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
741 | |
742 | /* See linux kernel: arch/mips/include/asm/reg.h. */ |
743 | enum { |
744 | #ifdef TARGET_MIPS64 |
745 | TARGET_EF_R0 = 0, |
746 | #else |
747 | TARGET_EF_R0 = 6, |
748 | #endif |
749 | TARGET_EF_R26 = TARGET_EF_R0 + 26, |
750 | TARGET_EF_R27 = TARGET_EF_R0 + 27, |
751 | TARGET_EF_LO = TARGET_EF_R0 + 32, |
752 | TARGET_EF_HI = TARGET_EF_R0 + 33, |
753 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, |
754 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, |
755 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, |
756 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 |
757 | }; |
758 | |
759 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
760 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
761 | { |
762 | int i; |
763 | |
764 | for (i = 0; i < TARGET_EF_R0; i++) { |
765 | (*regs)[i] = 0; |
766 | } |
767 | (*regs)[TARGET_EF_R0] = 0; |
768 | |
769 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr)(sizeof(env->active_tc.gpr) / sizeof((env->active_tc.gpr )[0])); i++) { |
770 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i])tswapal(env->active_tc.gpr[i]); |
771 | } |
772 | |
773 | (*regs)[TARGET_EF_R26] = 0; |
774 | (*regs)[TARGET_EF_R27] = 0; |
775 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0])tswapal(env->active_tc.LO[0]); |
776 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0])tswapal(env->active_tc.HI[0]); |
777 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC)tswapal(env->active_tc.PC); |
778 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr)tswapal(env->CP0_BadVAddr); |
779 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status)tswapal(env->CP0_Status); |
780 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause)tswapal(env->CP0_Cause); |
781 | } |
782 | |
783 | #define USE_ELF_CORE_DUMP |
784 | #define ELF_EXEC_PAGESIZE4096 4096 |
785 | |
786 | #endif /* TARGET_MIPS */ |
787 | |
788 | #ifdef TARGET_MICROBLAZE |
789 | |
790 | #define ELF_START_MMAP0x80000000 0x80000000 |
791 | |
792 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_MICROBLAZE189 || (x) == EM_MICROBLAZE_OLD0xBAAB) |
793 | |
794 | #define ELF_CLASS1 ELFCLASS321 |
795 | #define ELF_ARCH8 EM_MICROBLAZE189 |
796 | |
797 | static inline void init_thread(struct target_pt_regs *regs, |
798 | struct image_info *infop) |
799 | { |
800 | regs->pc = infop->entry; |
801 | regs->r1 = infop->start_stack; |
802 | |
803 | } |
804 | |
805 | #define ELF_EXEC_PAGESIZE4096 4096 |
806 | |
807 | #define USE_ELF_CORE_DUMP |
808 | #define ELF_NREG45 38 |
809 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
810 | |
811 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
812 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
813 | { |
814 | int i, pos = 0; |
815 | |
816 | for (i = 0; i < 32; i++) { |
817 | (*regs)[pos++] = tswapreg(env->regs[i])tswapal(env->regs[i]); |
818 | } |
819 | |
820 | for (i = 0; i < 6; i++) { |
821 | (*regs)[pos++] = tswapreg(env->sregs[i])tswapal(env->sregs[i]); |
822 | } |
823 | } |
824 | |
825 | #endif /* TARGET_MICROBLAZE */ |
826 | |
827 | #ifdef TARGET_OPENRISC |
828 | |
829 | #define ELF_START_MMAP0x80000000 0x08000000 |
830 | |
831 | #define elf_check_arch(x)( (x) == 8 ) ((x) == EM_OPENRISC92) |
832 | |
833 | #define ELF_ARCH8 EM_OPENRISC92 |
834 | #define ELF_CLASS1 ELFCLASS321 |
835 | #define ELF_DATA2 ELFDATA2MSB2 |
836 | |
837 | static inline void init_thread(struct target_pt_regs *regs, |
838 | struct image_info *infop) |
839 | { |
840 | regs->pc = infop->entry; |
841 | regs->gpr[1] = infop->start_stack; |
842 | } |
843 | |
844 | #define USE_ELF_CORE_DUMP |
845 | #define ELF_EXEC_PAGESIZE4096 8192 |
846 | |
847 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ |
848 | #define ELF_NREG45 34 /* gprs and pc, sr */ |
849 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
850 | |
851 | static void elf_core_copy_regs(target_elf_gregset_t *regs, |
852 | const CPUOpenRISCState *env) |
853 | { |
854 | int i; |
855 | |
856 | for (i = 0; i < 32; i++) { |
857 | (*regs)[i] = tswapreg(env->gpr[i])tswapal(env->gpr[i]); |
858 | } |
859 | |
860 | (*regs)[32] = tswapreg(env->pc)tswapal(env->pc); |
861 | (*regs)[33] = tswapreg(env->sr)tswapal(env->sr); |
862 | } |
863 | #define ELF_HWCAP0 0 |
864 | #define ELF_PLATFORM(((void*)0)) NULL((void*)0) |
865 | |
866 | #endif /* TARGET_OPENRISC */ |
867 | |
868 | #ifdef TARGET_SH4 |
869 | |
870 | #define ELF_START_MMAP0x80000000 0x80000000 |
871 | |
872 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_SH42 ) |
873 | |
874 | #define ELF_CLASS1 ELFCLASS321 |
875 | #define ELF_ARCH8 EM_SH42 |
876 | |
877 | static inline void init_thread(struct target_pt_regs *regs, |
878 | struct image_info *infop) |
879 | { |
880 | /* Check other registers XXXXX */ |
881 | regs->pc = infop->entry; |
882 | regs->regs[15] = infop->start_stack; |
883 | } |
884 | |
885 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
886 | #define ELF_NREG45 23 |
887 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
888 | |
889 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ |
890 | enum { |
891 | TARGET_REG_PC = 16, |
892 | TARGET_REG_PR = 17, |
893 | TARGET_REG_SR = 18, |
894 | TARGET_REG_GBR = 19, |
895 | TARGET_REG_MACH = 20, |
896 | TARGET_REG_MACL = 21, |
897 | TARGET_REG_SYSCALL = 22 |
898 | }; |
899 | |
900 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
901 | const CPUSH4State *env) |
902 | { |
903 | int i; |
904 | |
905 | for (i = 0; i < 16; i++) { |
906 | (*regs[i]) = tswapreg(env->gregs[i])tswapal(env->gregs[i]); |
907 | } |
908 | |
909 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc)tswapal(env->pc); |
910 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr)tswapal(env->pr); |
911 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr)tswapal(env->sr); |
912 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr)tswapal(env->gbr); |
913 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach)tswapal(env->mach); |
914 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl)tswapal(env->macl); |
915 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
916 | } |
917 | |
918 | #define USE_ELF_CORE_DUMP |
919 | #define ELF_EXEC_PAGESIZE4096 4096 |
920 | |
921 | #endif |
922 | |
923 | #ifdef TARGET_CRIS |
924 | |
925 | #define ELF_START_MMAP0x80000000 0x80000000 |
926 | |
927 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_CRIS76 ) |
928 | |
929 | #define ELF_CLASS1 ELFCLASS321 |
930 | #define ELF_ARCH8 EM_CRIS76 |
931 | |
932 | static inline void init_thread(struct target_pt_regs *regs, |
933 | struct image_info *infop) |
934 | { |
935 | regs->erp = infop->entry; |
936 | } |
937 | |
938 | #define ELF_EXEC_PAGESIZE4096 8192 |
939 | |
940 | #endif |
941 | |
942 | #ifdef TARGET_M68K |
943 | |
944 | #define ELF_START_MMAP0x80000000 0x80000000 |
945 | |
946 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == EM_68K4 ) |
947 | |
948 | #define ELF_CLASS1 ELFCLASS321 |
949 | #define ELF_ARCH8 EM_68K4 |
950 | |
951 | /* ??? Does this need to do anything? |
952 | #define ELF_PLAT_INIT(_r) */ |
953 | |
954 | static inline void init_thread(struct target_pt_regs *regs, |
955 | struct image_info *infop) |
956 | { |
957 | regs->usp = infop->start_stack; |
958 | regs->sr = 0; |
959 | regs->pc = infop->entry; |
960 | } |
961 | |
962 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
963 | #define ELF_NREG45 20 |
964 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG45]; |
965 | |
966 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
967 | { |
968 | (*regs)[0] = tswapreg(env->dregs[1])tswapal(env->dregs[1]); |
969 | (*regs)[1] = tswapreg(env->dregs[2])tswapal(env->dregs[2]); |
970 | (*regs)[2] = tswapreg(env->dregs[3])tswapal(env->dregs[3]); |
971 | (*regs)[3] = tswapreg(env->dregs[4])tswapal(env->dregs[4]); |
972 | (*regs)[4] = tswapreg(env->dregs[5])tswapal(env->dregs[5]); |
973 | (*regs)[5] = tswapreg(env->dregs[6])tswapal(env->dregs[6]); |
974 | (*regs)[6] = tswapreg(env->dregs[7])tswapal(env->dregs[7]); |
975 | (*regs)[7] = tswapreg(env->aregs[0])tswapal(env->aregs[0]); |
976 | (*regs)[8] = tswapreg(env->aregs[1])tswapal(env->aregs[1]); |
977 | (*regs)[9] = tswapreg(env->aregs[2])tswapal(env->aregs[2]); |
978 | (*regs)[10] = tswapreg(env->aregs[3])tswapal(env->aregs[3]); |
979 | (*regs)[11] = tswapreg(env->aregs[4])tswapal(env->aregs[4]); |
980 | (*regs)[12] = tswapreg(env->aregs[5])tswapal(env->aregs[5]); |
981 | (*regs)[13] = tswapreg(env->aregs[6])tswapal(env->aregs[6]); |
982 | (*regs)[14] = tswapreg(env->dregs[0])tswapal(env->dregs[0]); |
983 | (*regs)[15] = tswapreg(env->aregs[7])tswapal(env->aregs[7]); |
984 | (*regs)[16] = tswapreg(env->dregs[0])tswapal(env->dregs[0]); /* FIXME: orig_d0 */ |
985 | (*regs)[17] = tswapreg(env->sr)tswapal(env->sr); |
986 | (*regs)[18] = tswapreg(env->pc)tswapal(env->pc); |
987 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
988 | } |
989 | |
990 | #define USE_ELF_CORE_DUMP |
991 | #define ELF_EXEC_PAGESIZE4096 8192 |
992 | |
993 | #endif |
994 | |
995 | #ifdef TARGET_ALPHA |
996 | |
997 | #define ELF_START_MMAP0x80000000 (0x30000000000ULL) |
998 | |
999 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == ELF_ARCH8 ) |
1000 | |
1001 | #define ELF_CLASS1 ELFCLASS642 |
1002 | #define ELF_ARCH8 EM_ALPHA0x9026 |
1003 | |
1004 | static inline void init_thread(struct target_pt_regs *regs, |
1005 | struct image_info *infop) |
1006 | { |
1007 | regs->pc = infop->entry; |
1008 | regs->ps = 8; |
1009 | regs->usp = infop->start_stack; |
1010 | } |
1011 | |
1012 | #define ELF_EXEC_PAGESIZE4096 8192 |
1013 | |
1014 | #endif /* TARGET_ALPHA */ |
1015 | |
1016 | #ifdef TARGET_S390X |
1017 | |
1018 | #define ELF_START_MMAP0x80000000 (0x20000000000ULL) |
1019 | |
1020 | #define elf_check_arch(x)( (x) == 8 ) ( (x) == ELF_ARCH8 ) |
1021 | |
1022 | #define ELF_CLASS1 ELFCLASS642 |
1023 | #define ELF_DATA2 ELFDATA2MSB2 |
1024 | #define ELF_ARCH8 EM_S39022 |
1025 | |
1026 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
1027 | { |
1028 | regs->psw.addr = infop->entry; |
1029 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; |
1030 | regs->gprs[15] = infop->start_stack; |
1031 | } |
1032 | |
1033 | #endif /* TARGET_S390X */ |
1034 | |
1035 | #ifndef ELF_PLATFORM(((void*)0)) |
1036 | #define ELF_PLATFORM(((void*)0)) (NULL((void*)0)) |
1037 | #endif |
1038 | |
1039 | #ifndef ELF_HWCAP0 |
1040 | #define ELF_HWCAP0 0 |
1041 | #endif |
1042 | |
1043 | #ifdef TARGET_ABI321 |
1044 | #undef ELF_CLASS1 |
1045 | #define ELF_CLASS1 ELFCLASS321 |
1046 | #undef bswaptls |
1047 | #define bswaptls(ptr)bswap32s(ptr) bswap32s(ptr) |
1048 | #endif |
1049 | |
1050 | #include "elf.h" |
1051 | |
1052 | struct exec |
1053 | { |
1054 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
1055 | unsigned int a_text; /* length of text, in bytes */ |
1056 | unsigned int a_data; /* length of data, in bytes */ |
1057 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
1058 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
1059 | unsigned int a_entry; /* start address */ |
1060 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
1061 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
1062 | }; |
1063 | |
1064 | |
1065 | #define N_MAGIC(exec)((exec).a_info & 0xffff) ((exec).a_info & 0xffff) |
1066 | #define OMAGIC0407 0407 |
1067 | #define NMAGIC0410 0410 |
1068 | #define ZMAGIC0413 0413 |
1069 | #define QMAGIC0314 0314 |
1070 | |
1071 | /* Necessary parameters */ |
1072 | #define TARGET_ELF_EXEC_PAGESIZE(1 << 12) TARGET_PAGE_SIZE(1 << 12) |
1073 | #define TARGET_ELF_PAGESTART(_v)((_v) & ~(unsigned long)((1 << 12)-1)) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE(1 << 12)-1)) |
1074 | #define TARGET_ELF_PAGEOFFSET(_v)((_v) & ((1 << 12)-1)) ((_v) & (TARGET_ELF_EXEC_PAGESIZE(1 << 12)-1)) |
1075 | |
1076 | #define DLINFO_ITEMS13 13 |
1077 | |
1078 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
1079 | { |
1080 | memcpy(to, from, n); |
1081 | } |
1082 | |
1083 | #ifdef BSWAP_NEEDED |
1084 | static void bswap_ehdr(struct elfhdrelf32_hdr *ehdr) |
1085 | { |
1086 | bswap16s(&ehdr->e_type); /* Object file type */ |
1087 | bswap16s(&ehdr->e_machine); /* Architecture */ |
1088 | bswap32s(&ehdr->e_version); /* Object file version */ |
1089 | bswaptls(&ehdr->e_entry)bswap32s(&ehdr->e_entry); /* Entry point virtual address */ |
1090 | bswaptls(&ehdr->e_phoff)bswap32s(&ehdr->e_phoff); /* Program header table file offset */ |
1091 | bswaptls(&ehdr->e_shoff)bswap32s(&ehdr->e_shoff); /* Section header table file offset */ |
1092 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
1093 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
1094 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
1095 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
1096 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
1097 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
1098 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
1099 | } |
1100 | |
1101 | static void bswap_phdr(struct elf_phdrelf32_phdr *phdr, int phnum) |
1102 | { |
1103 | int i; |
1104 | for (i = 0; i < phnum; ++i, ++phdr) { |
1105 | bswap32s(&phdr->p_type); /* Segment type */ |
1106 | bswap32s(&phdr->p_flags); /* Segment flags */ |
1107 | bswaptls(&phdr->p_offset)bswap32s(&phdr->p_offset); /* Segment file offset */ |
1108 | bswaptls(&phdr->p_vaddr)bswap32s(&phdr->p_vaddr); /* Segment virtual address */ |
1109 | bswaptls(&phdr->p_paddr)bswap32s(&phdr->p_paddr); /* Segment physical address */ |
1110 | bswaptls(&phdr->p_filesz)bswap32s(&phdr->p_filesz); /* Segment size in file */ |
1111 | bswaptls(&phdr->p_memsz)bswap32s(&phdr->p_memsz); /* Segment size in memory */ |
1112 | bswaptls(&phdr->p_align)bswap32s(&phdr->p_align); /* Segment alignment */ |
1113 | } |
1114 | } |
1115 | |
1116 | static void bswap_shdr(struct elf_shdrelf32_shdr *shdr, int shnum) |
1117 | { |
1118 | int i; |
1119 | for (i = 0; i < shnum; ++i, ++shdr) { |
1120 | bswap32s(&shdr->sh_name); |
1121 | bswap32s(&shdr->sh_type); |
1122 | bswaptls(&shdr->sh_flags)bswap32s(&shdr->sh_flags); |
1123 | bswaptls(&shdr->sh_addr)bswap32s(&shdr->sh_addr); |
1124 | bswaptls(&shdr->sh_offset)bswap32s(&shdr->sh_offset); |
1125 | bswaptls(&shdr->sh_size)bswap32s(&shdr->sh_size); |
1126 | bswap32s(&shdr->sh_link); |
1127 | bswap32s(&shdr->sh_info); |
1128 | bswaptls(&shdr->sh_addralign)bswap32s(&shdr->sh_addralign); |
1129 | bswaptls(&shdr->sh_entsize)bswap32s(&shdr->sh_entsize); |
1130 | } |
1131 | } |
1132 | |
1133 | static void bswap_sym(struct elf_symelf32_sym *sym) |
1134 | { |
1135 | bswap32s(&sym->st_name); |
1136 | bswaptls(&sym->st_value)bswap32s(&sym->st_value); |
1137 | bswaptls(&sym->st_size)bswap32s(&sym->st_size); |
1138 | bswap16s(&sym->st_shndx); |
1139 | } |
1140 | #else |
1141 | static inline void bswap_ehdr(struct elfhdrelf32_hdr *ehdr) { } |
1142 | static inline void bswap_phdr(struct elf_phdrelf32_phdr *phdr, int phnum) { } |
1143 | static inline void bswap_shdr(struct elf_shdrelf32_shdr *shdr, int shnum) { } |
1144 | static inline void bswap_sym(struct elf_symelf32_sym *sym) { } |
1145 | #endif |
1146 | |
1147 | #ifdef USE_ELF_CORE_DUMP |
1148 | static int elf_core_dump(int, const CPUArchStatestruct CPUMIPSState *); |
1149 | #endif /* USE_ELF_CORE_DUMP */ |
1150 | static void load_symbols(struct elfhdrelf32_hdr *hdr, int fd, abi_ulong load_bias); |
1151 | |
1152 | /* Verify the portions of EHDR within E_IDENT for the target. |
1153 | This can be performed before bswapping the entire header. */ |
1154 | static bool_Bool elf_check_ident(struct elfhdrelf32_hdr *ehdr) |
1155 | { |
1156 | return (ehdr->e_ident[EI_MAG00] == ELFMAG00x7f |
1157 | && ehdr->e_ident[EI_MAG11] == ELFMAG1'E' |
1158 | && ehdr->e_ident[EI_MAG22] == ELFMAG2'L' |
1159 | && ehdr->e_ident[EI_MAG33] == ELFMAG3'F' |
1160 | && ehdr->e_ident[EI_CLASS4] == ELF_CLASS1 |
1161 | && ehdr->e_ident[EI_DATA5] == ELF_DATA2 |
1162 | && ehdr->e_ident[EI_VERSION6] == EV_CURRENT1); |
1163 | } |
1164 | |
1165 | /* Verify the portions of EHDR outside of E_IDENT for the target. |
1166 | This has to wait until after bswapping the header. */ |
1167 | static bool_Bool elf_check_ehdr(struct elfhdrelf32_hdr *ehdr) |
1168 | { |
1169 | return (elf_check_arch(ehdr->e_machine)( (ehdr->e_machine) == 8 ) |
1170 | && ehdr->e_ehsize == sizeof(struct elfhdrelf32_hdr) |
1171 | && ehdr->e_phentsize == sizeof(struct elf_phdrelf32_phdr) |
1172 | && ehdr->e_shentsize == sizeof(struct elf_shdrelf32_shdr) |
1173 | && (ehdr->e_type == ET_EXEC2 || ehdr->e_type == ET_DYN3)); |
1174 | } |
1175 | |
1176 | /* |
1177 | * 'copy_elf_strings()' copies argument/envelope strings from user |
1178 | * memory to free pages in kernel mem. These are in a format ready |
1179 | * to be put directly into the top of new user memory. |
1180 | * |
1181 | */ |
1182 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
1183 | abi_ulong p) |
1184 | { |
1185 | char *tmp, *tmp1, *pag = NULL((void*)0); |
1186 | int len, offset = 0; |
1187 | |
1188 | if (!p) { |
1189 | return 0; /* bullet-proofing */ |
1190 | } |
1191 | while (argc-- > 0) { |
1192 | tmp = argv[argc]; |
1193 | if (!tmp) { |
1194 | fprintf(stderrstderr, "VFS: argc is wrong"); |
1195 | exit(-1); |
1196 | } |
1197 | tmp1 = tmp; |
1198 | while (*tmp++); |
1199 | len = tmp - tmp1; |
1200 | if (p < len) { /* this shouldn't happen - 128kB */ |
1201 | return 0; |
1202 | } |
1203 | while (len) { |
1204 | --p; --tmp; --len; |
1205 | if (--offset < 0) { |
1206 | offset = p % TARGET_PAGE_SIZE(1 << 12); |
1207 | pag = (char *)page[p/TARGET_PAGE_SIZE(1 << 12)]; |
1208 | if (!pag) { |
1209 | pag = g_try_malloc0(TARGET_PAGE_SIZE(1 << 12)); |
1210 | page[p/TARGET_PAGE_SIZE(1 << 12)] = pag; |
1211 | if (!pag) |
1212 | return 0; |
1213 | } |
1214 | } |
1215 | if (len == 0 || offset == 0) { |
1216 | *(pag + offset) = *tmp; |
1217 | } |
1218 | else { |
1219 | int bytes_to_copy = (len > offset) ? offset : len; |
1220 | tmp -= bytes_to_copy; |
1221 | p -= bytes_to_copy; |
1222 | offset -= bytes_to_copy; |
1223 | len -= bytes_to_copy; |
1224 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); |
1225 | } |
1226 | } |
1227 | } |
1228 | return p; |
1229 | } |
1230 | |
1231 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
1232 | struct image_info *info) |
1233 | { |
1234 | abi_ulong stack_base, size, error, guard; |
1235 | int i; |
1236 | |
1237 | /* Create enough stack to hold everything. If we don't use |
1238 | it for args, we'll use it for something else. */ |
1239 | size = guest_stack_size; |
1240 | if (size < MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12)) { |
1241 | size = MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12); |
1242 | } |
1243 | guard = TARGET_PAGE_SIZE(1 << 12); |
1244 | if (guard < qemu_real_host_page_size) { |
1245 | guard = qemu_real_host_page_size; |
1246 | } |
1247 | |
1248 | error = target_mmap(0, size + guard, PROT_READ0x1 | PROT_WRITE0x2, |
1249 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
1250 | if (error == -1) { |
1251 | perror("mmap stack"); |
1252 | exit(-1); |
1253 | } |
1254 | |
1255 | /* We reserve one extra page at the top of the stack as guard. */ |
1256 | target_mprotect(error, guard, PROT_NONE0x0); |
1257 | |
1258 | info->stack_limit = error + guard; |
1259 | stack_base = info->stack_limit + size - MAX_ARG_PAGES33*TARGET_PAGE_SIZE(1 << 12); |
1260 | p += stack_base; |
1261 | |
1262 | for (i = 0 ; i < MAX_ARG_PAGES33 ; i++) { |
1263 | if (bprm->page[i]) { |
1264 | info->rss++; |
1265 | /* FIXME - check return value of memcpy_to_target() for failure */ |
1266 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE(1 << 12)); |
1267 | g_free(bprm->page[i]); |
1268 | } |
1269 | stack_base += TARGET_PAGE_SIZE(1 << 12); |
1270 | } |
1271 | return p; |
1272 | } |
1273 | |
1274 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1275 | after the data section (i.e. bss). */ |
1276 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) |
1277 | { |
1278 | uintptr_t host_start, host_map_start, host_end; |
1279 | |
1280 | last_bss = TARGET_PAGE_ALIGN(last_bss)(((last_bss) + (1 << 12) - 1) & ~((1 << 12) - 1)); |
1281 | |
1282 | /* ??? There is confusion between qemu_real_host_page_size and |
1283 | qemu_host_page_size here and elsewhere in target_mmap, which |
1284 | may lead to the end of the data section mapping from the file |
1285 | not being mapped. At least there was an explicit test and |
1286 | comment for that here, suggesting that "the file size must |
1287 | be known". The comment probably pre-dates the introduction |
1288 | of the fstat system call in target_mmap which does in fact |
1289 | find out the size. What isn't clear is if the workaround |
1290 | here is still actually needed. For now, continue with it, |
1291 | but merge it with the "normal" mmap that would allocate the bss. */ |
1292 | |
1293 | host_start = (uintptr_t) g2h(elf_bss)((void *)((unsigned long)(target_ulong)(elf_bss) + guest_base )); |
1294 | host_end = (uintptr_t) g2h(last_bss)((void *)((unsigned long)(target_ulong)(last_bss) + guest_base )); |
1295 | host_map_start = (host_start + qemu_real_host_page_size - 1); |
1296 | host_map_start &= -qemu_real_host_page_size; |
1297 | |
1298 | if (host_map_start < host_end) { |
1299 | void *p = mmap((void *)host_map_start, host_end - host_map_start, |
1300 | prot, MAP_FIXED0x10 | MAP_PRIVATE0x02 | MAP_ANONYMOUS0x20, -1, 0); |
1301 | if (p == MAP_FAILED((void *) -1)) { |
1302 | perror("cannot mmap brk"); |
1303 | exit(-1); |
1304 | } |
1305 | |
1306 | /* Since we didn't use target_mmap, make sure to record |
1307 | the validity of the pages with qemu. */ |
1308 | page_set_flags(elf_bss & TARGET_PAGE_MASK~((1 << 12) - 1), last_bss, prot|PAGE_VALID0x0008); |
1309 | } |
1310 | |
1311 | if (host_start < host_map_start) { |
1312 | memset((void *)host_start, 0, host_map_start - host_start); |
1313 | } |
1314 | } |
1315 | |
1316 | #ifdef CONFIG_USE_FDPIC |
1317 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
1318 | { |
1319 | uint16_t n; |
1320 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; |
1321 | |
1322 | /* elf32_fdpic_loadseg */ |
1323 | n = info->nsegs; |
1324 | while (n--) { |
1325 | sp -= 12; |
1326 | put_user_u32(loadsegs[n].addr, sp+0)({ abi_ulong __gaddr = ((sp+0)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((loadsegs[ n].addr)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
1327 | put_user_u32(loadsegs[n].p_vaddr, sp+4)({ abi_ulong __gaddr = ((sp+4)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((loadsegs[ n].p_vaddr)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
1328 | put_user_u32(loadsegs[n].p_memsz, sp+8)({ abi_ulong __gaddr = ((sp+8)); uint32_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint32_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((loadsegs[ n].p_memsz)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint32_t )); } else __ret = -14; __ret; }); |
1329 | } |
1330 | |
1331 | /* elf32_fdpic_loadmap */ |
1332 | sp -= 4; |
1333 | put_user_u16(0, sp+0)({ abi_ulong __gaddr = ((sp+0)); uint16_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint16_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((0)))), 0) ; unlock_user(__hptr, __gaddr, sizeof(uint16_t)); } else __ret = -14; __ret; }); /* version */ |
1334 | put_user_u16(info->nsegs, sp+2)({ abi_ulong __gaddr = ((sp+2)); uint16_t *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(uint16_t), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((info-> nsegs)))), 0); unlock_user(__hptr, __gaddr, sizeof(uint16_t)) ; } else __ret = -14; __ret; }); /* nsegs */ |
1335 | |
1336 | info->personality = PER_LINUX_FDPIC; |
1337 | info->loadmap_addr = sp; |
1338 | |
1339 | return sp; |
1340 | } |
1341 | #endif |
1342 | |
1343 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
1344 | struct elfhdrelf32_hdr *exec, |
1345 | struct image_info *info, |
1346 | struct image_info *interp_info) |
1347 | { |
1348 | abi_ulong sp; |
1349 | abi_ulong sp_auxv; |
1350 | int size; |
1351 | int i; |
1352 | abi_ulong u_rand_bytes; |
1353 | uint8_t k_rand_bytes[16]; |
1354 | abi_ulong u_platform; |
1355 | const char *k_platform; |
1356 | const int n = sizeof(elf_addr_tElf32_Off); |
1357 | |
1358 | sp = p; |
1359 | |
1360 | #ifdef CONFIG_USE_FDPIC |
1361 | /* Needs to be before we load the env/argc/... */ |
1362 | if (elf_is_fdpic(exec)) { |
1363 | /* Need 4 byte alignment for these structs */ |
1364 | sp &= ~3; |
1365 | sp = loader_build_fdpic_loadmap(info, sp); |
1366 | info->other_info = interp_info; |
1367 | if (interp_info) { |
1368 | interp_info->other_info = info; |
1369 | sp = loader_build_fdpic_loadmap(interp_info, sp); |
1370 | } |
1371 | } |
1372 | #endif |
1373 | |
1374 | u_platform = 0; |
1375 | k_platform = ELF_PLATFORM(((void*)0)); |
1376 | if (k_platform) { |
1377 | size_t len = strlen(k_platform) + 1; |
1378 | sp -= (len + n - 1) & ~(n - 1); |
1379 | u_platform = sp; |
1380 | /* FIXME - check return value of memcpy_to_target() for failure */ |
1381 | memcpy_to_target(sp, k_platform, len); |
1382 | } |
1383 | |
1384 | /* |
1385 | * Generate 16 random bytes for userspace PRNG seeding (not |
1386 | * cryptically secure but it's not the aim of QEMU). |
1387 | */ |
1388 | srand((unsigned int) time(NULL((void*)0))); |
1389 | for (i = 0; i < 16; i++) { |
1390 | k_rand_bytes[i] = rand(); |
1391 | } |
1392 | sp -= 16; |
1393 | u_rand_bytes = sp; |
1394 | /* FIXME - check return value of memcpy_to_target() for failure */ |
1395 | memcpy_to_target(sp, k_rand_bytes, 16); |
1396 | |
1397 | /* |
1398 | * Force 16 byte _final_ alignment here for generality. |
1399 | */ |
1400 | sp = sp &~ (abi_ulong)15; |
1401 | size = (DLINFO_ITEMS13 + 1) * 2; |
1402 | if (k_platform) |
1403 | size += 2; |
1404 | #ifdef DLINFO_ARCH_ITEMS |
1405 | size += DLINFO_ARCH_ITEMS * 2; |
1406 | #endif |
1407 | size += envc + argc + 2; |
1408 | size += 1; /* argc itself */ |
1409 | size *= n; |
1410 | if (size & 15) |
1411 | sp -= 16 - (size & 15); |
1412 | |
1413 | /* This is correct because Linux defines |
1414 | * elf_addr_t as Elf32_Off / Elf64_Off |
1415 | */ |
1416 | #define NEW_AUX_ENT(id, val) do { \ |
1417 | sp -= n; put_user_ual(val, sp)({ abi_ulong __gaddr = ((sp)); abi_ulong *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(abi_ulong), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((val)))), 0 ); unlock_user(__hptr, __gaddr, sizeof(abi_ulong)); } else __ret = -14; __ret; }); \ |
1418 | sp -= n; put_user_ual(id, sp)({ abi_ulong __gaddr = ((sp)); abi_ulong *__hptr; abi_long __ret ; if ((__hptr = lock_user(1, __gaddr, sizeof(abi_ulong), 0))) { __ret = (__builtin_choose_expr(sizeof(*(__hptr)) == 1, stb_p , __builtin_choose_expr(sizeof(*(__hptr)) == 2, stw_be_p, __builtin_choose_expr (sizeof(*(__hptr)) == 4, stl_be_p, __builtin_choose_expr(sizeof (*(__hptr)) == 8, stq_be_p, abort)))) ((__hptr), (((id)))), 0 ); unlock_user(__hptr, __gaddr, sizeof(abi_ulong)); } else __ret = -14; __ret; }); \ |
1419 | } while(0) |
1420 | |
1421 | sp_auxv = sp; |
1422 | NEW_AUX_ENT (AT_NULL0, 0); |
1423 | |
1424 | /* There must be exactly DLINFO_ITEMS entries here. */ |
1425 | NEW_AUX_ENT(AT_PHDR3, (abi_ulong)(info->load_addr + exec->e_phoff)); |
1426 | NEW_AUX_ENT(AT_PHENT4, (abi_ulong)(sizeof (struct elf_phdrelf32_phdr))); |
1427 | NEW_AUX_ENT(AT_PHNUM5, (abi_ulong)(exec->e_phnum)); |
1428 | NEW_AUX_ENT(AT_PAGESZ6, (abi_ulong)(TARGET_PAGE_SIZE(1 << 12))); |
1429 | NEW_AUX_ENT(AT_BASE7, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
1430 | NEW_AUX_ENT(AT_FLAGS8, (abi_ulong)0); |
1431 | NEW_AUX_ENT(AT_ENTRY9, info->entry); |
1432 | NEW_AUX_ENT(AT_UID11, (abi_ulong) getuid()); |
1433 | NEW_AUX_ENT(AT_EUID12, (abi_ulong) geteuid()); |
1434 | NEW_AUX_ENT(AT_GID13, (abi_ulong) getgid()); |
1435 | NEW_AUX_ENT(AT_EGID14, (abi_ulong) getegid()); |
1436 | NEW_AUX_ENT(AT_HWCAP16, (abi_ulong) ELF_HWCAP0); |
1437 | NEW_AUX_ENT(AT_CLKTCK17, (abi_ulong) sysconf(_SC_CLK_TCK_SC_CLK_TCK)); |
1438 | NEW_AUX_ENT(AT_RANDOM25, (abi_ulong) u_rand_bytes); |
1439 | |
1440 | if (k_platform) |
1441 | NEW_AUX_ENT(AT_PLATFORM15, u_platform); |
1442 | #ifdef ARCH_DLINFO |
1443 | /* |
1444 | * ARCH_DLINFO must come last so platform specific code can enforce |
1445 | * special alignment requirements on the AUXV if necessary (eg. PPC). |
1446 | */ |
1447 | ARCH_DLINFO; |
1448 | #endif |
1449 | #undef NEW_AUX_ENT |
1450 | |
1451 | info->saved_auxv = sp; |
1452 | info->auxv_len = sp_auxv - sp; |
1453 | |
1454 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
1455 | return sp; |
1456 | } |
1457 | |
1458 | #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE |
1459 | /* If the guest doesn't have a validation function just agree */ |
1460 | static int validate_guest_space(unsigned long guest_base, |
1461 | unsigned long guest_size) |
1462 | { |
1463 | return 1; |
1464 | } |
1465 | #endif |
1466 | |
1467 | unsigned long init_guest_space(unsigned long host_start, |
1468 | unsigned long host_size, |
1469 | unsigned long guest_start, |
1470 | bool_Bool fixed) |
1471 | { |
1472 | unsigned long current_start, real_start; |
1473 | int flags; |
1474 | |
1475 | assert(host_start || host_size)((host_start || host_size) ? (void) (0) : __assert_fail ("host_start || host_size" , "/home/stefan/src/qemu/qemu.org/qemu/linux-user/elfload.c", 1475, __PRETTY_FUNCTION__)); |
1476 | |
1477 | /* If just a starting address is given, then just verify that |
1478 | * address. */ |
1479 | if (host_start && !host_size) { |
1480 | if (validate_guest_space(host_start, host_size) == 1) { |
1481 | return host_start; |
1482 | } else { |
1483 | return (unsigned long)-1; |
1484 | } |
1485 | } |
1486 | |
1487 | /* Setup the initial flags and start address. */ |
1488 | current_start = host_start & qemu_host_page_mask; |
1489 | flags = MAP_ANONYMOUS0x20 | MAP_PRIVATE0x02 | MAP_NORESERVE0x04000; |
1490 | if (fixed) { |
1491 | flags |= MAP_FIXED0x10; |
1492 | } |
1493 | |
1494 | /* Otherwise, a non-zero size region of memory needs to be mapped |
1495 | * and validated. */ |
1496 | while (1) { |
1497 | unsigned long real_size = host_size; |
1498 | |
1499 | /* Do not use mmap_find_vma here because that is limited to the |
1500 | * guest address space. We are going to make the |
1501 | * guest address space fit whatever we're given. |
1502 | */ |
1503 | real_start = (unsigned long) |
1504 | mmap((void *)current_start, host_size, PROT_NONE0x0, flags, -1, 0); |
1505 | if (real_start == (unsigned long)-1) { |
1506 | return (unsigned long)-1; |
1507 | } |
1508 | |
1509 | /* Ensure the address is properly aligned. */ |
1510 | if (real_start & ~qemu_host_page_mask) { |
1511 | munmap((void *)real_start, host_size); |
1512 | real_size = host_size + qemu_host_page_size; |
1513 | real_start = (unsigned long) |
1514 | mmap((void *)real_start, real_size, PROT_NONE0x0, flags, -1, 0); |
1515 | if (real_start == (unsigned long)-1) { |
1516 | return (unsigned long)-1; |
1517 | } |
1518 | real_start = HOST_PAGE_ALIGN(real_start)(((real_start) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
1519 | } |
1520 | |
1521 | /* Check to see if the address is valid. */ |
1522 | if (!host_start || real_start == current_start) { |
1523 | int valid = validate_guest_space(real_start - guest_start, |
1524 | real_size); |
1525 | if (valid == 1) { |
1526 | break; |
1527 | } else if (valid == -1) { |
1528 | return (unsigned long)-1; |
1529 | } |
1530 | /* valid == 0, so try again. */ |
1531 | } |
1532 | |
1533 | /* That address didn't work. Unmap and try a different one. |
1534 | * The address the host picked because is typically right at |
1535 | * the top of the host address space and leaves the guest with |
1536 | * no usable address space. Resort to a linear search. We |
1537 | * already compensated for mmap_min_addr, so this should not |
1538 | * happen often. Probably means we got unlucky and host |
1539 | * address space randomization put a shared library somewhere |
1540 | * inconvenient. |
1541 | */ |
1542 | munmap((void *)real_start, host_size); |
1543 | current_start += qemu_host_page_size; |
1544 | if (host_start == current_start) { |
1545 | /* Theoretically possible if host doesn't have any suitably |
1546 | * aligned areas. Normally the first mmap will fail. |
1547 | */ |
1548 | return (unsigned long)-1; |
1549 | } |
1550 | } |
1551 | |
1552 | qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); |
1553 | |
1554 | return real_start; |
1555 | } |
1556 | |
1557 | static void probe_guest_base(const char *image_name, |
1558 | abi_ulong loaddr, abi_ulong hiaddr) |
1559 | { |
1560 | /* Probe for a suitable guest base address, if the user has not set |
1561 | * it explicitly, and set guest_base appropriately. |
1562 | * In case of error we will print a suitable message and exit. |
1563 | */ |
1564 | #if defined(CONFIG_USE_GUEST_BASE1) |
1565 | const char *errmsg; |
1566 | if (!have_guest_base && !reserved_va) { |
1567 | unsigned long host_start, real_start, host_size; |
1568 | |
1569 | /* Round addresses to page boundaries. */ |
1570 | loaddr &= qemu_host_page_mask; |
1571 | hiaddr = HOST_PAGE_ALIGN(hiaddr)(((hiaddr) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
1572 | |
1573 | if (loaddr < mmap_min_addr) { |
1574 | host_start = HOST_PAGE_ALIGN(mmap_min_addr)(((mmap_min_addr) + qemu_host_page_size - 1) & qemu_host_page_mask ); |
1575 | } else { |
1576 | host_start = loaddr; |
1577 | if (host_start != loaddr) { |
1578 | errmsg = "Address overflow loading ELF binary"; |
1579 | goto exit_errmsg; |
1580 | } |
1581 | } |
1582 | host_size = hiaddr - loaddr; |
1583 | |
1584 | /* Setup the initial guest memory space with ranges gleaned from |
1585 | * the ELF image that is being loaded. |
1586 | */ |
1587 | real_start = init_guest_space(host_start, host_size, loaddr, false0); |
1588 | if (real_start == (unsigned long)-1) { |
1589 | errmsg = "Unable to find space for application"; |
1590 | goto exit_errmsg; |
1591 | } |
1592 | guest_base = real_start - loaddr; |
1593 | |
1594 | qemu_log("Relocating guest address space from 0x" |
1595 | TARGET_ABI_FMT_lx"%08x" " to 0x%lx\n", |
1596 | loaddr, real_start); |
1597 | } |
1598 | return; |
1599 | |
1600 | exit_errmsg: |
1601 | fprintf(stderrstderr, "%s: %s\n", image_name, errmsg); |
1602 | exit(-1); |
1603 | #endif |
1604 | } |
1605 | |
1606 | |
1607 | /* Load an ELF image into the address space. |
1608 | |
1609 | IMAGE_NAME is the filename of the image, to use in error messages. |
1610 | IMAGE_FD is the open file descriptor for the image. |
1611 | |
1612 | BPRM_BUF is a copy of the beginning of the file; this of course |
1613 | contains the elf file header at offset 0. It is assumed that this |
1614 | buffer is sufficiently aligned to present no problems to the host |
1615 | in accessing data at aligned offsets within the buffer. |
1616 | |
1617 | On return: INFO values will be filled in, as necessary or available. */ |
1618 | |
1619 | static void load_elf_image(const char *image_name, int image_fd, |
1620 | struct image_info *info, char **pinterp_name, |
1621 | char bprm_buf[BPRM_BUF_SIZE1024]) |
1622 | { |
1623 | struct elfhdrelf32_hdr *ehdr = (struct elfhdrelf32_hdr *)bprm_buf; |
1624 | struct elf_phdrelf32_phdr *phdr; |
1625 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; |
1626 | int i, retval; |
1627 | const char *errmsg; |
1628 | |
1629 | /* First of all, some simple consistency checks */ |
1630 | errmsg = "Invalid ELF image for this architecture"; |
1631 | if (!elf_check_ident(ehdr)) { |
1632 | goto exit_errmsg; |
1633 | } |
1634 | bswap_ehdr(ehdr); |
1635 | if (!elf_check_ehdr(ehdr)) { |
1636 | goto exit_errmsg; |
1637 | } |
1638 | |
1639 | i = ehdr->e_phnum * sizeof(struct elf_phdrelf32_phdr); |
1640 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE1024) { |
1641 | phdr = (struct elf_phdrelf32_phdr *)(bprm_buf + ehdr->e_phoff); |
1642 | } else { |
1643 | phdr = (struct elf_phdrelf32_phdr *) alloca(i)__builtin_alloca (i); |
1644 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); |
1645 | if (retval != i) { |
1646 | goto exit_read; |
1647 | } |
1648 | } |
1649 | bswap_phdr(phdr, ehdr->e_phnum); |
1650 | |
1651 | #ifdef CONFIG_USE_FDPIC |
1652 | info->nsegs = 0; |
1653 | info->pt_dynamic_addr = 0; |
1654 | #endif |
1655 | |
1656 | /* Find the maximum size of the image and allocate an appropriate |
1657 | amount of memory to handle that. */ |
1658 | loaddr = -1, hiaddr = 0; |
1659 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1660 | if (phdr[i].p_type == PT_LOAD1) { |
1661 | abi_ulong a = phdr[i].p_vaddr; |
1662 | if (a < loaddr) { |
1663 | loaddr = a; |
1664 | } |
1665 | a += phdr[i].p_memsz; |
1666 | if (a > hiaddr) { |
1667 | hiaddr = a; |
1668 | } |
1669 | #ifdef CONFIG_USE_FDPIC |
1670 | ++info->nsegs; |
1671 | #endif |
1672 | } |
1673 | } |
1674 | |
1675 | load_addr = loaddr; |
1676 | if (ehdr->e_type == ET_DYN3) { |
1677 | /* The image indicates that it can be loaded anywhere. Find a |
1678 | location that can hold the memory space required. If the |
1679 | image is pre-linked, LOADDR will be non-zero. Since we do |
1680 | not supply MAP_FIXED here we'll use that address if and |
1681 | only if it remains available. */ |
1682 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE0x0, |
1683 | MAP_PRIVATE0x02 | MAP_ANON0x20 | MAP_NORESERVE0x04000, |
1684 | -1, 0); |
1685 | if (load_addr == -1) { |
1686 | goto exit_perror; |
1687 | } |
1688 | } else if (pinterp_name != NULL((void*)0)) { |
1689 | /* This is the main executable. Make sure that the low |
1690 | address does not conflict with MMAP_MIN_ADDR or the |
1691 | QEMU application itself. */ |
1692 | probe_guest_base(image_name, loaddr, hiaddr); |
1693 | } |
1694 | load_bias = load_addr - loaddr; |
1695 | |
1696 | #ifdef CONFIG_USE_FDPIC |
1697 | { |
1698 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
1699 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
1700 | |
1701 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1702 | switch (phdr[i].p_type) { |
1703 | case PT_DYNAMIC2: |
1704 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; |
1705 | break; |
1706 | case PT_LOAD1: |
1707 | loadsegs->addr = phdr[i].p_vaddr + load_bias; |
1708 | loadsegs->p_vaddr = phdr[i].p_vaddr; |
1709 | loadsegs->p_memsz = phdr[i].p_memsz; |
1710 | ++loadsegs; |
1711 | break; |
1712 | } |
1713 | } |
1714 | } |
1715 | #endif |
1716 | |
1717 | info->load_bias = load_bias; |
1718 | info->load_addr = load_addr; |
1719 | info->entry = ehdr->e_entry + load_bias; |
1720 | info->start_code = -1; |
1721 | info->end_code = 0; |
1722 | info->start_data = -1; |
1723 | info->end_data = 0; |
1724 | info->brk = 0; |
1725 | info->elf_flags = ehdr->e_flags; |
1726 | |
1727 | for (i = 0; i < ehdr->e_phnum; i++) { |
1728 | struct elf_phdrelf32_phdr *eppnt = phdr + i; |
1729 | if (eppnt->p_type == PT_LOAD1) { |
1730 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
1731 | int elf_prot = 0; |
1732 | |
1733 | if (eppnt->p_flags & PF_R0x4) elf_prot = PROT_READ0x1; |
1734 | if (eppnt->p_flags & PF_W0x2) elf_prot |= PROT_WRITE0x2; |
1735 | if (eppnt->p_flags & PF_X0x1) elf_prot |= PROT_EXEC0x4; |
1736 | |
1737 | vaddr = load_bias + eppnt->p_vaddr; |
1738 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr)((vaddr) & ((1 << 12)-1)); |
1739 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr)((vaddr) & ~(unsigned long)((1 << 12)-1)); |
1740 | |
1741 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, |
1742 | elf_prot, MAP_PRIVATE0x02 | MAP_FIXED0x10, |
1743 | image_fd, eppnt->p_offset - vaddr_po); |
1744 | if (error == -1) { |
1745 | goto exit_perror; |
1746 | } |
1747 | |
1748 | vaddr_ef = vaddr + eppnt->p_filesz; |
1749 | vaddr_em = vaddr + eppnt->p_memsz; |
1750 | |
1751 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
1752 | if (vaddr_ef < vaddr_em) { |
1753 | zero_bss(vaddr_ef, vaddr_em, elf_prot); |
1754 | } |
1755 | |
1756 | /* Find the full program boundaries. */ |
1757 | if (elf_prot & PROT_EXEC0x4) { |
1758 | if (vaddr < info->start_code) { |
1759 | info->start_code = vaddr; |
1760 | } |
1761 | if (vaddr_ef > info->end_code) { |
1762 | info->end_code = vaddr_ef; |
1763 | } |
1764 | } |
1765 | if (elf_prot & PROT_WRITE0x2) { |
1766 | if (vaddr < info->start_data) { |
1767 | info->start_data = vaddr; |
1768 | } |
1769 | if (vaddr_ef > info->end_data) { |
1770 | info->end_data = vaddr_ef; |
1771 | } |
1772 | if (vaddr_em > info->brk) { |
1773 | info->brk = vaddr_em; |
1774 | } |
1775 | } |
1776 | } else if (eppnt->p_type == PT_INTERP3 && pinterp_name) { |
1777 | char *interp_name; |
1778 | |
1779 | if (*pinterp_name) { |
1780 | errmsg = "Multiple PT_INTERP entries"; |
1781 | goto exit_errmsg; |
1782 | } |
1783 | interp_name = malloc(eppnt->p_filesz); |
1784 | if (!interp_name) { |
1785 | goto exit_perror; |
1786 | } |
1787 | |
1788 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE1024) { |
1789 | memcpy(interp_name, bprm_buf + eppnt->p_offset, |
1790 | eppnt->p_filesz); |
1791 | } else { |
1792 | retval = pread(image_fd, interp_name, eppnt->p_filesz, |
1793 | eppnt->p_offset); |
1794 | if (retval != eppnt->p_filesz) { |
1795 | goto exit_perror; |
1796 | } |
1797 | } |
1798 | if (interp_name[eppnt->p_filesz - 1] != 0) { |
1799 | errmsg = "Invalid PT_INTERP entry"; |
1800 | goto exit_errmsg; |
1801 | } |
1802 | *pinterp_name = interp_name; |
1803 | } |
1804 | } |
1805 | |
1806 | if (info->end_data == 0) { |
1807 | info->start_data = info->end_code; |
1808 | info->end_data = info->end_code; |
1809 | info->brk = info->end_code; |
1810 | } |
1811 | |
1812 | if (qemu_log_enabled()) { |
1813 | load_symbols(ehdr, image_fd, load_bias); |
1814 | } |
1815 | |
1816 | close(image_fd); |
1817 | return; |
1818 | |
1819 | exit_read: |
1820 | if (retval >= 0) { |
1821 | errmsg = "Incomplete read of file header"; |
1822 | goto exit_errmsg; |
1823 | } |
1824 | exit_perror: |
1825 | errmsg = strerror(errno(*__errno_location ())); |
1826 | exit_errmsg: |
1827 | fprintf(stderrstderr, "%s: %s\n", image_name, errmsg); |
1828 | exit(-1); |
1829 | } |
1830 | |
1831 | static void load_elf_interp(const char *filename, struct image_info *info, |
1832 | char bprm_buf[BPRM_BUF_SIZE1024]) |
1833 | { |
1834 | int fd, retval; |
1835 | |
1836 | fd = open(path(filename), O_RDONLY00); |
1837 | if (fd < 0) { |
1838 | goto exit_perror; |
1839 | } |
1840 | |
1841 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE1024); |
1842 | if (retval < 0) { |
1843 | goto exit_perror; |
1844 | } |
1845 | if (retval < BPRM_BUF_SIZE1024) { |
1846 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE1024 - retval); |
1847 | } |
1848 | |
1849 | load_elf_image(filename, fd, info, NULL((void*)0), bprm_buf); |
1850 | return; |
1851 | |
1852 | exit_perror: |
1853 | fprintf(stderrstderr, "%s: %s\n", filename, strerror(errno(*__errno_location ()))); |
1854 | exit(-1); |
1855 | } |
1856 | |
1857 | static int symfind(const void *s0, const void *s1) |
1858 | { |
1859 | target_ulong addr = *(target_ulong *)s0; |
1860 | struct elf_symelf32_sym *sym = (struct elf_symelf32_sym *)s1; |
1861 | int result = 0; |
1862 | if (addr < sym->st_value) { |
1863 | result = -1; |
1864 | } else if (addr >= sym->st_value + sym->st_size) { |
1865 | result = 1; |
1866 | } |
1867 | return result; |
1868 | } |
1869 | |
1870 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) |
1871 | { |
1872 | #if ELF_CLASS1 == ELFCLASS321 |
1873 | struct elf_symelf32_sym *syms = s->disas_symtab.elf32; |
1874 | #else |
1875 | struct elf_symelf32_sym *syms = s->disas_symtab.elf64; |
1876 | #endif |
1877 | |
1878 | // binary search |
1879 | struct elf_symelf32_sym *sym; |
1880 | |
1881 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
1882 | if (sym != NULL((void*)0)) { |
1883 | return s->disas_strtab + sym->st_name; |
1884 | } |
1885 | |
1886 | return ""; |
1887 | } |
1888 | |
1889 | /* FIXME: This should use elf_ops.h */ |
1890 | static int symcmp(const void *s0, const void *s1) |
1891 | { |
1892 | struct elf_symelf32_sym *sym0 = (struct elf_symelf32_sym *)s0; |
1893 | struct elf_symelf32_sym *sym1 = (struct elf_symelf32_sym *)s1; |
1894 | return (sym0->st_value < sym1->st_value) |
1895 | ? -1 |
1896 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
1897 | } |
1898 | |
1899 | /* Best attempt to load symbols from this ELF object. */ |
1900 | static void load_symbols(struct elfhdrelf32_hdr *hdr, int fd, abi_ulong load_bias) |
1901 | { |
1902 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1903 | struct elf_shdrelf32_shdr *shdr; |
1904 | char *strings = NULL((void*)0); |
1905 | struct syminfo *s = NULL((void*)0); |
1906 | struct elf_symelf32_sym *new_syms, *syms = NULL((void*)0); |
1907 | |
1908 | shnum = hdr->e_shnum; |
1909 | i = shnum * sizeof(struct elf_shdrelf32_shdr); |
1910 | shdr = (struct elf_shdrelf32_shdr *)alloca(i)__builtin_alloca (i); |
1911 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { |
1912 | return; |
1913 | } |
1914 | |
1915 | bswap_shdr(shdr, shnum); |
1916 | for (i = 0; i < shnum; ++i) { |
1917 | if (shdr[i].sh_type == SHT_SYMTAB2) { |
1918 | sym_idx = i; |
1919 | str_idx = shdr[i].sh_link; |
1920 | goto found; |
1921 | } |
1922 | } |
1923 | |
1924 | /* There will be no symbol table if the file was stripped. */ |
1925 | return; |
1926 | |
1927 | found: |
1928 | /* Now know where the strtab and symtab are. Snarf them. */ |
1929 | s = malloc(sizeof(*s)); |
1930 | if (!s) { |
1931 | goto give_up; |
1932 | } |
1933 | |
1934 | i = shdr[str_idx].sh_size; |
1935 | s->disas_strtab = strings = malloc(i); |
1936 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { |
1937 | goto give_up; |
1938 | } |
1939 | |
1940 | i = shdr[sym_idx].sh_size; |
1941 | syms = malloc(i); |
1942 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { |
1943 | goto give_up; |
1944 | } |
1945 | |
1946 | nsyms = i / sizeof(struct elf_symelf32_sym); |
1947 | for (i = 0; i < nsyms; ) { |
1948 | bswap_sym(syms + i); |
1949 | /* Throw away entries which we do not need. */ |
1950 | if (syms[i].st_shndx == SHN_UNDEF0 |
1951 | || syms[i].st_shndx >= SHN_LORESERVE0xff00 |
1952 | || ELF_ST_TYPE(syms[i].st_info)(((unsigned int) syms[i].st_info) & 0xf) != STT_FUNC2) { |
1953 | if (i < --nsyms) { |
1954 | syms[i] = syms[nsyms]; |
1955 | } |
1956 | } else { |
1957 | #if defined(TARGET_ARM) || defined (TARGET_MIPS1) |
1958 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
1959 | syms[i].st_value &= ~(target_ulong)1; |
1960 | #endif |
1961 | syms[i].st_value += load_bias; |
1962 | i++; |
1963 | } |
1964 | } |
1965 | |
1966 | /* No "useful" symbol. */ |
1967 | if (nsyms == 0) { |
1968 | goto give_up; |
1969 | } |
1970 | |
1971 | /* Attempt to free the storage associated with the local symbols |
1972 | that we threw away. Whether or not this has any effect on the |
1973 | memory allocation depends on the malloc implementation and how |
1974 | many symbols we managed to discard. */ |
1975 | new_syms = realloc(syms, nsyms * sizeof(*syms)); |
1976 | if (new_syms == NULL((void*)0)) { |
1977 | goto give_up; |
1978 | } |
1979 | syms = new_syms; |
1980 | |
1981 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
1982 | |
1983 | s->disas_num_syms = nsyms; |
1984 | #if ELF_CLASS1 == ELFCLASS321 |
1985 | s->disas_symtab.elf32 = syms; |
1986 | #else |
1987 | s->disas_symtab.elf64 = syms; |
1988 | #endif |
1989 | s->lookup_symbol = lookup_symbolxx; |
1990 | s->next = syminfos; |
1991 | syminfos = s; |
1992 | |
1993 | return; |
1994 | |
1995 | give_up: |
1996 | free(s); |
1997 | free(strings); |
1998 | free(syms); |
1999 | } |
2000 | |
2001 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
2002 | { |
2003 | struct image_info interp_info; |
2004 | struct elfhdrelf32_hdr elf_ex; |
2005 | char *elf_interpreter = NULL((void*)0); |
2006 | |
2007 | info->start_mmap = (abi_ulong)ELF_START_MMAP0x80000000; |
2008 | info->mmap = 0; |
2009 | info->rss = 0; |
2010 | |
2011 | load_elf_image(bprm->filename, bprm->fd, info, |
2012 | &elf_interpreter, bprm->buf); |
2013 | |
2014 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
2015 | If we do nothing, we'll have overwritten this when we re-use bprm->buf |
2016 | when we load the interpreter. */ |
2017 | elf_ex = *(struct elfhdrelf32_hdr *)bprm->buf; |
2018 | |
2019 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
2020 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); |
2021 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); |
2022 | if (!bprm->p) { |
2023 | fprintf(stderrstderr, "%s: %s\n", bprm->filename, strerror(E2BIG7)); |
2024 | exit(-1); |
2025 | } |
2026 | |
2027 | /* Do this so that we can load the interpreter, if need be. We will |
2028 | change some of these later */ |
2029 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
2030 | |
2031 | if (elf_interpreter) { |
2032 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); |
2033 | |
2034 | /* If the program interpreter is one of these two, then assume |
2035 | an iBCS2 image. Otherwise assume a native linux image. */ |
2036 | |
2037 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 |
2038 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { |
2039 | info->personality = PER_SVR4; |
2040 | |
2041 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
2042 | and some applications "depend" upon this behavior. Since |
2043 | we do not have the power to recompile these, we emulate |
2044 | the SVr4 behavior. Sigh. */ |
2045 | target_mmap(0, qemu_host_page_size, PROT_READ0x1 | PROT_EXEC0x4, |
2046 | MAP_FIXED0x10 | MAP_PRIVATE0x02, -1, 0); |
2047 | } |
2048 | } |
2049 | |
2050 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
2051 | info, (elf_interpreter ? &interp_info : NULL((void*)0))); |
2052 | info->start_stack = bprm->p; |
2053 | |
2054 | /* If we have an interpreter, set that as the program's entry point. |
2055 | Copy the load_bias as well, to help PPC64 interpret the entry |
2056 | point as a function descriptor. Do this after creating elf tables |
2057 | so that we copy the original program entry point into the AUXV. */ |
2058 | if (elf_interpreter) { |
2059 | info->load_bias = interp_info.load_bias; |
2060 | info->entry = interp_info.entry; |
2061 | free(elf_interpreter); |
2062 | } |
2063 | |
2064 | #ifdef USE_ELF_CORE_DUMP |
2065 | bprm->core_dump = &elf_core_dump; |
2066 | #endif |
2067 | |
2068 | return 0; |
2069 | } |
2070 | |
2071 | #ifdef USE_ELF_CORE_DUMP |
2072 | /* |
2073 | * Definitions to generate Intel SVR4-like core files. |
2074 | * These mostly have the same names as the SVR4 types with "target_elf_" |
2075 | * tacked on the front to prevent clashes with linux definitions, |
2076 | * and the typedef forms have been avoided. This is mostly like |
2077 | * the SVR4 structure, but more Linuxy, with things that Linux does |
2078 | * not support and which gdb doesn't really use excluded. |
2079 | * |
2080 | * Fields we don't dump (their contents is zero) in linux-user qemu |
2081 | * are marked with XXX. |
2082 | * |
2083 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). |
2084 | * |
2085 | * Porting ELF coredump for target is (quite) simple process. First you |
2086 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
2087 | * the target resides): |
2088 | * |
2089 | * #define USE_ELF_CORE_DUMP |
2090 | * |
2091 | * Next you define type of register set used for dumping. ELF specification |
2092 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. |
2093 | * |
2094 | * typedef <target_regtype> target_elf_greg_t; |
2095 | * #define ELF_NREG <number of registers> |
2096 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
2097 | * |
2098 | * Last step is to implement target specific function that copies registers |
2099 | * from given cpu into just specified register set. Prototype is: |
2100 | * |
2101 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
2102 | * const CPUArchState *env); |
2103 | * |
2104 | * Parameters: |
2105 | * regs - copy register values into here (allocated and zeroed by caller) |
2106 | * env - copy registers from here |
2107 | * |
2108 | * Example for ARM target is provided in this file. |
2109 | */ |
2110 | |
2111 | /* An ELF note in memory */ |
2112 | struct memelfnote { |
2113 | const char *name; |
2114 | size_t namesz; |
2115 | size_t namesz_rounded; |
2116 | int type; |
2117 | size_t datasz; |
2118 | size_t datasz_rounded; |
2119 | void *data; |
2120 | size_t notesz; |
2121 | }; |
2122 | |
2123 | struct target_elf_siginfo { |
2124 | abi_int si_signo; /* signal number */ |
2125 | abi_int si_code; /* extra code */ |
2126 | abi_int si_errno; /* errno */ |
2127 | }; |
2128 | |
2129 | struct target_elf_prstatus { |
2130 | struct target_elf_siginfo pr_info; /* Info associated with signal */ |
2131 | abi_short pr_cursig; /* Current signal */ |
2132 | abi_ulong pr_sigpend; /* XXX */ |
2133 | abi_ulong pr_sighold; /* XXX */ |
2134 | target_pid_t pr_pid; |
2135 | target_pid_t pr_ppid; |
2136 | target_pid_t pr_pgrp; |
2137 | target_pid_t pr_sid; |
2138 | struct target_timeval pr_utime; /* XXX User time */ |
2139 | struct target_timeval pr_stime; /* XXX System time */ |
2140 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ |
2141 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ |
2142 | target_elf_gregset_t pr_reg; /* GP registers */ |
2143 | abi_int pr_fpvalid; /* XXX */ |
2144 | }; |
2145 | |
2146 | #define ELF_PRARGSZ(80) (80) /* Number of chars for args */ |
2147 | |
2148 | struct target_elf_prpsinfo { |
2149 | char pr_state; /* numeric process state */ |
2150 | char pr_sname; /* char for pr_state */ |
2151 | char pr_zomb; /* zombie */ |
2152 | char pr_nice; /* nice val */ |
2153 | abi_ulong pr_flag; /* flags */ |
2154 | target_uid_t pr_uid; |
2155 | target_gid_t pr_gid; |
2156 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; |
2157 | /* Lots missing */ |
2158 | char pr_fname[16]; /* filename of executable */ |
2159 | char pr_psargs[ELF_PRARGSZ(80)]; /* initial part of arg list */ |
2160 | }; |
2161 | |
2162 | /* Here is the structure in which status of each thread is captured. */ |
2163 | struct elf_thread_status { |
2164 | QTAILQ_ENTRY(elf_thread_status)struct { struct elf_thread_status *tqe_next; struct elf_thread_status * *tqe_prev; } ets_link; |
2165 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
2166 | #if 0 |
2167 | elf_fpregset_t fpu; /* NT_PRFPREG */ |
2168 | struct task_struct *thread; |
2169 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
2170 | #endif |
2171 | struct memelfnote notes[1]; |
2172 | int num_notes; |
2173 | }; |
2174 | |
2175 | struct elf_note_info { |
2176 | struct memelfnote *notes; |
2177 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
2178 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ |
2179 | |
2180 | QTAILQ_HEAD(thread_list_head, elf_thread_status)struct thread_list_head { struct elf_thread_status *tqh_first ; struct elf_thread_status * *tqh_last; } thread_list; |
2181 | #if 0 |
2182 | /* |
2183 | * Current version of ELF coredump doesn't support |
2184 | * dumping fp regs etc. |
2185 | */ |
2186 | elf_fpregset_t *fpu; |
2187 | elf_fpxregset_t *xfpu; |
2188 | int thread_status_size; |
2189 | #endif |
2190 | int notes_size; |
2191 | int numnote; |
2192 | }; |
2193 | |
2194 | struct vm_area_struct { |
2195 | abi_ulong vma_start; /* start vaddr of memory region */ |
2196 | abi_ulong vma_end; /* end vaddr of memory region */ |
2197 | abi_ulong vma_flags; /* protection etc. flags for the region */ |
2198 | QTAILQ_ENTRY(vm_area_struct)struct { struct vm_area_struct *tqe_next; struct vm_area_struct * *tqe_prev; } vma_link; |
2199 | }; |
2200 | |
2201 | struct mm_struct { |
2202 | QTAILQ_HEAD(, vm_area_struct)struct { struct vm_area_struct *tqh_first; struct vm_area_struct * *tqh_last; } mm_mmap; |
2203 | int mm_count; /* number of mappings */ |
2204 | }; |
2205 | |
2206 | static struct mm_struct *vma_init(void); |
2207 | static void vma_delete(struct mm_struct *); |
2208 | static int vma_add_mapping(struct mm_struct *, abi_ulong, |
2209 | abi_ulong, abi_ulong); |
2210 | static int vma_get_mapping_count(const struct mm_struct *); |
2211 | static struct vm_area_struct *vma_first(const struct mm_struct *); |
2212 | static struct vm_area_struct *vma_next(struct vm_area_struct *); |
2213 | static abi_ulong vma_dump_size(const struct vm_area_struct *); |
2214 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
2215 | unsigned long flags); |
2216 | |
2217 | static void fill_elf_header(struct elfhdrelf32_hdr *, int, uint16_t, uint32_t); |
2218 | static void fill_note(struct memelfnote *, const char *, int, |
2219 | unsigned int, void *); |
2220 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
2221 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); |
2222 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
2223 | static void fill_elf_note_phdr(struct elf_phdrelf32_phdr *, int, off_t); |
2224 | static size_t note_size(const struct memelfnote *); |
2225 | static void free_note_info(struct elf_note_info *); |
2226 | static int fill_note_info(struct elf_note_info *, long, const CPUArchStatestruct CPUMIPSState *); |
2227 | static void fill_thread_info(struct elf_note_info *, const CPUArchStatestruct CPUMIPSState *); |
2228 | static int core_dump_filename(const TaskState *, char *, size_t); |
2229 | |
2230 | static int dump_write(int, const void *, size_t); |
2231 | static int write_note(struct memelfnote *, int); |
2232 | static int write_note_info(struct elf_note_info *, int); |
2233 | |
2234 | #ifdef BSWAP_NEEDED |
2235 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
2236 | { |
2237 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
2238 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); |
2239 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); |
2240 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
2241 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
2242 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); |
2243 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
2244 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); |
2245 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); |
2246 | prstatus->pr_sid = tswap32(prstatus->pr_sid); |
2247 | /* cpu times are not filled, so we skip them */ |
2248 | /* regs should be in correct format already */ |
2249 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); |
2250 | } |
2251 | |
2252 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
2253 | { |
2254 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
2255 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
2256 | psinfo->pr_gid = tswap16(psinfo->pr_gid); |
2257 | psinfo->pr_pid = tswap32(psinfo->pr_pid); |
2258 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); |
2259 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); |
2260 | psinfo->pr_sid = tswap32(psinfo->pr_sid); |
2261 | } |
2262 | |
2263 | static void bswap_note(struct elf_noteelf32_note *en) |
2264 | { |
2265 | bswap32s(&en->n_namesz); |
2266 | bswap32s(&en->n_descsz); |
2267 | bswap32s(&en->n_type); |
2268 | } |
2269 | #else |
2270 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } |
2271 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} |
2272 | static inline void bswap_note(struct elf_noteelf32_note *en) { } |
2273 | #endif /* BSWAP_NEEDED */ |
2274 | |
2275 | /* |
2276 | * Minimal support for linux memory regions. These are needed |
2277 | * when we are finding out what memory exactly belongs to |
2278 | * emulated process. No locks needed here, as long as |
2279 | * thread that received the signal is stopped. |
2280 | */ |
2281 | |
2282 | static struct mm_struct *vma_init(void) |
2283 | { |
2284 | struct mm_struct *mm; |
2285 | |
2286 | if ((mm = g_malloc(sizeof (*mm))) == NULL((void*)0)) |
2287 | return (NULL((void*)0)); |
2288 | |
2289 | mm->mm_count = 0; |
2290 | QTAILQ_INIT(&mm->mm_mmap)do { (&mm->mm_mmap)->tqh_first = ((void*)0); (& mm->mm_mmap)->tqh_last = &(&mm->mm_mmap)-> tqh_first; } while ( 0); |
2291 | |
2292 | return (mm); |
2293 | } |
2294 | |
2295 | static void vma_delete(struct mm_struct *mm) |
2296 | { |
2297 | struct vm_area_struct *vma; |
2298 | |
2299 | while ((vma = vma_first(mm)) != NULL((void*)0)) { |
2300 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link)do { if (((vma)->vma_link.tqe_next) != ((void*)0)) (vma)-> vma_link.tqe_next->vma_link.tqe_prev = (vma)->vma_link. tqe_prev; else (&mm->mm_mmap)->tqh_last = (vma)-> vma_link.tqe_prev; *(vma)->vma_link.tqe_prev = (vma)->vma_link .tqe_next; } while ( 0); |
2301 | g_free(vma); |
2302 | } |
2303 | g_free(mm); |
2304 | } |
2305 | |
2306 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, |
2307 | abi_ulong end, abi_ulong flags) |
2308 | { |
2309 | struct vm_area_struct *vma; |
2310 | |
2311 | if ((vma = g_malloc0(sizeof (*vma))) == NULL((void*)0)) |
2312 | return (-1); |
2313 | |
2314 | vma->vma_start = start; |
2315 | vma->vma_end = end; |
2316 | vma->vma_flags = flags; |
2317 | |
2318 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link)do { (vma)->vma_link.tqe_next = ((void*)0); (vma)->vma_link .tqe_prev = (&mm->mm_mmap)->tqh_last; *(&mm-> mm_mmap)->tqh_last = (vma); (&mm->mm_mmap)->tqh_last = &(vma)->vma_link.tqe_next; } while ( 0); |
2319 | mm->mm_count++; |
2320 | |
2321 | return (0); |
2322 | } |
2323 | |
2324 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) |
2325 | { |
2326 | return (QTAILQ_FIRST(&mm->mm_mmap)((&mm->mm_mmap)->tqh_first)); |
2327 | } |
2328 | |
2329 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) |
2330 | { |
2331 | return (QTAILQ_NEXT(vma, vma_link)((vma)->vma_link.tqe_next)); |
2332 | } |
2333 | |
2334 | static int vma_get_mapping_count(const struct mm_struct *mm) |
2335 | { |
2336 | return (mm->mm_count); |
2337 | } |
2338 | |
2339 | /* |
2340 | * Calculate file (dump) size of given memory region. |
2341 | */ |
2342 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) |
2343 | { |
2344 | /* if we cannot even read the first page, skip it */ |
2345 | if (!access_ok(VERIFY_READ0, vma->vma_start, TARGET_PAGE_SIZE(1 << 12))) |
2346 | return (0); |
2347 | |
2348 | /* |
2349 | * Usually we don't dump executable pages as they contain |
2350 | * non-writable code that debugger can read directly from |
2351 | * target library etc. However, thread stacks are marked |
2352 | * also executable so we read in first page of given region |
2353 | * and check whether it contains elf header. If there is |
2354 | * no elf header, we dump it. |
2355 | */ |
2356 | if (vma->vma_flags & PROT_EXEC0x4) { |
2357 | char page[TARGET_PAGE_SIZE(1 << 12)]; |
2358 | |
2359 | copy_from_user(page, vma->vma_start, sizeof (page)); |
2360 | if ((page[EI_MAG00] == ELFMAG00x7f) && |
2361 | (page[EI_MAG11] == ELFMAG1'E') && |
2362 | (page[EI_MAG22] == ELFMAG2'L') && |
2363 | (page[EI_MAG33] == ELFMAG3'F')) { |
2364 | /* |
2365 | * Mappings are possibly from ELF binary. Don't dump |
2366 | * them. |
2367 | */ |
2368 | return (0); |
2369 | } |
2370 | } |
2371 | |
2372 | return (vma->vma_end - vma->vma_start); |
2373 | } |
2374 | |
2375 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
2376 | unsigned long flags) |
2377 | { |
2378 | struct mm_struct *mm = (struct mm_struct *)priv; |
2379 | |
2380 | vma_add_mapping(mm, start, end, flags); |
2381 | return (0); |
2382 | } |
2383 | |
2384 | static void fill_note(struct memelfnote *note, const char *name, int type, |
2385 | unsigned int sz, void *data) |
2386 | { |
2387 | unsigned int namesz; |
2388 | |
2389 | namesz = strlen(name) + 1; |
2390 | note->name = name; |
2391 | note->namesz = namesz; |
2392 | note->namesz_rounded = roundup(namesz, sizeof (int32_t))(__builtin_constant_p (sizeof (int32_t)) && ((((sizeof (int32_t)) - 1) & (sizeof (int32_t))) == 0) ? (((namesz) + (sizeof (int32_t)) - 1) & ~((sizeof (int32_t)) - 1)) : ((((namesz) + ((sizeof (int32_t)) - 1)) / (sizeof (int32_t)) ) * (sizeof (int32_t)))); |
2393 | note->type = type; |
2394 | note->datasz = sz; |
2395 | note->datasz_rounded = roundup(sz, sizeof (int32_t))(__builtin_constant_p (sizeof (int32_t)) && ((((sizeof (int32_t)) - 1) & (sizeof (int32_t))) == 0) ? (((sz) + ( sizeof (int32_t)) - 1) & ~((sizeof (int32_t)) - 1)) : ((( (sz) + ((sizeof (int32_t)) - 1)) / (sizeof (int32_t))) * (sizeof (int32_t)))); |
2396 | |
2397 | note->data = data; |
2398 | |
2399 | /* |
2400 | * We calculate rounded up note size here as specified by |
2401 | * ELF document. |
2402 | */ |
2403 | note->notesz = sizeof (struct elf_noteelf32_note) + |
2404 | note->namesz_rounded + note->datasz_rounded; |
2405 | } |
2406 | |
2407 | static void fill_elf_header(struct elfhdrelf32_hdr *elf, int segs, uint16_t machine, |
2408 | uint32_t flags) |
2409 | { |
2410 | (void) memset(elf, 0, sizeof(*elf)); |
2411 | |
2412 | (void) memcpy(elf->e_ident, ELFMAG"\177ELF", SELFMAG4); |
2413 | elf->e_ident[EI_CLASS4] = ELF_CLASS1; |
2414 | elf->e_ident[EI_DATA5] = ELF_DATA2; |
2415 | elf->e_ident[EI_VERSION6] = EV_CURRENT1; |
2416 | elf->e_ident[EI_OSABI7] = ELF_OSABI0; |
2417 | |
2418 | elf->e_type = ET_CORE4; |
2419 | elf->e_machine = machine; |
2420 | elf->e_version = EV_CURRENT1; |
2421 | elf->e_phoff = sizeof(struct elfhdrelf32_hdr); |
2422 | elf->e_flags = flags; |
2423 | elf->e_ehsize = sizeof(struct elfhdrelf32_hdr); |
2424 | elf->e_phentsize = sizeof(struct elf_phdrelf32_phdr); |
2425 | elf->e_phnum = segs; |
2426 | |
2427 | bswap_ehdr(elf); |
2428 | } |
2429 | |
2430 | static void fill_elf_note_phdr(struct elf_phdrelf32_phdr *phdr, int sz, off_t offset) |
2431 | { |
2432 | phdr->p_type = PT_NOTE4; |
2433 | phdr->p_offset = offset; |
2434 | phdr->p_vaddr = 0; |
2435 | phdr->p_paddr = 0; |
2436 | phdr->p_filesz = sz; |
2437 | phdr->p_memsz = 0; |
2438 | phdr->p_flags = 0; |
2439 | phdr->p_align = 0; |
2440 | |
2441 | bswap_phdr(phdr, 1); |
2442 | } |
2443 | |
2444 | static size_t note_size(const struct memelfnote *note) |
2445 | { |
2446 | return (note->notesz); |
2447 | } |
2448 | |
2449 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
2450 | const TaskState *ts, int signr) |
2451 | { |
2452 | (void) memset(prstatus, 0, sizeof (*prstatus)); |
2453 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; |
2454 | prstatus->pr_pid = ts->ts_tid; |
2455 | prstatus->pr_ppid = getppid(); |
2456 | prstatus->pr_pgrp = getpgrp(); |
2457 | prstatus->pr_sid = getsid(0); |
2458 | |
2459 | bswap_prstatus(prstatus); |
2460 | } |
2461 | |
2462 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
2463 | { |
2464 | char *base_filename; |
2465 | unsigned int i, len; |
2466 | |
2467 | (void) memset(psinfo, 0, sizeof (*psinfo)); |
2468 | |
2469 | len = ts->info->arg_end - ts->info->arg_start; |
2470 | if (len >= ELF_PRARGSZ(80)) |
2471 | len = ELF_PRARGSZ(80) - 1; |
2472 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) |
2473 | return -EFAULT14; |
2474 | for (i = 0; i < len; i++) |
2475 | if (psinfo->pr_psargs[i] == 0) |
2476 | psinfo->pr_psargs[i] = ' '; |
2477 | psinfo->pr_psargs[len] = 0; |
2478 | |
2479 | psinfo->pr_pid = getpid(); |
2480 | psinfo->pr_ppid = getppid(); |
2481 | psinfo->pr_pgrp = getpgrp(); |
2482 | psinfo->pr_sid = getsid(0); |
2483 | psinfo->pr_uid = getuid(); |
2484 | psinfo->pr_gid = getgid(); |
2485 | |
2486 | base_filename = g_path_get_basename(ts->bprm->filename); |
2487 | /* |
2488 | * Using strncpy here is fine: at max-length, |
2489 | * this field is not NUL-terminated. |
2490 | */ |
2491 | (void) strncpy(psinfo->pr_fname, base_filename, |
2492 | sizeof(psinfo->pr_fname)); |
2493 | |
2494 | g_free(base_filename); |
2495 | bswap_psinfo(psinfo); |
2496 | return (0); |
2497 | } |
2498 | |
2499 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) |
2500 | { |
2501 | elf_addr_tElf32_Off auxv = (elf_addr_tElf32_Off)ts->info->saved_auxv; |
2502 | elf_addr_tElf32_Off orig_auxv = auxv; |
2503 | void *ptr; |
2504 | int len = ts->info->auxv_len; |
2505 | |
2506 | /* |
2507 | * Auxiliary vector is stored in target process stack. It contains |
2508 | * {type, value} pairs that we need to dump into note. This is not |
2509 | * strictly necessary but we do it here for sake of completeness. |
2510 | */ |
2511 | |
2512 | /* read in whole auxv vector and copy it to memelfnote */ |
2513 | ptr = lock_user(VERIFY_READ0, orig_auxv, len, 0); |
2514 | if (ptr != NULL((void*)0)) { |
2515 | fill_note(note, "CORE", NT_AUXV6, len, ptr); |
2516 | unlock_user(ptr, auxv, len); |
2517 | } |
2518 | } |
2519 | |
2520 | /* |
2521 | * Constructs name of coredump file. We have following convention |
2522 | * for the name: |
2523 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core |
2524 | * |
2525 | * Returns 0 in case of success, -1 otherwise (errno is set). |
2526 | */ |
2527 | static int core_dump_filename(const TaskState *ts, char *buf, |
2528 | size_t bufsize) |
2529 | { |
2530 | char timestamp[64]; |
2531 | char *filename = NULL((void*)0); |
2532 | char *base_filename = NULL((void*)0); |
2533 | struct timeval tv; |
2534 | struct tm tm; |
2535 | |
2536 | assert(bufsize >= PATH_MAX)((bufsize >= 4096) ? (void) (0) : __assert_fail ("bufsize >= 4096" , "/home/stefan/src/qemu/qemu.org/qemu/linux-user/elfload.c", 2536, __PRETTY_FUNCTION__)); |
2537 | |
2538 | if (gettimeofday(&tv, NULL((void*)0)) < 0) { |
2539 | (void) fprintf(stderrstderr, "unable to get current timestamp: %s", |
2540 | strerror(errno(*__errno_location ()))); |
2541 | return (-1); |
2542 | } |
2543 | |
2544 | filename = strdup(ts->bprm->filename); |
2545 | base_filename = strdup(basename(filename)); |
2546 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", |
2547 | localtime_r(&tv.tv_sec, &tm)); |
2548 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
2549 | base_filename, timestamp, (int)getpid()); |
2550 | free(base_filename); |
2551 | free(filename); |
2552 | |
2553 | return (0); |
2554 | } |
2555 | |
2556 | static int dump_write(int fd, const void *ptr, size_t size) |
2557 | { |
2558 | const char *bufp = (const char *)ptr; |
2559 | ssize_t bytes_written, bytes_left; |
2560 | struct rlimit dumpsize; |
2561 | off_t pos; |
2562 | |
2563 | bytes_written = 0; |
Value stored to 'bytes_written' is never read | |
2564 | getrlimit(RLIMIT_CORERLIMIT_CORE, &dumpsize); |
2565 | if ((pos = lseek(fd, 0, SEEK_CUR1))==-1) { |
2566 | if (errno(*__errno_location ()) == ESPIPE29) { /* not a seekable stream */ |
2567 | bytes_left = size; |
2568 | } else { |
2569 | return pos; |
2570 | } |
2571 | } else { |
2572 | if (dumpsize.rlim_cur <= pos) { |
2573 | return -1; |
2574 | } else if (dumpsize.rlim_cur == RLIM_INFINITY0xffffffffffffffffuLL) { |
2575 | bytes_left = size; |
2576 | } else { |
2577 | size_t limit_left=dumpsize.rlim_cur - pos; |
2578 | bytes_left = limit_left >= size ? size : limit_left ; |
2579 | } |
2580 | } |
2581 | |
2582 | /* |
2583 | * In normal conditions, single write(2) should do but |
2584 | * in case of socket etc. this mechanism is more portable. |
2585 | */ |
2586 | do { |
2587 | bytes_written = write(fd, bufp, bytes_left); |
2588 | if (bytes_written < 0) { |
2589 | if (errno(*__errno_location ()) == EINTR4) |
2590 | continue; |
2591 | return (-1); |
2592 | } else if (bytes_written == 0) { /* eof */ |
2593 | return (-1); |
2594 | } |
2595 | bufp += bytes_written; |
2596 | bytes_left -= bytes_written; |
2597 | } while (bytes_left > 0); |
2598 | |
2599 | return (0); |
2600 | } |
2601 | |
2602 | static int write_note(struct memelfnote *men, int fd) |
2603 | { |
2604 | struct elf_noteelf32_note en; |
2605 | |
2606 | en.n_namesz = men->namesz; |
2607 | en.n_type = men->type; |
2608 | en.n_descsz = men->datasz; |
2609 | |
2610 | bswap_note(&en); |
2611 | |
2612 | if (dump_write(fd, &en, sizeof(en)) != 0) |
2613 | return (-1); |
2614 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) |
2615 | return (-1); |
2616 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
2617 | return (-1); |
2618 | |
2619 | return (0); |
2620 | } |
2621 | |
2622 | static void fill_thread_info(struct elf_note_info *info, const CPUArchStatestruct CPUMIPSState *env) |
2623 | { |
2624 | TaskState *ts = (TaskState *)env->opaque; |
2625 | struct elf_thread_status *ets; |
2626 | |
2627 | ets = g_malloc0(sizeof (*ets)); |
2628 | ets->num_notes = 1; /* only prstatus is dumped */ |
2629 | fill_prstatus(&ets->prstatus, ts, 0); |
2630 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); |
2631 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS1, sizeof (ets->prstatus), |
2632 | &ets->prstatus); |
2633 | |
2634 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link)do { (ets)->ets_link.tqe_next = ((void*)0); (ets)->ets_link .tqe_prev = (&info->thread_list)->tqh_last; *(& info->thread_list)->tqh_last = (ets); (&info->thread_list )->tqh_last = &(ets)->ets_link.tqe_next; } while ( 0 ); |
2635 | |
2636 | info->notes_size += note_size(&ets->notes[0]); |
2637 | } |
2638 | |
2639 | static int fill_note_info(struct elf_note_info *info, |
2640 | long signr, const CPUArchStatestruct CPUMIPSState *env) |
2641 | { |
2642 | #define NUMNOTES3 3 |
2643 | CPUState *cpu = NULL((void*)0); |
2644 | TaskState *ts = (TaskState *)env->opaque; |
2645 | int i; |
2646 | |
2647 | (void) memset(info, 0, sizeof (*info)); |
2648 | |
2649 | QTAILQ_INIT(&info->thread_list)do { (&info->thread_list)->tqh_first = ((void*)0); ( &info->thread_list)->tqh_last = &(&info-> thread_list)->tqh_first; } while ( 0); |
2650 | |
2651 | info->notes = g_malloc0(NUMNOTES3 * sizeof (struct memelfnote)); |
2652 | if (info->notes == NULL((void*)0)) |
2653 | return (-ENOMEM12); |
2654 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
2655 | if (info->prstatus == NULL((void*)0)) |
2656 | return (-ENOMEM12); |
2657 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
2658 | if (info->prstatus == NULL((void*)0)) |
2659 | return (-ENOMEM12); |
2660 | |
2661 | /* |
2662 | * First fill in status (and registers) of current thread |
2663 | * including process info & aux vector. |
2664 | */ |
2665 | fill_prstatus(info->prstatus, ts, signr); |
2666 | elf_core_copy_regs(&info->prstatus->pr_reg, env); |
2667 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS1, |
2668 | sizeof (*info->prstatus), info->prstatus); |
2669 | fill_psinfo(info->psinfo, ts); |
2670 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO3, |
2671 | sizeof (*info->psinfo), info->psinfo); |
2672 | fill_auxv_note(&info->notes[2], ts); |
2673 | info->numnote = 3; |
2674 | |
2675 | info->notes_size = 0; |
2676 | for (i = 0; i < info->numnote; i++) |
2677 | info->notes_size += note_size(&info->notes[i]); |
2678 | |
2679 | /* read and fill status of all threads */ |
2680 | cpu_list_lock(); |
2681 | CPU_FOREACH(cpu)for ((cpu) = ((&cpus)->tqh_first); (cpu); (cpu) = ((cpu )->node.tqe_next)) { |
2682 | if (cpu == thread_cpu) { |
2683 | continue; |
2684 | } |
2685 | fill_thread_info(info, (CPUArchStatestruct CPUMIPSState *)cpu->env_ptr); |
2686 | } |
2687 | cpu_list_unlock(); |
2688 | |
2689 | return (0); |
2690 | } |
2691 | |
2692 | static void free_note_info(struct elf_note_info *info) |
2693 | { |
2694 | struct elf_thread_status *ets; |
2695 | |
2696 | while (!QTAILQ_EMPTY(&info->thread_list)((&info->thread_list)->tqh_first == ((void*)0))) { |
2697 | ets = QTAILQ_FIRST(&info->thread_list)((&info->thread_list)->tqh_first); |
2698 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link)do { if (((ets)->ets_link.tqe_next) != ((void*)0)) (ets)-> ets_link.tqe_next->ets_link.tqe_prev = (ets)->ets_link. tqe_prev; else (&info->thread_list)->tqh_last = (ets )->ets_link.tqe_prev; *(ets)->ets_link.tqe_prev = (ets) ->ets_link.tqe_next; } while ( 0); |
2699 | g_free(ets); |
2700 | } |
2701 | |
2702 | g_free(info->prstatus); |
2703 | g_free(info->psinfo); |
2704 | g_free(info->notes); |
2705 | } |
2706 | |
2707 | static int write_note_info(struct elf_note_info *info, int fd) |
2708 | { |
2709 | struct elf_thread_status *ets; |
2710 | int i, error = 0; |
2711 | |
2712 | /* write prstatus, psinfo and auxv for current thread */ |
2713 | for (i = 0; i < info->numnote; i++) |
2714 | if ((error = write_note(&info->notes[i], fd)) != 0) |
2715 | return (error); |
2716 | |
2717 | /* write prstatus for each thread */ |
2718 | for (ets = info->thread_list.tqh_first; ets != NULL((void*)0); |
2719 | ets = ets->ets_link.tqe_next) { |
2720 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
2721 | return (error); |
2722 | } |
2723 | |
2724 | return (0); |
2725 | } |
2726 | |
2727 | /* |
2728 | * Write out ELF coredump. |
2729 | * |
2730 | * See documentation of ELF object file format in: |
2731 | * http://www.caldera.com/developers/devspecs/gabi41.pdf |
2732 | * |
2733 | * Coredump format in linux is following: |
2734 | * |
2735 | * 0 +----------------------+ \ |
2736 | * | ELF header | ET_CORE | |
2737 | * +----------------------+ | |
2738 | * | ELF program headers | |--- headers |
2739 | * | - NOTE section | | |
2740 | * | - PT_LOAD sections | | |
2741 | * +----------------------+ / |
2742 | * | NOTEs: | |
2743 | * | - NT_PRSTATUS | |
2744 | * | - NT_PRSINFO | |
2745 | * | - NT_AUXV | |
2746 | * +----------------------+ <-- aligned to target page |
2747 | * | Process memory dump | |
2748 | * : : |
2749 | * . . |
2750 | * : : |
2751 | * | | |
2752 | * +----------------------+ |
2753 | * |
2754 | * NT_PRSTATUS -> struct elf_prstatus (per thread) |
2755 | * NT_PRSINFO -> struct elf_prpsinfo |
2756 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). |
2757 | * |
2758 | * Format follows System V format as close as possible. Current |
2759 | * version limitations are as follows: |
2760 | * - no floating point registers are dumped |
2761 | * |
2762 | * Function returns 0 in case of success, negative errno otherwise. |
2763 | * |
2764 | * TODO: make this work also during runtime: it should be |
2765 | * possible to force coredump from running process and then |
2766 | * continue processing. For example qemu could set up SIGUSR2 |
2767 | * handler (provided that target process haven't registered |
2768 | * handler for that) that does the dump when signal is received. |
2769 | */ |
2770 | static int elf_core_dump(int signr, const CPUArchStatestruct CPUMIPSState *env) |
2771 | { |
2772 | const TaskState *ts = (const TaskState *)env->opaque; |
2773 | struct vm_area_struct *vma = NULL((void*)0); |
2774 | char corefile[PATH_MAX4096]; |
2775 | struct elf_note_info info; |
2776 | struct elfhdrelf32_hdr elf; |
2777 | struct elf_phdrelf32_phdr phdr; |
2778 | struct rlimit dumpsize; |
2779 | struct mm_struct *mm = NULL((void*)0); |
2780 | off_t offset = 0, data_offset = 0; |
2781 | int segs = 0; |
2782 | int fd = -1; |
2783 | |
2784 | errno(*__errno_location ()) = 0; |
2785 | getrlimit(RLIMIT_CORERLIMIT_CORE, &dumpsize); |
2786 | if (dumpsize.rlim_cur == 0) |
2787 | return 0; |
2788 | |
2789 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) |
2790 | return (-errno(*__errno_location ())); |
2791 | |
2792 | if ((fd = open(corefile, O_WRONLY01 | O_CREAT0100, |
2793 | S_IRUSR0400|S_IWUSR0200|S_IRGRP(0400 >> 3)|S_IROTH((0400 >> 3) >> 3))) < 0) |
2794 | return (-errno(*__errno_location ())); |
2795 | |
2796 | /* |
2797 | * Walk through target process memory mappings and |
2798 | * set up structure containing this information. After |
2799 | * this point vma_xxx functions can be used. |
2800 | */ |
2801 | if ((mm = vma_init()) == NULL((void*)0)) |
2802 | goto out; |
2803 | |
2804 | walk_memory_regions(mm, vma_walker); |
2805 | segs = vma_get_mapping_count(mm); |
2806 | |
2807 | /* |
2808 | * Construct valid coredump ELF header. We also |
2809 | * add one more segment for notes. |
2810 | */ |
2811 | fill_elf_header(&elf, segs + 1, ELF_MACHINE8, 0); |
2812 | if (dump_write(fd, &elf, sizeof (elf)) != 0) |
2813 | goto out; |
2814 | |
2815 | /* fill in in-memory version of notes */ |
2816 | if (fill_note_info(&info, signr, env) < 0) |
2817 | goto out; |
2818 | |
2819 | offset += sizeof (elf); /* elf header */ |
2820 | offset += (segs + 1) * sizeof (struct elf_phdrelf32_phdr); /* program headers */ |
2821 | |
2822 | /* write out notes program header */ |
2823 | fill_elf_note_phdr(&phdr, info.notes_size, offset); |
2824 | |
2825 | offset += info.notes_size; |
2826 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) |
2827 | goto out; |
2828 | |
2829 | /* |
2830 | * ELF specification wants data to start at page boundary so |
2831 | * we align it here. |
2832 | */ |
2833 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE)(__builtin_constant_p (4096) && ((((4096) - 1) & ( 4096)) == 0) ? (((offset) + (4096) - 1) & ~((4096) - 1)) : ((((offset) + ((4096) - 1)) / (4096)) * (4096))); |
2834 | |
2835 | /* |
2836 | * Write program headers for memory regions mapped in |
2837 | * the target process. |
2838 | */ |
2839 | for (vma = vma_first(mm); vma != NULL((void*)0); vma = vma_next(vma)) { |
2840 | (void) memset(&phdr, 0, sizeof (phdr)); |
2841 | |
2842 | phdr.p_type = PT_LOAD1; |
2843 | phdr.p_offset = offset; |
2844 | phdr.p_vaddr = vma->vma_start; |
2845 | phdr.p_paddr = 0; |
2846 | phdr.p_filesz = vma_dump_size(vma); |
2847 | offset += phdr.p_filesz; |
2848 | phdr.p_memsz = vma->vma_end - vma->vma_start; |
2849 | phdr.p_flags = vma->vma_flags & PROT_READ0x1 ? PF_R0x4 : 0; |
2850 | if (vma->vma_flags & PROT_WRITE0x2) |
2851 | phdr.p_flags |= PF_W0x2; |
2852 | if (vma->vma_flags & PROT_EXEC0x4) |
2853 | phdr.p_flags |= PF_X0x1; |
2854 | phdr.p_align = ELF_EXEC_PAGESIZE4096; |
2855 | |
2856 | bswap_phdr(&phdr, 1); |
2857 | dump_write(fd, &phdr, sizeof (phdr)); |
2858 | } |
2859 | |
2860 | /* |
2861 | * Next we write notes just after program headers. No |
2862 | * alignment needed here. |
2863 | */ |
2864 | if (write_note_info(&info, fd) < 0) |
2865 | goto out; |
2866 | |
2867 | /* align data to page boundary */ |
2868 | if (lseek(fd, data_offset, SEEK_SET0) != data_offset) |
2869 | goto out; |
2870 | |
2871 | /* |
2872 | * Finally we can dump process memory into corefile as well. |
2873 | */ |
2874 | for (vma = vma_first(mm); vma != NULL((void*)0); vma = vma_next(vma)) { |
2875 | abi_ulong addr; |
2876 | abi_ulong end; |
2877 | |
2878 | end = vma->vma_start + vma_dump_size(vma); |
2879 | |
2880 | for (addr = vma->vma_start; addr < end; |
2881 | addr += TARGET_PAGE_SIZE(1 << 12)) { |
2882 | char page[TARGET_PAGE_SIZE(1 << 12)]; |
2883 | int error; |
2884 | |
2885 | /* |
2886 | * Read in page from target process memory and |
2887 | * write it to coredump file. |
2888 | */ |
2889 | error = copy_from_user(page, addr, sizeof (page)); |
2890 | if (error != 0) { |
2891 | (void) fprintf(stderrstderr, "unable to dump " TARGET_ABI_FMT_lx"%08x" "\n", |
2892 | addr); |
2893 | errno(*__errno_location ()) = -error; |
2894 | goto out; |
2895 | } |
2896 | if (dump_write(fd, page, TARGET_PAGE_SIZE(1 << 12)) < 0) |
2897 | goto out; |
2898 | } |
2899 | } |
2900 | |
2901 | out: |
2902 | free_note_info(&info); |
2903 | if (mm != NULL((void*)0)) |
2904 | vma_delete(mm); |
2905 | (void) close(fd); |
2906 | |
2907 | if (errno(*__errno_location ()) != 0) |
2908 | return (-errno(*__errno_location ())); |
2909 | return (0); |
2910 | } |
2911 | #endif /* USE_ELF_CORE_DUMP */ |
2912 | |
2913 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
2914 | { |
2915 | init_thread(regs, infop); |
2916 | } |