File: | target-arm/helper.c |
Location: | line 4411, column 5 |
Description: | Value stored to 'new_flags' is never read |
1 | #include "cpu.h" |
2 | #include "exec/gdbstub.h" |
3 | #include "helper.h" |
4 | #include "qemu/host-utils.h" |
5 | #include "sysemu/arch_init.h" |
6 | #include "sysemu/sysemu.h" |
7 | #include "qemu/bitops.h" |
8 | |
9 | #ifndef CONFIG_USER_ONLY1 |
10 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
11 | int access_type, int is_user, |
12 | hwaddr *phys_ptr, int *prot, |
13 | target_ulong *page_size); |
14 | #endif |
15 | |
16 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
17 | { |
18 | int nregs; |
19 | |
20 | /* VFP data registers are always little-endian. */ |
21 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
22 | if (reg < nregs) { |
23 | stfq_le_p(buf, env->vfp.regs[reg]); |
24 | return 8; |
25 | } |
26 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
27 | /* Aliases for Q regs. */ |
28 | nregs += 16; |
29 | if (reg < nregs) { |
30 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
31 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
32 | return 16; |
33 | } |
34 | } |
35 | switch (reg - nregs) { |
36 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID])stl_le_p(buf, env->vfp.xregs[0]); return 4; |
37 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR])stl_le_p(buf, env->vfp.xregs[1]); return 4; |
38 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC])stl_le_p(buf, env->vfp.xregs[8]); return 4; |
39 | } |
40 | return 0; |
41 | } |
42 | |
43 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
44 | { |
45 | int nregs; |
46 | |
47 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
48 | if (reg < nregs) { |
49 | env->vfp.regs[reg] = ldfq_le_p(buf); |
50 | return 8; |
51 | } |
52 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
53 | nregs += 16; |
54 | if (reg < nregs) { |
55 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
56 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
57 | return 16; |
58 | } |
59 | } |
60 | switch (reg - nregs) { |
61 | case 0: env->vfp.xregs[ARM_VFP_FPSID0] = ldl_p(buf)ldl_le_p(buf); return 4; |
62 | case 1: env->vfp.xregs[ARM_VFP_FPSCR1] = ldl_p(buf)ldl_le_p(buf); return 4; |
63 | case 2: env->vfp.xregs[ARM_VFP_FPEXC8] = ldl_p(buf)ldl_le_p(buf) & (1 << 30); return 4; |
64 | } |
65 | return 0; |
66 | } |
67 | |
68 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
69 | { |
70 | switch (reg) { |
71 | case 0 ... 31: |
72 | /* 128 bit FP register */ |
73 | stfq_le_p(buf, env->vfp.regs[reg * 2]); |
74 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); |
75 | return 16; |
76 | case 32: |
77 | /* FPSR */ |
78 | stl_p(buf, vfp_get_fpsr(env))stl_le_p(buf, vfp_get_fpsr(env)); |
79 | return 4; |
80 | case 33: |
81 | /* FPCR */ |
82 | stl_p(buf, vfp_get_fpcr(env))stl_le_p(buf, vfp_get_fpcr(env)); |
83 | return 4; |
84 | default: |
85 | return 0; |
86 | } |
87 | } |
88 | |
89 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
90 | { |
91 | switch (reg) { |
92 | case 0 ... 31: |
93 | /* 128 bit FP register */ |
94 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); |
95 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); |
96 | return 16; |
97 | case 32: |
98 | /* FPSR */ |
99 | vfp_set_fpsr(env, ldl_p(buf)ldl_le_p(buf)); |
100 | return 4; |
101 | case 33: |
102 | /* FPCR */ |
103 | vfp_set_fpcr(env, ldl_p(buf)ldl_le_p(buf)); |
104 | return 4; |
105 | default: |
106 | return 0; |
107 | } |
108 | } |
109 | |
110 | static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri, |
111 | uint64_t *value) |
112 | { |
113 | if (ri->type & ARM_CP_64BIT4) { |
114 | *value = CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)); |
115 | } else { |
116 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); |
117 | } |
118 | return 0; |
119 | } |
120 | |
121 | static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
122 | uint64_t value) |
123 | { |
124 | if (ri->type & ARM_CP_64BIT4) { |
125 | CPREG_FIELD64(env, ri)(*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) = value; |
126 | } else { |
127 | CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) = value; |
128 | } |
129 | return 0; |
130 | } |
131 | |
132 | static bool_Bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
133 | uint64_t *v) |
134 | { |
135 | /* Raw read of a coprocessor register (as needed for migration, etc) |
136 | * return true on success, false if the read is impossible for some reason. |
137 | */ |
138 | if (ri->type & ARM_CP_CONST2) { |
139 | *v = ri->resetvalue; |
140 | } else if (ri->raw_readfn) { |
141 | return (ri->raw_readfn(env, ri, v) == 0); |
142 | } else if (ri->readfn) { |
143 | return (ri->readfn(env, ri, v) == 0); |
144 | } else { |
145 | raw_read(env, ri, v); |
146 | } |
147 | return true1; |
148 | } |
149 | |
150 | static bool_Bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
151 | int64_t v) |
152 | { |
153 | /* Raw write of a coprocessor register (as needed for migration, etc). |
154 | * Return true on success, false if the write is impossible for some reason. |
155 | * Note that constant registers are treated as write-ignored; the |
156 | * caller should check for success by whether a readback gives the |
157 | * value written. |
158 | */ |
159 | if (ri->type & ARM_CP_CONST2) { |
160 | return true1; |
161 | } else if (ri->raw_writefn) { |
162 | return (ri->raw_writefn(env, ri, v) == 0); |
163 | } else if (ri->writefn) { |
164 | return (ri->writefn(env, ri, v) == 0); |
165 | } else { |
166 | raw_write(env, ri, v); |
167 | } |
168 | return true1; |
169 | } |
170 | |
171 | bool_Bool write_cpustate_to_list(ARMCPU *cpu) |
172 | { |
173 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
174 | int i; |
175 | bool_Bool ok = true1; |
176 | |
177 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
178 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
179 | const ARMCPRegInfo *ri; |
180 | uint64_t v; |
181 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
182 | if (!ri) { |
183 | ok = false0; |
184 | continue; |
185 | } |
186 | if (ri->type & ARM_CP_NO_MIGRATE32) { |
187 | continue; |
188 | } |
189 | if (!read_raw_cp_reg(&cpu->env, ri, &v)) { |
190 | ok = false0; |
191 | continue; |
192 | } |
193 | cpu->cpreg_values[i] = v; |
194 | } |
195 | return ok; |
196 | } |
197 | |
198 | bool_Bool write_list_to_cpustate(ARMCPU *cpu) |
199 | { |
200 | int i; |
201 | bool_Bool ok = true1; |
202 | |
203 | for (i = 0; i < cpu->cpreg_array_len; i++) { |
204 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
205 | uint64_t v = cpu->cpreg_values[i]; |
206 | uint64_t readback; |
207 | const ARMCPRegInfo *ri; |
208 | |
209 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
210 | if (!ri) { |
211 | ok = false0; |
212 | continue; |
213 | } |
214 | if (ri->type & ARM_CP_NO_MIGRATE32) { |
215 | continue; |
216 | } |
217 | /* Write value and confirm it reads back as written |
218 | * (to catch read-only registers and partially read-only |
219 | * registers where the incoming migration value doesn't match) |
220 | */ |
221 | if (!write_raw_cp_reg(&cpu->env, ri, v) || |
222 | !read_raw_cp_reg(&cpu->env, ri, &readback) || |
223 | readback != v) { |
224 | ok = false0; |
225 | } |
226 | } |
227 | return ok; |
228 | } |
229 | |
230 | static void add_cpreg_to_list(gpointer key, gpointer opaque) |
231 | { |
232 | ARMCPU *cpu = opaque; |
233 | uint64_t regidx; |
234 | const ARMCPRegInfo *ri; |
235 | |
236 | regidx = *(uint32_t *)key; |
237 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
238 | |
239 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { |
240 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
241 | /* The value array need not be initialized at this point */ |
242 | cpu->cpreg_array_len++; |
243 | } |
244 | } |
245 | |
246 | static void count_cpreg(gpointer key, gpointer opaque) |
247 | { |
248 | ARMCPU *cpu = opaque; |
249 | uint64_t regidx; |
250 | const ARMCPRegInfo *ri; |
251 | |
252 | regidx = *(uint32_t *)key; |
253 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
254 | |
255 | if (!(ri->type & ARM_CP_NO_MIGRATE32)) { |
256 | cpu->cpreg_array_len++; |
257 | } |
258 | } |
259 | |
260 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
261 | { |
262 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
263 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
264 | |
265 | if (aidx > bidx) { |
266 | return 1; |
267 | } |
268 | if (aidx < bidx) { |
269 | return -1; |
270 | } |
271 | return 0; |
272 | } |
273 | |
274 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
275 | { |
276 | GList **plist = udata; |
277 | |
278 | *plist = g_list_prepend(*plist, key); |
279 | } |
280 | |
281 | void init_cpreg_list(ARMCPU *cpu) |
282 | { |
283 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
284 | * Note that we require cpreg_tuples[] to be sorted by key ID. |
285 | */ |
286 | GList *keys = NULL((void*)0); |
287 | int arraylen; |
288 | |
289 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
290 | |
291 | keys = g_list_sort(keys, cpreg_key_compare); |
292 | |
293 | cpu->cpreg_array_len = 0; |
294 | |
295 | g_list_foreach(keys, count_cpreg, cpu); |
296 | |
297 | arraylen = cpu->cpreg_array_len; |
298 | cpu->cpreg_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
299 | cpu->cpreg_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
300 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
301 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen)((uint64_t *) g_malloc_n ((arraylen), sizeof (uint64_t))); |
302 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
303 | cpu->cpreg_array_len = 0; |
304 | |
305 | g_list_foreach(keys, add_cpreg_to_list, cpu); |
306 | |
307 | assert(cpu->cpreg_array_len == arraylen)((cpu->cpreg_array_len == arraylen) ? (void) (0) : __assert_fail ("cpu->cpreg_array_len == arraylen", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 307, __PRETTY_FUNCTION__)); |
308 | |
309 | g_list_free(keys); |
310 | } |
311 | |
312 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
313 | { |
314 | env->cp15.c3 = value; |
315 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
316 | return 0; |
317 | } |
318 | |
319 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
320 | { |
321 | if (env->cp15.c13_fcse != value) { |
322 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
323 | * not modified virtual addresses, so this causes a TLB flush. |
324 | */ |
325 | tlb_flush(env, 1); |
326 | env->cp15.c13_fcse = value; |
327 | } |
328 | return 0; |
329 | } |
330 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
331 | uint64_t value) |
332 | { |
333 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
334 | /* For VMSA (when not using the LPAE long descriptor page table |
335 | * format) this register includes the ASID, so do a TLB flush. |
336 | * For PMSA it is purely a process ID and no action is needed. |
337 | */ |
338 | tlb_flush(env, 1); |
339 | } |
340 | env->cp15.c13_context = value; |
341 | return 0; |
342 | } |
343 | |
344 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
345 | uint64_t value) |
346 | { |
347 | /* Invalidate all (TLBIALL) */ |
348 | tlb_flush(env, 1); |
349 | return 0; |
350 | } |
351 | |
352 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
353 | uint64_t value) |
354 | { |
355 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
356 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 12) - 1)); |
357 | return 0; |
358 | } |
359 | |
360 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
361 | uint64_t value) |
362 | { |
363 | /* Invalidate by ASID (TLBIASID) */ |
364 | tlb_flush(env, value == 0); |
365 | return 0; |
366 | } |
367 | |
368 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
369 | uint64_t value) |
370 | { |
371 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
372 | tlb_flush_page(env, value & TARGET_PAGE_MASK~((1 << 12) - 1)); |
373 | return 0; |
374 | } |
375 | |
376 | static const ARMCPRegInfo cp_reginfo[] = { |
377 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture |
378 | * version" bits will read as a reserved value, which should cause |
379 | * Linux to not try to use the debug hardware. |
380 | */ |
381 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
382 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
383 | /* MMU Domain access control / MPU write buffer control */ |
384 | { .name = "DACR", .cp = 15, |
385 | .crn = 3, .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
386 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c3)__builtin_offsetof(CPUARMState, cp15.c3), |
387 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
388 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
389 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse)__builtin_offsetof(CPUARMState, cp15.c13_fcse), |
390 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
391 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
392 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c13_context)__builtin_offsetof(CPUARMState, cp15.c13_context), |
393 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
394 | /* ??? This covers not just the impdef TLB lockdown registers but also |
395 | * some v7VMSA registers relating to TEX remap, so it is overly broad. |
396 | */ |
397 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY0xff, |
398 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
399 | /* MMU TLB control. Note that the wildcarding means we cover not just |
400 | * the unified TLB ops but also the dside/iside/inner-shareable variants. |
401 | */ |
402 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
403 | .opc1 = CP_ANY0xff, .opc2 = 0, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiall_write, |
404 | .type = ARM_CP_NO_MIGRATE32 }, |
405 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
406 | .opc1 = CP_ANY0xff, .opc2 = 1, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimva_write, |
407 | .type = ARM_CP_NO_MIGRATE32 }, |
408 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
409 | .opc1 = CP_ANY0xff, .opc2 = 2, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbiasid_write, |
410 | .type = ARM_CP_NO_MIGRATE32 }, |
411 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY0xff, |
412 | .opc1 = CP_ANY0xff, .opc2 = 3, .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = tlbimvaa_write, |
413 | .type = ARM_CP_NO_MIGRATE32 }, |
414 | /* Cache maintenance ops; some of this space may be overridden later. */ |
415 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, |
416 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
417 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 }, |
418 | REGINFO_SENTINEL{ .type = 0xffff } |
419 | }; |
420 | |
421 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
422 | /* Not all pre-v6 cores implemented this WFI, so this is slightly |
423 | * over-broad. |
424 | */ |
425 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
426 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, |
427 | REGINFO_SENTINEL{ .type = 0xffff } |
428 | }; |
429 | |
430 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
431 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
432 | * is UNPREDICTABLE; we choose to NOP as most implementations do). |
433 | */ |
434 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
435 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_WFI(1 | (2 << 8)) }, |
436 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
437 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
438 | * OMAPCP will override this space. |
439 | */ |
440 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
441 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_data)__builtin_offsetof(CPUARMState, cp15.c9_data), |
442 | .resetvalue = 0 }, |
443 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
444 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c9_insn)__builtin_offsetof(CPUARMState, cp15.c9_insn), |
445 | .resetvalue = 0 }, |
446 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
447 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY0xff, |
448 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
449 | .resetvalue = 0 }, |
450 | REGINFO_SENTINEL{ .type = 0xffff } |
451 | }; |
452 | |
453 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
454 | { |
455 | if (env->cp15.c1_coproc != value) { |
456 | env->cp15.c1_coproc = value; |
457 | /* ??? Is this safe when called from within a TB? */ |
458 | tb_flush(env); |
459 | } |
460 | return 0; |
461 | } |
462 | |
463 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
464 | /* prefetch by MVA in v6, NOP in v7 */ |
465 | { .name = "MVA_prefetch", |
466 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
467 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
468 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
469 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
470 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
471 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
472 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
473 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
474 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
475 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_insn)__builtin_offsetof(CPUARMState, cp15.c6_insn), |
476 | .resetvalue = 0, }, |
477 | /* Watchpoint Fault Address Register : should actually only be present |
478 | * for 1136, 1176, 11MPCore. |
479 | */ |
480 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
481 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, .resetvalue = 0, }, |
482 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
483 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc)__builtin_offsetof(CPUARMState, cp15.c1_coproc), |
484 | .resetvalue = 0, .writefn = cpacr_write }, |
485 | REGINFO_SENTINEL{ .type = 0xffff } |
486 | }; |
487 | |
488 | |
489 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
490 | uint64_t *value) |
491 | { |
492 | /* Generic performance monitor register read function for where |
493 | * user access may be allowed by PMUSERENR. |
494 | */ |
495 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
496 | return EXCP_UDEF1; |
497 | } |
498 | *value = CPREG_FIELD32(env, ri)(*(uint32_t *)((char *)(env) + (ri)->fieldoffset)); |
499 | return 0; |
500 | } |
501 | |
502 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
503 | uint64_t value) |
504 | { |
505 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
506 | return EXCP_UDEF1; |
507 | } |
508 | /* only the DP, X, D and E bits are writable */ |
509 | env->cp15.c9_pmcr &= ~0x39; |
510 | env->cp15.c9_pmcr |= (value & 0x39); |
511 | return 0; |
512 | } |
513 | |
514 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
515 | uint64_t value) |
516 | { |
517 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
518 | return EXCP_UDEF1; |
519 | } |
520 | value &= (1 << 31); |
521 | env->cp15.c9_pmcnten |= value; |
522 | return 0; |
523 | } |
524 | |
525 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
526 | uint64_t value) |
527 | { |
528 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
529 | return EXCP_UDEF1; |
530 | } |
531 | value &= (1 << 31); |
532 | env->cp15.c9_pmcnten &= ~value; |
533 | return 0; |
534 | } |
535 | |
536 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
537 | uint64_t value) |
538 | { |
539 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
540 | return EXCP_UDEF1; |
541 | } |
542 | env->cp15.c9_pmovsr &= ~value; |
543 | return 0; |
544 | } |
545 | |
546 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
547 | uint64_t value) |
548 | { |
549 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
550 | return EXCP_UDEF1; |
551 | } |
552 | env->cp15.c9_pmxevtyper = value & 0xff; |
553 | return 0; |
554 | } |
555 | |
556 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
557 | uint64_t value) |
558 | { |
559 | env->cp15.c9_pmuserenr = value & 1; |
560 | return 0; |
561 | } |
562 | |
563 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
564 | uint64_t value) |
565 | { |
566 | /* We have no event counters so only the C bit can be changed */ |
567 | value &= (1 << 31); |
568 | env->cp15.c9_pminten |= value; |
569 | return 0; |
570 | } |
571 | |
572 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
573 | uint64_t value) |
574 | { |
575 | value &= (1 << 31); |
576 | env->cp15.c9_pminten &= ~value; |
577 | return 0; |
578 | } |
579 | |
580 | static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
581 | uint64_t value) |
582 | { |
583 | env->cp15.c12_vbar = value & ~0x1Ful; |
584 | return 0; |
585 | } |
586 | |
587 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
588 | uint64_t *value) |
589 | { |
590 | ARMCPU *cpu = arm_env_get_cpu(env); |
591 | *value = cpu->ccsidr[env->cp15.c0_cssel]; |
592 | return 0; |
593 | } |
594 | |
595 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
596 | uint64_t value) |
597 | { |
598 | env->cp15.c0_cssel = value & 0xf; |
599 | return 0; |
600 | } |
601 | |
602 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
603 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
604 | * debug components |
605 | */ |
606 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
607 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
608 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
610 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
611 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
612 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
613 | /* Performance monitors are implementation defined in v7, |
614 | * but with an ARM recommended set of registers, which we |
615 | * follow (although we don't actually implement any counters) |
616 | * |
617 | * Performance registers fall into three categories: |
618 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
619 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
620 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
621 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
622 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
623 | */ |
624 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
625 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = 0, |
626 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), |
627 | .readfn = pmreg_read, .writefn = pmcntenset_write, |
628 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
629 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
630 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten)__builtin_offsetof(CPUARMState, cp15.c9_pmcnten), |
631 | .readfn = pmreg_read, .writefn = pmcntenclr_write, |
632 | .type = ARM_CP_NO_MIGRATE32 }, |
633 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
634 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr)__builtin_offsetof(CPUARMState, cp15.c9_pmovsr), |
635 | .readfn = pmreg_read, .writefn = pmovsr_write, |
636 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
637 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should |
638 | * respect PMUSERENR. |
639 | */ |
640 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
641 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
642 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
643 | * We choose to RAZ/WI. XXX should respect PMUSERENR. |
644 | */ |
645 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
646 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
647 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
648 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
649 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
650 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
651 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
652 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper)__builtin_offsetof(CPUARMState, cp15.c9_pmxevtyper), |
653 | .readfn = pmreg_read, .writefn = pmxevtyper_write, |
654 | .raw_readfn = raw_read, .raw_writefn = raw_write }, |
655 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
656 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
657 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
658 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
659 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))) | PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
660 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr)__builtin_offsetof(CPUARMState, cp15.c9_pmuserenr), |
661 | .resetvalue = 0, |
662 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
663 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
664 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
665 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), |
666 | .resetvalue = 0, |
667 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
668 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
669 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
670 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten)__builtin_offsetof(CPUARMState, cp15.c9_pminten), |
671 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
672 | { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
673 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vbar_write, |
674 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar)__builtin_offsetof(CPUARMState, cp15.c12_vbar), |
675 | .resetvalue = 0 }, |
676 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
677 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_scr)__builtin_offsetof(CPUARMState, cp15.c1_scr), |
678 | .resetvalue = 0, }, |
679 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
680 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE32 }, |
681 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
682 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel)__builtin_offsetof(CPUARMState, cp15.c0_cssel), |
683 | .writefn = csselr_write, .resetvalue = 0 }, |
684 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
685 | * just RAZ for all cores: |
686 | */ |
687 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, |
688 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
689 | REGINFO_SENTINEL{ .type = 0xffff } |
690 | }; |
691 | |
692 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
693 | { |
694 | value &= 1; |
695 | env->teecr = value; |
696 | return 0; |
697 | } |
698 | |
699 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
700 | uint64_t *value) |
701 | { |
702 | /* This is a helper function because the user access rights |
703 | * depend on the value of the TEECR. |
704 | */ |
705 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
706 | return EXCP_UDEF1; |
707 | } |
708 | *value = env->teehbr; |
709 | return 0; |
710 | } |
711 | |
712 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
713 | uint64_t value) |
714 | { |
715 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
716 | return EXCP_UDEF1; |
717 | } |
718 | env->teehbr = value; |
719 | return 0; |
720 | } |
721 | |
722 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
723 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
724 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, teecr)__builtin_offsetof(CPUARMState, teecr), |
725 | .resetvalue = 0, |
726 | .writefn = teecr_write }, |
727 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
728 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .fieldoffset = offsetof(CPUARMState, teehbr)__builtin_offsetof(CPUARMState, teehbr), |
729 | .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write, |
730 | .readfn = teehbr_read, .writefn = teehbr_write }, |
731 | REGINFO_SENTINEL{ .type = 0xffff } |
732 | }; |
733 | |
734 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
735 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
736 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
737 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
738 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, |
739 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
740 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), |
741 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0)__builtin_offsetof(CPUARMState, cp15.tpidr_el0), |
742 | .resetfn = arm_cp_reset_ignore }, |
743 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, |
744 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
745 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), |
746 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, |
747 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
748 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80)))|PL1_W(0x04 | (0x10 | 0x40)), |
749 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0)__builtin_offsetof(CPUARMState, cp15.tpidrro_el0), |
750 | .resetfn = arm_cp_reset_ignore }, |
751 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, |
752 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
753 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
754 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1)__builtin_offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
755 | REGINFO_SENTINEL{ .type = 0xffff } |
756 | }; |
757 | |
758 | #ifndef CONFIG_USER_ONLY1 |
759 | |
760 | static uint64_t gt_get_countervalue(CPUARMState *env) |
761 | { |
762 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE16; |
763 | } |
764 | |
765 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
766 | { |
767 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
768 | |
769 | if (gt->ctl & 1) { |
770 | /* Timer enabled: calculate and set current ISTATUS, irq, and |
771 | * reset timer to when ISTATUS next has to change |
772 | */ |
773 | uint64_t count = gt_get_countervalue(&cpu->env); |
774 | /* Note that this must be unsigned 64 bit arithmetic: */ |
775 | int istatus = count >= gt->cval; |
776 | uint64_t nexttick; |
777 | |
778 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
779 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
780 | (istatus && !(gt->ctl & 2))); |
781 | if (istatus) { |
782 | /* Next transition is when count rolls back over to zero */ |
783 | nexttick = UINT64_MAX(18446744073709551615UL); |
784 | } else { |
785 | /* Next transition is when we hit cval */ |
786 | nexttick = gt->cval; |
787 | } |
788 | /* Note that the desired next expiry time might be beyond the |
789 | * signed-64-bit range of a QEMUTimer -- in this case we just |
790 | * set the timer for as far in the future as possible. When the |
791 | * timer expires we will reset the timer for any remaining period. |
792 | */ |
793 | if (nexttick > INT64_MAX(9223372036854775807L) / GTIMER_SCALE16) { |
794 | nexttick = INT64_MAX(9223372036854775807L) / GTIMER_SCALE16; |
795 | } |
796 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
797 | } else { |
798 | /* Timer disabled: ISTATUS and timer output always clear */ |
799 | gt->ctl &= ~4; |
800 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
801 | timer_del(cpu->gt_timer[timeridx]); |
802 | } |
803 | } |
804 | |
805 | static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri, |
806 | uint64_t *value) |
807 | { |
808 | /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ |
809 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
810 | return EXCP_UDEF1; |
811 | } |
812 | *value = env->cp15.c14_cntfrq; |
813 | return 0; |
814 | } |
815 | |
816 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
817 | { |
818 | ARMCPU *cpu = arm_env_get_cpu(env); |
819 | int timeridx = ri->opc1 & 1; |
820 | |
821 | timer_del(cpu->gt_timer[timeridx]); |
822 | } |
823 | |
824 | static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri, |
825 | uint64_t *value) |
826 | { |
827 | int timeridx = ri->opc1 & 1; |
828 | |
829 | if (arm_current_pl(env) == 0 && |
830 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
831 | return EXCP_UDEF1; |
832 | } |
833 | *value = gt_get_countervalue(env); |
834 | return 0; |
835 | } |
836 | |
837 | static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
838 | uint64_t *value) |
839 | { |
840 | int timeridx = ri->opc1 & 1; |
841 | |
842 | if (arm_current_pl(env) == 0 && |
843 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
844 | return EXCP_UDEF1; |
845 | } |
846 | *value = env->cp15.c14_timer[timeridx].cval; |
847 | return 0; |
848 | } |
849 | |
850 | static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
851 | uint64_t value) |
852 | { |
853 | int timeridx = ri->opc1 & 1; |
854 | |
855 | env->cp15.c14_timer[timeridx].cval = value; |
856 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
857 | return 0; |
858 | } |
859 | static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
860 | uint64_t *value) |
861 | { |
862 | int timeridx = ri->crm & 1; |
863 | |
864 | if (arm_current_pl(env) == 0 && |
865 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
866 | return EXCP_UDEF1; |
867 | } |
868 | *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
869 | gt_get_countervalue(env)); |
870 | return 0; |
871 | } |
872 | |
873 | static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
874 | uint64_t value) |
875 | { |
876 | int timeridx = ri->crm & 1; |
877 | |
878 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + |
879 | + sextract64(value, 0, 32); |
880 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
881 | return 0; |
882 | } |
883 | |
884 | static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri, |
885 | uint64_t *value) |
886 | { |
887 | int timeridx = ri->crm & 1; |
888 | |
889 | if (arm_current_pl(env) == 0 && |
890 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
891 | return EXCP_UDEF1; |
892 | } |
893 | *value = env->cp15.c14_timer[timeridx].ctl; |
894 | return 0; |
895 | } |
896 | |
897 | static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
898 | uint64_t value) |
899 | { |
900 | ARMCPU *cpu = arm_env_get_cpu(env); |
901 | int timeridx = ri->crm & 1; |
902 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
903 | |
904 | env->cp15.c14_timer[timeridx].ctl = value & 3; |
905 | if ((oldval ^ value) & 1) { |
906 | /* Enable toggled */ |
907 | gt_recalc_timer(cpu, timeridx); |
908 | } else if ((oldval & value) & 2) { |
909 | /* IMASK toggled: don't need to recalculate, |
910 | * just set the interrupt line based on ISTATUS |
911 | */ |
912 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
913 | (oldval & 4) && (value & 2)); |
914 | } |
915 | return 0; |
916 | } |
917 | |
918 | void arm_gt_ptimer_cb(void *opaque) |
919 | { |
920 | ARMCPU *cpu = opaque; |
921 | |
922 | gt_recalc_timer(cpu, GTIMER_PHYS0); |
923 | } |
924 | |
925 | void arm_gt_vtimer_cb(void *opaque) |
926 | { |
927 | ARMCPU *cpu = opaque; |
928 | |
929 | gt_recalc_timer(cpu, GTIMER_VIRT1); |
930 | } |
931 | |
932 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
933 | /* Note that CNTFRQ is purely reads-as-written for the benefit |
934 | * of software; writing it doesn't actually change the timer frequency. |
935 | * Our reset value matches the fixed frequency we implement the timer at. |
936 | */ |
937 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
938 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
939 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq)__builtin_offsetof(CPUARMState, cp15.c14_cntfrq), |
940 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE16, |
941 | .readfn = gt_cntfrq_read, .raw_readfn = raw_read, |
942 | }, |
943 | /* overall control: mostly access permissions */ |
944 | { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0, |
945 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
946 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl)__builtin_offsetof(CPUARMState, cp15.c14_cntkctl), |
947 | .resetvalue = 0, |
948 | }, |
949 | /* per-timer control */ |
950 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
951 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
952 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].ctl), |
953 | .resetvalue = 0, |
954 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, |
955 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
956 | }, |
957 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
958 | .type = ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
959 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].ctl), |
960 | .resetvalue = 0, |
961 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, |
962 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
963 | }, |
964 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
965 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
966 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
967 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
968 | }, |
969 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
970 | .type = ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
971 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
972 | }, |
973 | /* The counter itself */ |
974 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, |
975 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, |
976 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
977 | }, |
978 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, |
979 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_64BIT4 | ARM_CP_NO_MIGRATE32 | ARM_CP_IO64, |
980 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
981 | }, |
982 | /* Comparison value, indicating when the timer goes off */ |
983 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, |
984 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
985 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, |
986 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[0].cval), |
987 | .resetvalue = 0, |
988 | .readfn = gt_cval_read, .writefn = gt_cval_write, |
989 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
990 | }, |
991 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, |
992 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))) | PL0_R(0x02 | (0x08 | (0x20 | 0x80))), |
993 | .type = ARM_CP_64BIT4 | ARM_CP_IO64, |
994 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval)__builtin_offsetof(CPUARMState, cp15.c14_timer[1].cval), |
995 | .resetvalue = 0, |
996 | .readfn = gt_cval_read, .writefn = gt_cval_write, |
997 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
998 | }, |
999 | REGINFO_SENTINEL{ .type = 0xffff } |
1000 | }; |
1001 | |
1002 | #else |
1003 | /* In user-mode none of the generic timer registers are accessible, |
1004 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
1005 | * so instead just don't register any of them. |
1006 | */ |
1007 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1008 | REGINFO_SENTINEL{ .type = 0xffff } |
1009 | }; |
1010 | |
1011 | #endif |
1012 | |
1013 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1014 | { |
1015 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1016 | env->cp15.c7_par = value; |
1017 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
1018 | env->cp15.c7_par = value & 0xfffff6ff; |
1019 | } else { |
1020 | env->cp15.c7_par = value & 0xfffff1ff; |
1021 | } |
1022 | return 0; |
1023 | } |
1024 | |
1025 | #ifndef CONFIG_USER_ONLY1 |
1026 | /* get_phys_addr() isn't present for user-mode-only targets */ |
1027 | |
1028 | /* Return true if extended addresses are enabled, ie this is an |
1029 | * LPAE implementation and we are using the long-descriptor translation |
1030 | * table format because the TTBCR EAE bit is set. |
1031 | */ |
1032 | static inline bool_Bool extended_addresses_enabled(CPUARMState *env) |
1033 | { |
1034 | return arm_feature(env, ARM_FEATURE_LPAE) |
1035 | && (env->cp15.c2_control & (1U << 31)); |
1036 | } |
1037 | |
1038 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1039 | { |
1040 | hwaddr phys_addr; |
1041 | target_ulong page_size; |
1042 | int prot; |
1043 | int ret, is_user = ri->opc2 & 2; |
1044 | int access_type = ri->opc2 & 1; |
1045 | |
1046 | if (ri->opc2 & 4) { |
1047 | /* Other states are only available with TrustZone */ |
1048 | return EXCP_UDEF1; |
1049 | } |
1050 | ret = get_phys_addr(env, value, access_type, is_user, |
1051 | &phys_addr, &prot, &page_size); |
1052 | if (extended_addresses_enabled(env)) { |
1053 | /* ret is a DFSR/IFSR value for the long descriptor |
1054 | * translation table format, but with WnR always clear. |
1055 | * Convert it to a 64-bit PAR. |
1056 | */ |
1057 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ |
1058 | if (ret == 0) { |
1059 | par64 |= phys_addr & ~0xfffULL; |
1060 | /* We don't set the ATTR or SH fields in the PAR. */ |
1061 | } else { |
1062 | par64 |= 1; /* F */ |
1063 | par64 |= (ret & 0x3f) << 1; /* FS */ |
1064 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1065 | * implement virtualization and therefore there can't be a stage 2 |
1066 | * fault. |
1067 | */ |
1068 | } |
1069 | env->cp15.c7_par = par64; |
1070 | env->cp15.c7_par_hi = par64 >> 32; |
1071 | } else { |
1072 | /* ret is a DFSR/IFSR value for the short descriptor |
1073 | * translation table format (with WnR always clear). |
1074 | * Convert it to a 32-bit PAR. |
1075 | */ |
1076 | if (ret == 0) { |
1077 | /* We do not set any attribute bits in the PAR */ |
1078 | if (page_size == (1 << 24) |
1079 | && arm_feature(env, ARM_FEATURE_V7)) { |
1080 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; |
1081 | } else { |
1082 | env->cp15.c7_par = phys_addr & 0xfffff000; |
1083 | } |
1084 | } else { |
1085 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | |
1086 | ((ret & (12 << 1)) >> 6) | |
1087 | ((ret & 0xf) << 1) | 1; |
1088 | } |
1089 | env->cp15.c7_par_hi = 0; |
1090 | } |
1091 | return 0; |
1092 | } |
1093 | #endif |
1094 | |
1095 | static const ARMCPRegInfo vapa_cp_reginfo[] = { |
1096 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
1097 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, |
1098 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par)__builtin_offsetof(CPUARMState, cp15.c7_par), |
1099 | .writefn = par_write }, |
1100 | #ifndef CONFIG_USER_ONLY1 |
1101 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY0xff, |
1102 | .access = PL1_W(0x04 | (0x10 | 0x40)), .writefn = ats_write, .type = ARM_CP_NO_MIGRATE32 }, |
1103 | #endif |
1104 | REGINFO_SENTINEL{ .type = 0xffff } |
1105 | }; |
1106 | |
1107 | /* Return basic MPU access permission bits. */ |
1108 | static uint32_t simple_mpu_ap_bits(uint32_t val) |
1109 | { |
1110 | uint32_t ret; |
1111 | uint32_t mask; |
1112 | int i; |
1113 | ret = 0; |
1114 | mask = 3; |
1115 | for (i = 0; i < 16; i += 2) { |
1116 | ret |= (val >> i) & mask; |
1117 | mask <<= 2; |
1118 | } |
1119 | return ret; |
1120 | } |
1121 | |
1122 | /* Pad basic MPU access permission bits to extended format. */ |
1123 | static uint32_t extended_mpu_ap_bits(uint32_t val) |
1124 | { |
1125 | uint32_t ret; |
1126 | uint32_t mask; |
1127 | int i; |
1128 | ret = 0; |
1129 | mask = 3; |
1130 | for (i = 0; i < 16; i += 2) { |
1131 | ret |= (val & mask) << i; |
1132 | mask <<= 2; |
1133 | } |
1134 | return ret; |
1135 | } |
1136 | |
1137 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1138 | uint64_t value) |
1139 | { |
1140 | env->cp15.c5_data = extended_mpu_ap_bits(value); |
1141 | return 0; |
1142 | } |
1143 | |
1144 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1145 | uint64_t *value) |
1146 | { |
1147 | *value = simple_mpu_ap_bits(env->cp15.c5_data); |
1148 | return 0; |
1149 | } |
1150 | |
1151 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1152 | uint64_t value) |
1153 | { |
1154 | env->cp15.c5_insn = extended_mpu_ap_bits(value); |
1155 | return 0; |
1156 | } |
1157 | |
1158 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1159 | uint64_t *value) |
1160 | { |
1161 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); |
1162 | return 0; |
1163 | } |
1164 | |
1165 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1166 | uint64_t *value) |
1167 | { |
1168 | if (ri->crm >= 8) { |
1169 | return EXCP_UDEF1; |
1170 | } |
1171 | *value = env->cp15.c6_region[ri->crm]; |
1172 | return 0; |
1173 | } |
1174 | |
1175 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1176 | uint64_t value) |
1177 | { |
1178 | if (ri->crm >= 8) { |
1179 | return EXCP_UDEF1; |
1180 | } |
1181 | env->cp15.c6_region[ri->crm] = value; |
1182 | return 0; |
1183 | } |
1184 | |
1185 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
1186 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
1187 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
1188 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
1189 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1190 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
1191 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NO_MIGRATE32, |
1192 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
1193 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1194 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
1195 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1196 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
1197 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1198 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1199 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
1200 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1201 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1202 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data)__builtin_offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
1203 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
1204 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1205 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn)__builtin_offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
1206 | /* Protection region base and size registers */ |
1207 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY0xff, .opc1 = 0, |
1208 | .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1209 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, |
1210 | REGINFO_SENTINEL{ .type = 0xffff } |
1211 | }; |
1212 | |
1213 | static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1214 | uint64_t value) |
1215 | { |
1216 | int maskshift = extract32(value, 0, 3); |
1217 | |
1218 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
1219 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
1220 | } else { |
1221 | value &= 7; |
1222 | } |
1223 | /* Note that we always calculate c2_mask and c2_base_mask, but |
1224 | * they are only used for short-descriptor tables (ie if EAE is 0); |
1225 | * for long-descriptor tables the TTBCR fields are used differently |
1226 | * and the c2_mask and c2_base_mask values are meaningless. |
1227 | */ |
1228 | env->cp15.c2_control = value; |
1229 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1230 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); |
1231 | return 0; |
1232 | } |
1233 | |
1234 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1235 | uint64_t value) |
1236 | { |
1237 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1238 | /* With LPAE the TTBCR could result in a change of ASID |
1239 | * via the TTBCR.A1 bit, so do a TLB flush. |
1240 | */ |
1241 | tlb_flush(env, 1); |
1242 | } |
1243 | return vmsa_ttbcr_raw_write(env, ri, value); |
1244 | } |
1245 | |
1246 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1247 | { |
1248 | env->cp15.c2_base_mask = 0xffffc000u; |
1249 | env->cp15.c2_control = 0; |
1250 | env->cp15.c2_mask = 0; |
1251 | } |
1252 | |
1253 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1254 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
1255 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1256 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
1257 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
1258 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1259 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn)__builtin_offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
1260 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1261 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1262 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0)__builtin_offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, |
1263 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
1264 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1265 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1)__builtin_offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
1266 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1267 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .writefn = vmsa_ttbcr_write, |
1268 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
1269 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control)__builtin_offsetof(CPUARMState, cp15.c2_control) }, |
1270 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
1271 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c6_data)__builtin_offsetof(CPUARMState, cp15.c6_data), |
1272 | .resetvalue = 0, }, |
1273 | REGINFO_SENTINEL{ .type = 0xffff } |
1274 | }; |
1275 | |
1276 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1277 | uint64_t value) |
1278 | { |
1279 | env->cp15.c15_ticonfig = value & 0xe7; |
1280 | /* The OS_TYPE bit in this register changes the reported CPUID! */ |
1281 | env->cp15.c0_cpuid = (value & (1 << 5)) ? |
1282 | ARM_CPUID_TI915T0x54029152 : ARM_CPUID_TI925T0x54029252; |
1283 | return 0; |
1284 | } |
1285 | |
1286 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1287 | uint64_t value) |
1288 | { |
1289 | env->cp15.c15_threadid = value & 0xffff; |
1290 | return 0; |
1291 | } |
1292 | |
1293 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1294 | uint64_t value) |
1295 | { |
1296 | /* Wait-for-interrupt (deprecated) */ |
1297 | cpu_interrupt(CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1297, __func__)), CPU_INTERRUPT_HALT0x0020); |
1298 | return 0; |
1299 | } |
1300 | |
1301 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1302 | uint64_t value) |
1303 | { |
1304 | /* On OMAP there are registers indicating the max/min index of dcache lines |
1305 | * containing a dirty line; cache flush operations have to reset these. |
1306 | */ |
1307 | env->cp15.c15_i_max = 0x000; |
1308 | env->cp15.c15_i_min = 0xff0; |
1309 | return 0; |
1310 | } |
1311 | |
1312 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1313 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY0xff, |
1314 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_OVERRIDE16, |
1315 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data)__builtin_offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
1316 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1317 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8)) }, |
1318 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
1319 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1320 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig)__builtin_offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
1321 | .writefn = omap_ticonfig_write }, |
1322 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
1323 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1324 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max)__builtin_offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
1325 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
1326 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0xff0, |
1327 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min)__builtin_offsetof(CPUARMState, cp15.c15_i_min) }, |
1328 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
1329 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1330 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid)__builtin_offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
1331 | .writefn = omap_threadid_write }, |
1332 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
1333 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1334 | .type = ARM_CP_NO_MIGRATE32, |
1335 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1336 | /* TODO: Peripheral port remap register: |
1337 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
1338 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
1339 | * when MMU is off. |
1340 | */ |
1341 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY0xff, |
1342 | .opc1 = 0, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
1343 | .type = ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32, |
1344 | .writefn = omap_cachemaint_write }, |
1345 | { .name = "C9", .cp = 15, .crn = 9, |
1346 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1347 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, .resetvalue = 0 }, |
1348 | REGINFO_SENTINEL{ .type = 0xffff } |
1349 | }; |
1350 | |
1351 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1352 | uint64_t value) |
1353 | { |
1354 | value &= 0x3fff; |
1355 | if (env->cp15.c15_cpar != value) { |
1356 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
1357 | tb_flush(env); |
1358 | env->cp15.c15_cpar = value; |
1359 | } |
1360 | return 0; |
1361 | } |
1362 | |
1363 | static const ARMCPRegInfo xscale_cp_reginfo[] = { |
1364 | { .name = "XSCALE_CPAR", |
1365 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1366 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar)__builtin_offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
1367 | .writefn = xscale_cpar_write, }, |
1368 | { .name = "XSCALE_AUXCR", |
1369 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1370 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr)__builtin_offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
1371 | .resetvalue = 0, }, |
1372 | REGINFO_SENTINEL{ .type = 0xffff } |
1373 | }; |
1374 | |
1375 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
1376 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
1377 | * implementation of this implementation-defined space. |
1378 | * Ideally this should eventually disappear in favour of actually |
1379 | * implementing the correct behaviour for all cores. |
1380 | */ |
1381 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
1382 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
1383 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), |
1384 | .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32 | ARM_CP_OVERRIDE16, |
1385 | .resetvalue = 0 }, |
1386 | REGINFO_SENTINEL{ .type = 0xffff } |
1387 | }; |
1388 | |
1389 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1390 | /* Cache status: RAZ because we have no cache so it's always clean */ |
1391 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
1392 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
1393 | .resetvalue = 0 }, |
1394 | REGINFO_SENTINEL{ .type = 0xffff } |
1395 | }; |
1396 | |
1397 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
1398 | /* We never have a a block transfer operation in progress */ |
1399 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
1400 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
1401 | .resetvalue = 0 }, |
1402 | /* The cache ops themselves: these all NOP for QEMU */ |
1403 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
1404 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1405 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
1406 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1407 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
1408 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1409 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
1410 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1411 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
1412 | .access = PL0_W(0x01 | (0x04 | (0x10 | 0x40))), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1413 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
1414 | .access = PL1_W(0x04 | (0x10 | 0x40)), .type = ARM_CP_NOP(1 | (1 << 8))|ARM_CP_64BIT4 }, |
1415 | REGINFO_SENTINEL{ .type = 0xffff } |
1416 | }; |
1417 | |
1418 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
1419 | /* The cache test-and-clean instructions always return (1 << 30) |
1420 | * to indicate that there are no dirty cache lines. |
1421 | */ |
1422 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
1423 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
1424 | .resetvalue = (1 << 30) }, |
1425 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
1426 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2 | ARM_CP_NO_MIGRATE32, |
1427 | .resetvalue = (1 << 30) }, |
1428 | REGINFO_SENTINEL{ .type = 0xffff } |
1429 | }; |
1430 | |
1431 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1432 | /* Ignore ReadBuffer accesses */ |
1433 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
1434 | .crm = CP_ANY0xff, .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, |
1435 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .resetvalue = 0, |
1436 | .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16 | ARM_CP_NO_MIGRATE32 }, |
1437 | REGINFO_SENTINEL{ .type = 0xffff } |
1438 | }; |
1439 | |
1440 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1441 | uint64_t *value) |
1442 | { |
1443 | CPUState *cs = CPU(arm_env_get_cpu(env))((CPUState *)object_dynamic_cast_assert(((Object *)((arm_env_get_cpu (env)))), ("cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1443, __func__)); |
1444 | uint32_t mpidr = cs->cpu_index; |
1445 | /* We don't support setting cluster ID ([8..11]) |
1446 | * so these bits always RAZ. |
1447 | */ |
1448 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
1449 | mpidr |= (1U << 31); |
1450 | /* Cores which are uniprocessor (non-coherent) |
1451 | * but still implement the MP extensions set |
1452 | * bit 30. (For instance, A9UP.) However we do |
1453 | * not currently model any of those cores. |
1454 | */ |
1455 | } |
1456 | *value = mpidr; |
1457 | return 0; |
1458 | } |
1459 | |
1460 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
1461 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
1462 | .access = PL1_R(0x08 | (0x20 | 0x80)), .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE32 }, |
1463 | REGINFO_SENTINEL{ .type = 0xffff } |
1464 | }; |
1465 | |
1466 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
1467 | { |
1468 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
1469 | return 0; |
1470 | } |
1471 | |
1472 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1473 | { |
1474 | env->cp15.c7_par_hi = value >> 32; |
1475 | env->cp15.c7_par = value; |
1476 | return 0; |
1477 | } |
1478 | |
1479 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1480 | { |
1481 | env->cp15.c7_par_hi = 0; |
1482 | env->cp15.c7_par = 0; |
1483 | } |
1484 | |
1485 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1486 | uint64_t *value) |
1487 | { |
1488 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
1489 | return 0; |
1490 | } |
1491 | |
1492 | static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1493 | uint64_t value) |
1494 | { |
1495 | env->cp15.c2_base0_hi = value >> 32; |
1496 | env->cp15.c2_base0 = value; |
1497 | return 0; |
1498 | } |
1499 | |
1500 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1501 | uint64_t value) |
1502 | { |
1503 | /* Writes to the 64 bit format TTBRs may change the ASID */ |
1504 | tlb_flush(env, 1); |
1505 | return ttbr064_raw_write(env, ri, value); |
1506 | } |
1507 | |
1508 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1509 | { |
1510 | env->cp15.c2_base0_hi = 0; |
1511 | env->cp15.c2_base0 = 0; |
1512 | } |
1513 | |
1514 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1515 | uint64_t *value) |
1516 | { |
1517 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
1518 | return 0; |
1519 | } |
1520 | |
1521 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1522 | uint64_t value) |
1523 | { |
1524 | env->cp15.c2_base1_hi = value >> 32; |
1525 | env->cp15.c2_base1 = value; |
1526 | return 0; |
1527 | } |
1528 | |
1529 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1530 | { |
1531 | env->cp15.c2_base1_hi = 0; |
1532 | env->cp15.c2_base1 = 0; |
1533 | } |
1534 | |
1535 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
1536 | /* NOP AMAIR0/1: the override is because these clash with the rather |
1537 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1538 | */ |
1539 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
1540 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, |
1541 | .resetvalue = 0 }, |
1542 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1543 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2 | ARM_CP_OVERRIDE16, |
1544 | .resetvalue = 0 }, |
1545 | /* 64 bit access versions of the (dummy) debug registers */ |
1546 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, |
1547 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, |
1548 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, |
1549 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2|ARM_CP_64BIT4, .resetvalue = 0 }, |
1550 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1551 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, |
1552 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, |
1553 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
1554 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr064_read, |
1555 | .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, |
1556 | .resetfn = ttbr064_reset }, |
1557 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
1558 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_64BIT4, .readfn = ttbr164_read, |
1559 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, |
1560 | REGINFO_SENTINEL{ .type = 0xffff } |
1561 | }; |
1562 | |
1563 | static int aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1564 | uint64_t *value) |
1565 | { |
1566 | *value = vfp_get_fpcr(env); |
1567 | return 0; |
1568 | } |
1569 | |
1570 | static int aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1571 | uint64_t value) |
1572 | { |
1573 | vfp_set_fpcr(env, value); |
1574 | return 0; |
1575 | } |
1576 | |
1577 | static int aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1578 | uint64_t *value) |
1579 | { |
1580 | *value = vfp_get_fpsr(env); |
1581 | return 0; |
1582 | } |
1583 | |
1584 | static int aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1585 | uint64_t value) |
1586 | { |
1587 | vfp_set_fpsr(env, value); |
1588 | return 0; |
1589 | } |
1590 | |
1591 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
1592 | /* Minimal set of EL0-visible registers. This will need to be expanded |
1593 | * significantly for system emulation of AArch64 CPUs. |
1594 | */ |
1595 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, |
1596 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
1597 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .type = ARM_CP_NZCV(1 | (3 << 8)) }, |
1598 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
1599 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
1600 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
1601 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
1602 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
1603 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
1604 | /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache. |
1605 | * It will eventually need to have a CPU-specified reset value. |
1606 | */ |
1607 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
1608 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
1609 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, |
1610 | .resetvalue = 0x80030003 }, |
1611 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. |
1612 | * For system mode the DZP bit here will need to be computed, not constant. |
1613 | */ |
1614 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
1615 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
1616 | .access = PL0_R(0x02 | (0x08 | (0x20 | 0x80))), .type = ARM_CP_CONST2, |
1617 | .resetvalue = 0x10 }, |
1618 | REGINFO_SENTINEL{ .type = 0xffff } |
1619 | }; |
1620 | |
1621 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1622 | { |
1623 | env->cp15.c1_sys = value; |
1624 | /* ??? Lots of these bits are not implemented. */ |
1625 | /* This may enable/disable the MMU, so do a TLB flush. */ |
1626 | tlb_flush(env, 1); |
1627 | return 0; |
1628 | } |
1629 | |
1630 | void register_cp_regs_for_features(ARMCPU *cpu) |
1631 | { |
1632 | /* Register all the coprocessor registers based on feature bits */ |
1633 | CPUARMState *env = &cpu->env; |
1634 | if (arm_feature(env, ARM_FEATURE_M)) { |
1635 | /* M profile has no coprocessor registers */ |
1636 | return; |
1637 | } |
1638 | |
1639 | define_arm_cp_regs(cpu, cp_reginfo); |
1640 | if (arm_feature(env, ARM_FEATURE_V6)) { |
1641 | /* The ID registers all have impdef reset values */ |
1642 | ARMCPRegInfo v6_idregs[] = { |
1643 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, |
1644 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1645 | .resetvalue = cpu->id_pfr0 }, |
1646 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, |
1647 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1648 | .resetvalue = cpu->id_pfr1 }, |
1649 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, |
1650 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1651 | .resetvalue = cpu->id_dfr0 }, |
1652 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, |
1653 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1654 | .resetvalue = cpu->id_afr0 }, |
1655 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, |
1656 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1657 | .resetvalue = cpu->id_mmfr0 }, |
1658 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, |
1659 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1660 | .resetvalue = cpu->id_mmfr1 }, |
1661 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, |
1662 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1663 | .resetvalue = cpu->id_mmfr2 }, |
1664 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, |
1665 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1666 | .resetvalue = cpu->id_mmfr3 }, |
1667 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, |
1668 | .opc1 = 0, .opc2 = 0, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1669 | .resetvalue = cpu->id_isar0 }, |
1670 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, |
1671 | .opc1 = 0, .opc2 = 1, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1672 | .resetvalue = cpu->id_isar1 }, |
1673 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, |
1674 | .opc1 = 0, .opc2 = 2, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1675 | .resetvalue = cpu->id_isar2 }, |
1676 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, |
1677 | .opc1 = 0, .opc2 = 3, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1678 | .resetvalue = cpu->id_isar3 }, |
1679 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, |
1680 | .opc1 = 0, .opc2 = 4, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1681 | .resetvalue = cpu->id_isar4 }, |
1682 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, |
1683 | .opc1 = 0, .opc2 = 5, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1684 | .resetvalue = cpu->id_isar5 }, |
1685 | /* 6..7 are as yet unallocated and must RAZ */ |
1686 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, |
1687 | .opc1 = 0, .opc2 = 6, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1688 | .resetvalue = 0 }, |
1689 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, |
1690 | .opc1 = 0, .opc2 = 7, .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, |
1691 | .resetvalue = 0 }, |
1692 | REGINFO_SENTINEL{ .type = 0xffff } |
1693 | }; |
1694 | define_arm_cp_regs(cpu, v6_idregs); |
1695 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1696 | } else { |
1697 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
1698 | } |
1699 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1700 | define_arm_cp_regs(cpu, v6k_cp_reginfo); |
1701 | } |
1702 | if (arm_feature(env, ARM_FEATURE_V7)) { |
1703 | /* v7 performance monitor control register: same implementor |
1704 | * field as main ID register, and we implement no event counters. |
1705 | */ |
1706 | ARMCPRegInfo pmcr = { |
1707 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
1708 | .access = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))), .resetvalue = cpu->midr & 0xff000000, |
1709 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr)__builtin_offsetof(CPUARMState, cp15.c9_pmcr), |
1710 | .readfn = pmreg_read, .writefn = pmcr_write, |
1711 | .raw_readfn = raw_read, .raw_writefn = raw_write, |
1712 | }; |
1713 | ARMCPRegInfo clidr = { |
1714 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
1715 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->clidr |
1716 | }; |
1717 | define_one_arm_cp_reg(cpu, &pmcr); |
1718 | define_one_arm_cp_reg(cpu, &clidr); |
1719 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
1720 | } else { |
1721 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
1722 | } |
1723 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1724 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
1725 | } |
1726 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
1727 | /* These are the MPU registers prior to PMSAv6. Any new |
1728 | * PMSA core later than the ARM946 will require that we |
1729 | * implement the PMSAv6 or PMSAv7 registers, which are |
1730 | * completely different. |
1731 | */ |
1732 | assert(!arm_feature(env, ARM_FEATURE_V6))((!arm_feature(env, ARM_FEATURE_V6)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_V6)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1732, __PRETTY_FUNCTION__)); |
1733 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
1734 | } else { |
1735 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
1736 | } |
1737 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
1738 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
1739 | } |
1740 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
1741 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
1742 | } |
1743 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
1744 | define_arm_cp_regs(cpu, vapa_cp_reginfo); |
1745 | } |
1746 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
1747 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
1748 | } |
1749 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
1750 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
1751 | } |
1752 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
1753 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
1754 | } |
1755 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
1756 | define_arm_cp_regs(cpu, omap_cp_reginfo); |
1757 | } |
1758 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1759 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
1760 | } |
1761 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1762 | define_arm_cp_regs(cpu, xscale_cp_reginfo); |
1763 | } |
1764 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
1765 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
1766 | } |
1767 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1768 | define_arm_cp_regs(cpu, lpae_cp_reginfo); |
1769 | } |
1770 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
1771 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
1772 | * be read-only (ie write causes UNDEF exception). |
1773 | */ |
1774 | { |
1775 | ARMCPRegInfo id_cp_reginfo[] = { |
1776 | /* Note that the MIDR isn't a simple constant register because |
1777 | * of the TI925 behaviour where writes to another register can |
1778 | * cause the MIDR value to change. |
1779 | * |
1780 | * Unimplemented registers in the c15 0 0 0 space default to |
1781 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
1782 | * and friends override accordingly. |
1783 | */ |
1784 | { .name = "MIDR", |
1785 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY0xff, |
1786 | .access = PL1_R(0x08 | (0x20 | 0x80)), .resetvalue = cpu->midr, |
1787 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
1788 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid)__builtin_offsetof(CPUARMState, cp15.c0_cpuid), |
1789 | .type = ARM_CP_OVERRIDE16 }, |
1790 | { .name = "CTR", |
1791 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
1792 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = cpu->ctr }, |
1793 | { .name = "TCMTR", |
1794 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
1795 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1796 | { .name = "TLBTR", |
1797 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
1798 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1799 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
1800 | { .name = "DUMMY", |
1801 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY0xff, |
1802 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1803 | { .name = "DUMMY", |
1804 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY0xff, |
1805 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1806 | { .name = "DUMMY", |
1807 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY0xff, |
1808 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1809 | { .name = "DUMMY", |
1810 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY0xff, |
1811 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1812 | { .name = "DUMMY", |
1813 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY0xff, |
1814 | .access = PL1_R(0x08 | (0x20 | 0x80)), .type = ARM_CP_CONST2, .resetvalue = 0 }, |
1815 | REGINFO_SENTINEL{ .type = 0xffff } |
1816 | }; |
1817 | ARMCPRegInfo crn0_wi_reginfo = { |
1818 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY0xff, |
1819 | .opc1 = CP_ANY0xff, .opc2 = CP_ANY0xff, .access = PL1_W(0x04 | (0x10 | 0x40)), |
1820 | .type = ARM_CP_NOP(1 | (1 << 8)) | ARM_CP_OVERRIDE16 |
1821 | }; |
1822 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
1823 | arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1824 | ARMCPRegInfo *r; |
1825 | /* Register the blanket "writes ignored" value first to cover the |
1826 | * whole space. Then update the specific ID registers to allow write |
1827 | * access, so that they ignore writes rather than causing them to |
1828 | * UNDEF. |
1829 | */ |
1830 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
1831 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL0xffff; r++) { |
1832 | r->access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
1833 | } |
1834 | } |
1835 | define_arm_cp_regs(cpu, id_cp_reginfo); |
1836 | } |
1837 | |
1838 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
1839 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
1840 | } |
1841 | |
1842 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
1843 | ARMCPRegInfo auxcr = { |
1844 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, |
1845 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .type = ARM_CP_CONST2, |
1846 | .resetvalue = cpu->reset_auxcr |
1847 | }; |
1848 | define_one_arm_cp_reg(cpu, &auxcr); |
1849 | } |
1850 | |
1851 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
1852 | ARMCPRegInfo cbar = { |
1853 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
1854 | .access = PL1_R(0x08 | (0x20 | 0x80))|PL3_W0x40, .resetvalue = cpu->reset_cbar, |
1855 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)__builtin_offsetof(CPUARMState, cp15.c15_config_base_address) |
1856 | }; |
1857 | define_one_arm_cp_reg(cpu, &cbar); |
1858 | } |
1859 | |
1860 | /* Generic registers whose values depend on the implementation */ |
1861 | { |
1862 | ARMCPRegInfo sctlr = { |
1863 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
1864 | .access = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))), .fieldoffset = offsetof(CPUARMState, cp15.c1_sys)__builtin_offsetof(CPUARMState, cp15.c1_sys), |
1865 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
1866 | .raw_writefn = raw_write, |
1867 | }; |
1868 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1869 | /* Normally we would always end the TB on an SCTLR write, but Linux |
1870 | * arch/arm/mach-pxa/sleep.S expects two instructions following |
1871 | * an MMU enable to execute from cache. Imitate this behaviour. |
1872 | */ |
1873 | sctlr.type |= ARM_CP_SUPPRESS_TB_END8; |
1874 | } |
1875 | define_one_arm_cp_reg(cpu, &sctlr); |
1876 | } |
1877 | } |
1878 | |
1879 | ARMCPU *cpu_arm_init(const char *cpu_model) |
1880 | { |
1881 | ARMCPU *cpu; |
1882 | ObjectClass *oc; |
1883 | |
1884 | oc = cpu_class_by_name(TYPE_ARM_CPU"arm-cpu", cpu_model); |
1885 | if (!oc) { |
1886 | return NULL((void*)0); |
1887 | } |
1888 | cpu = ARM_CPU(object_new(object_class_get_name(oc)))((ARMCPU *)object_dynamic_cast_assert(((Object *)((object_new (object_class_get_name(oc))))), ("arm-cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1888, __func__)); |
1889 | |
1890 | /* TODO this should be set centrally, once possible */ |
1891 | object_property_set_bool(OBJECT(cpu)((Object *)(cpu)), true1, "realized", NULL((void*)0)); |
1892 | |
1893 | return cpu; |
1894 | } |
1895 | |
1896 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
1897 | { |
1898 | CPUState *cs = CPU(cpu)((CPUState *)object_dynamic_cast_assert(((Object *)((cpu))), ( "cpu"), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 1898, __func__)); |
1899 | CPUARMState *env = &cpu->env; |
1900 | |
1901 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
1902 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
1903 | aarch64_fpu_gdb_set_reg, |
1904 | 34, "aarch64-fpu.xml", 0); |
1905 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
1906 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
1907 | 51, "arm-neon.xml", 0); |
1908 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
1909 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
1910 | 35, "arm-vfp3.xml", 0); |
1911 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
1912 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
1913 | 19, "arm-vfp.xml", 0); |
1914 | } |
1915 | } |
1916 | |
1917 | /* Sort alphabetically by type name, except for "any". */ |
1918 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
1919 | { |
1920 | ObjectClass *class_a = (ObjectClass *)a; |
1921 | ObjectClass *class_b = (ObjectClass *)b; |
1922 | const char *name_a, *name_b; |
1923 | |
1924 | name_a = object_class_get_name(class_a); |
1925 | name_b = object_class_get_name(class_b); |
1926 | if (strcmp(name_a, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { |
1927 | return 1; |
1928 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU"arm-cpu") == 0) { |
1929 | return -1; |
1930 | } else { |
1931 | return strcmp(name_a, name_b); |
1932 | } |
1933 | } |
1934 | |
1935 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
1936 | { |
1937 | ObjectClass *oc = data; |
1938 | CPUListState *s = user_data; |
1939 | const char *typename; |
1940 | char *name; |
1941 | |
1942 | typename = object_class_get_name(oc); |
1943 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); |
1944 | (*s->cpu_fprintf)(s->file, " %s\n", |
1945 | name); |
1946 | g_free(name); |
1947 | } |
1948 | |
1949 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
1950 | { |
1951 | CPUListState s = { |
1952 | .file = f, |
1953 | .cpu_fprintf = cpu_fprintf, |
1954 | }; |
1955 | GSList *list; |
1956 | |
1957 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); |
1958 | list = g_slist_sort(list, arm_cpu_list_compare); |
1959 | (*cpu_fprintf)(f, "Available CPUs:\n"); |
1960 | g_slist_foreach(list, arm_cpu_list_entry, &s); |
1961 | g_slist_free(list); |
1962 | #ifdef CONFIG_KVM |
1963 | /* The 'host' CPU type is dynamically registered only if KVM is |
1964 | * enabled, so we have to special-case it here: |
1965 | */ |
1966 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); |
1967 | #endif |
1968 | } |
1969 | |
1970 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
1971 | { |
1972 | ObjectClass *oc = data; |
1973 | CpuDefinitionInfoList **cpu_listarm_cpu_list = user_data; |
1974 | CpuDefinitionInfoList *entry; |
1975 | CpuDefinitionInfo *info; |
1976 | const char *typename; |
1977 | |
1978 | typename = object_class_get_name(oc); |
1979 | info = g_malloc0(sizeof(*info)); |
1980 | info->name = g_strndup(typename, |
1981 | strlen(typename) - strlen("-" TYPE_ARM_CPU"arm-cpu")); |
1982 | |
1983 | entry = g_malloc0(sizeof(*entry)); |
1984 | entry->value = info; |
1985 | entry->next = *cpu_listarm_cpu_list; |
1986 | *cpu_listarm_cpu_list = entry; |
1987 | } |
1988 | |
1989 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) |
1990 | { |
1991 | CpuDefinitionInfoList *cpu_listarm_cpu_list = NULL((void*)0); |
1992 | GSList *list; |
1993 | |
1994 | list = object_class_get_list(TYPE_ARM_CPU"arm-cpu", false0); |
1995 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_listarm_cpu_list); |
1996 | g_slist_free(list); |
1997 | |
1998 | return cpu_listarm_cpu_list; |
1999 | } |
2000 | |
2001 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
2002 | void *opaque, int state, |
2003 | int crm, int opc1, int opc2) |
2004 | { |
2005 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
2006 | * add a single reginfo struct to the hash table. |
2007 | */ |
2008 | uint32_t *key = g_new(uint32_t, 1)((uint32_t *) g_malloc_n ((1), sizeof (uint32_t))); |
2009 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
2010 | int is64 = (r->type & ARM_CP_64BIT4) ? 1 : 0; |
2011 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
2012 | /* The AArch32 view of a shared register sees the lower 32 bits |
2013 | * of a 64 bit backing field. It is not migratable as the AArch64 |
2014 | * view handles that. AArch64 also handles reset. |
2015 | * We assume it is a cp15 register. |
2016 | */ |
2017 | r2->cp = 15; |
2018 | r2->type |= ARM_CP_NO_MIGRATE32; |
2019 | r2->resetfn = arm_cp_reset_ignore; |
2020 | #ifdef HOST_WORDS_BIGENDIAN |
2021 | if (r2->fieldoffset) { |
2022 | r2->fieldoffset += sizeof(uint32_t); |
2023 | } |
2024 | #endif |
2025 | } |
2026 | if (state == ARM_CP_STATE_AA64) { |
2027 | /* To allow abbreviation of ARMCPRegInfo |
2028 | * definitions, we treat cp == 0 as equivalent to |
2029 | * the value for "standard guest-visible sysreg". |
2030 | */ |
2031 | if (r->cp == 0) { |
2032 | r2->cp = CP_REG_ARM64_SYSREG_CP((0x0013 << 16) >> 16); |
2033 | } |
2034 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)) |
2035 | r2->opc0, opc1, opc2)((1 << 28) | ((r2->cp) << 16) | ((r2->opc0) << 14) | ((opc1) << 11) | ((r2->crn) << 7) | ((crm) << 3) | ((opc2) << 0)); |
2036 | } else { |
2037 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2)(((r2->cp) << 16) | ((is64) << 15) | ((r2-> crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)); |
2038 | } |
2039 | if (opaque) { |
2040 | r2->opaque = opaque; |
2041 | } |
2042 | /* Make sure reginfo passed to helpers for wildcarded regs |
2043 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
2044 | */ |
2045 | r2->crm = crm; |
2046 | r2->opc1 = opc1; |
2047 | r2->opc2 = opc2; |
2048 | /* By convention, for wildcarded registers only the first |
2049 | * entry is used for migration; the others are marked as |
2050 | * NO_MIGRATE so we don't try to transfer the register |
2051 | * multiple times. Special registers (ie NOP/WFI) are |
2052 | * never migratable. |
2053 | */ |
2054 | if ((r->type & ARM_CP_SPECIAL1) || |
2055 | ((r->crm == CP_ANY0xff) && crm != 0) || |
2056 | ((r->opc1 == CP_ANY0xff) && opc1 != 0) || |
2057 | ((r->opc2 == CP_ANY0xff) && opc2 != 0)) { |
2058 | r2->type |= ARM_CP_NO_MIGRATE32; |
2059 | } |
2060 | |
2061 | /* Overriding of an existing definition must be explicitly |
2062 | * requested. |
2063 | */ |
2064 | if (!(r->type & ARM_CP_OVERRIDE16)) { |
2065 | ARMCPRegInfo *oldreg; |
2066 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
2067 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE16)) { |
2068 | fprintf(stderrstderr, "Register redefined: cp=%d %d bit " |
2069 | "crn=%d crm=%d opc1=%d opc2=%d, " |
2070 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
2071 | r2->crn, r2->crm, r2->opc1, r2->opc2, |
2072 | oldreg->name, r2->name); |
2073 | g_assert_not_reached()do { g_assertion_message (((gchar*) 0), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2073, ((const char*) (__PRETTY_FUNCTION__)), ((void*)0)); } while (0); |
2074 | } |
2075 | } |
2076 | g_hash_table_insert(cpu->cp_regs, key, r2); |
2077 | } |
2078 | |
2079 | |
2080 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
2081 | const ARMCPRegInfo *r, void *opaque) |
2082 | { |
2083 | /* Define implementations of coprocessor registers. |
2084 | * We store these in a hashtable because typically |
2085 | * there are less than 150 registers in a space which |
2086 | * is 16*16*16*8*8 = 262144 in size. |
2087 | * Wildcarding is supported for the crm, opc1 and opc2 fields. |
2088 | * If a register is defined twice then the second definition is |
2089 | * used, so this can be used to define some generic registers and |
2090 | * then override them with implementation specific variations. |
2091 | * At least one of the original and the second definition should |
2092 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
2093 | * against accidental use. |
2094 | * |
2095 | * The state field defines whether the register is to be |
2096 | * visible in the AArch32 or AArch64 execution state. If the |
2097 | * state is set to ARM_CP_STATE_BOTH then we synthesise a |
2098 | * reginfo structure for the AArch32 view, which sees the lower |
2099 | * 32 bits of the 64 bit register. |
2100 | * |
2101 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
2102 | * be wildcarded. AArch64 registers are always considered to be 64 |
2103 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
2104 | * the register, if any. |
2105 | */ |
2106 | int crm, opc1, opc2, state; |
2107 | int crmmin = (r->crm == CP_ANY0xff) ? 0 : r->crm; |
2108 | int crmmax = (r->crm == CP_ANY0xff) ? 15 : r->crm; |
2109 | int opc1min = (r->opc1 == CP_ANY0xff) ? 0 : r->opc1; |
2110 | int opc1max = (r->opc1 == CP_ANY0xff) ? 7 : r->opc1; |
2111 | int opc2min = (r->opc2 == CP_ANY0xff) ? 0 : r->opc2; |
2112 | int opc2max = (r->opc2 == CP_ANY0xff) ? 7 : r->opc2; |
2113 | /* 64 bit registers have only CRm and Opc1 fields */ |
2114 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)))((!((r->type & 4) && (r->opc2 || r->crn) )) ? (void) (0) : __assert_fail ("!((r->type & 4) && (r->opc2 || r->crn))" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2114 , __PRETTY_FUNCTION__)); |
2115 | /* op0 only exists in the AArch64 encodings */ |
2116 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0))(((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)) ? ( void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2116 , __PRETTY_FUNCTION__)); |
2117 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
2118 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT))(((r->state != ARM_CP_STATE_AA64) || !(r->type & 4) ) ? (void) (0) : __assert_fail ("(r->state != ARM_CP_STATE_AA64) || !(r->type & 4)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2118 , __PRETTY_FUNCTION__)); |
2119 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
2120 | * encodes a minimum access level for the register. We roll this |
2121 | * runtime check into our general permission check code, so check |
2122 | * here that the reginfo's specified permissions are strict enough |
2123 | * to encompass the generic architectural permission check. |
2124 | */ |
2125 | if (r->state != ARM_CP_STATE_AA32) { |
2126 | int mask = 0; |
2127 | switch (r->opc1) { |
2128 | case 0: case 1: case 2: |
2129 | /* min_EL EL1 */ |
2130 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
2131 | break; |
2132 | case 3: |
2133 | /* min_EL EL0 */ |
2134 | mask = PL0_RW((0x02 | (0x08 | (0x20 | 0x80))) | (0x01 | (0x04 | (0x10 | 0x40 )))); |
2135 | break; |
2136 | case 4: |
2137 | /* min_EL EL2 */ |
2138 | mask = PL2_RW((0x20 | 0x80) | (0x10 | 0x40)); |
2139 | break; |
2140 | case 5: |
2141 | /* unallocated encoding, so not possible */ |
2142 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2142, __PRETTY_FUNCTION__)); |
2143 | break; |
2144 | case 6: |
2145 | /* min_EL EL3 */ |
2146 | mask = PL3_RW(0x80 | 0x40); |
2147 | break; |
2148 | case 7: |
2149 | /* min_EL EL1, secure mode only (we don't check the latter) */ |
2150 | mask = PL1_RW((0x08 | (0x20 | 0x80)) | (0x04 | (0x10 | 0x40))); |
2151 | break; |
2152 | default: |
2153 | /* broken reginfo with out-of-range opc1 */ |
2154 | assert(false)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2154, __PRETTY_FUNCTION__)); |
2155 | break; |
2156 | } |
2157 | /* assert our permissions are not too lax (stricter is fine) */ |
2158 | assert((r->access & ~mask) == 0)(((r->access & ~mask) == 0) ? (void) (0) : __assert_fail ("(r->access & ~mask) == 0", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2158, __PRETTY_FUNCTION__)); |
2159 | } |
2160 | |
2161 | /* Check that the register definition has enough info to handle |
2162 | * reads and writes if they are permitted. |
2163 | */ |
2164 | if (!(r->type & (ARM_CP_SPECIAL1|ARM_CP_CONST2))) { |
2165 | if (r->access & PL3_R0x80) { |
2166 | assert(r->fieldoffset || r->readfn)((r->fieldoffset || r->readfn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->readfn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2166, __PRETTY_FUNCTION__)); |
2167 | } |
2168 | if (r->access & PL3_W0x40) { |
2169 | assert(r->fieldoffset || r->writefn)((r->fieldoffset || r->writefn) ? (void) (0) : __assert_fail ("r->fieldoffset || r->writefn", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2169, __PRETTY_FUNCTION__)); |
2170 | } |
2171 | } |
2172 | /* Bad type field probably means missing sentinel at end of reg list */ |
2173 | assert(cptype_valid(r->type))((cptype_valid(r->type)) ? (void) (0) : __assert_fail ("cptype_valid(r->type)" , "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2173 , __PRETTY_FUNCTION__)); |
2174 | for (crm = crmmin; crm <= crmmax; crm++) { |
2175 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
2176 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
2177 | for (state = ARM_CP_STATE_AA32; |
2178 | state <= ARM_CP_STATE_AA64; state++) { |
2179 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
2180 | continue; |
2181 | } |
2182 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
2183 | crm, opc1, opc2); |
2184 | } |
2185 | } |
2186 | } |
2187 | } |
2188 | } |
2189 | |
2190 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
2191 | const ARMCPRegInfo *regs, void *opaque) |
2192 | { |
2193 | /* Define a whole list of registers */ |
2194 | const ARMCPRegInfo *r; |
2195 | for (r = regs; r->type != ARM_CP_SENTINEL0xffff; r++) { |
2196 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
2197 | } |
2198 | } |
2199 | |
2200 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
2201 | { |
2202 | return g_hash_table_lookup(cpregs, &encoded_cp); |
2203 | } |
2204 | |
2205 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2206 | uint64_t value) |
2207 | { |
2208 | /* Helper coprocessor write function for write-ignore registers */ |
2209 | return 0; |
2210 | } |
2211 | |
2212 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
2213 | { |
2214 | /* Helper coprocessor write function for read-as-zero registers */ |
2215 | *value = 0; |
2216 | return 0; |
2217 | } |
2218 | |
2219 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
2220 | { |
2221 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
2222 | } |
2223 | |
2224 | static int bad_mode_switch(CPUARMState *env, int mode) |
2225 | { |
2226 | /* Return true if it is not valid for us to switch to |
2227 | * this CPU mode (ie all the UNPREDICTABLE cases in |
2228 | * the ARM ARM CPSRWriteByInstr pseudocode). |
2229 | */ |
2230 | switch (mode) { |
2231 | case ARM_CPU_MODE_USR: |
2232 | case ARM_CPU_MODE_SYS: |
2233 | case ARM_CPU_MODE_SVC: |
2234 | case ARM_CPU_MODE_ABT: |
2235 | case ARM_CPU_MODE_UND: |
2236 | case ARM_CPU_MODE_IRQ: |
2237 | case ARM_CPU_MODE_FIQ: |
2238 | return 0; |
2239 | default: |
2240 | return 1; |
2241 | } |
2242 | } |
2243 | |
2244 | uint32_t cpsr_read(CPUARMState *env) |
2245 | { |
2246 | int ZF; |
2247 | ZF = (env->ZF == 0); |
2248 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
2249 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
2250 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
2251 | | ((env->condexec_bits & 0xfc) << 8) |
2252 | | (env->GE << 16); |
2253 | } |
2254 | |
2255 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
2256 | { |
2257 | if (mask & CPSR_NZCV((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))) { |
2258 | env->ZF = (~val) & CPSR_Z(1U << 30); |
2259 | env->NF = val; |
2260 | env->CF = (val >> 29) & 1; |
2261 | env->VF = (val << 3) & 0x80000000; |
2262 | } |
2263 | if (mask & CPSR_Q(1U << 27)) |
2264 | env->QF = ((val & CPSR_Q(1U << 27)) != 0); |
2265 | if (mask & CPSR_T(1U << 5)) |
2266 | env->thumb = ((val & CPSR_T(1U << 5)) != 0); |
2267 | if (mask & CPSR_IT_0_1(3U << 25)) { |
2268 | env->condexec_bits &= ~3; |
2269 | env->condexec_bits |= (val >> 25) & 3; |
2270 | } |
2271 | if (mask & CPSR_IT_2_7(0xfc00U)) { |
2272 | env->condexec_bits &= 3; |
2273 | env->condexec_bits |= (val >> 8) & 0xfc; |
2274 | } |
2275 | if (mask & CPSR_GE(0xfU << 16)) { |
2276 | env->GE = (val >> 16) & 0xf; |
2277 | } |
2278 | |
2279 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M(0x1fU)) { |
2280 | if (bad_mode_switch(env, val & CPSR_M(0x1fU))) { |
2281 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. |
2282 | * We choose to ignore the attempt and leave the CPSR M field |
2283 | * untouched. |
2284 | */ |
2285 | mask &= ~CPSR_M(0x1fU); |
2286 | } else { |
2287 | switch_mode(env, val & CPSR_M(0x1fU)); |
2288 | } |
2289 | } |
2290 | mask &= ~CACHED_CPSR_BITS((1U << 5) | (0xfU << 16) | ((3U << 25) | ( 0xfc00U)) | (1U << 27) | ((1U << 31) | (1U << 30) | (1U << 29) | (1U << 28))); |
2291 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
2292 | } |
2293 | |
2294 | /* Sign/zero extend */ |
2295 | uint32_t HELPER(sxtb16)helper_sxtb16(uint32_t x) |
2296 | { |
2297 | uint32_t res; |
2298 | res = (uint16_t)(int8_t)x; |
2299 | res |= (uint32_t)(int8_t)(x >> 16) << 16; |
2300 | return res; |
2301 | } |
2302 | |
2303 | uint32_t HELPER(uxtb16)helper_uxtb16(uint32_t x) |
2304 | { |
2305 | uint32_t res; |
2306 | res = (uint16_t)(uint8_t)x; |
2307 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
2308 | return res; |
2309 | } |
2310 | |
2311 | uint32_t HELPER(clz)helper_clz(uint32_t x) |
2312 | { |
2313 | return clz32(x); |
2314 | } |
2315 | |
2316 | int32_t HELPER(sdiv)helper_sdiv(int32_t num, int32_t den) |
2317 | { |
2318 | if (den == 0) |
2319 | return 0; |
2320 | if (num == INT_MIN(-2147483647 -1) && den == -1) |
2321 | return INT_MIN(-2147483647 -1); |
2322 | return num / den; |
2323 | } |
2324 | |
2325 | uint32_t HELPER(udiv)helper_udiv(uint32_t num, uint32_t den) |
2326 | { |
2327 | if (den == 0) |
2328 | return 0; |
2329 | return num / den; |
2330 | } |
2331 | |
2332 | uint32_t HELPER(rbit)helper_rbit(uint32_t x) |
2333 | { |
2334 | x = ((x & 0xff000000) >> 24) |
2335 | | ((x & 0x00ff0000) >> 8) |
2336 | | ((x & 0x0000ff00) << 8) |
2337 | | ((x & 0x000000ff) << 24); |
2338 | x = ((x & 0xf0f0f0f0) >> 4) |
2339 | | ((x & 0x0f0f0f0f) << 4); |
2340 | x = ((x & 0x88888888) >> 3) |
2341 | | ((x & 0x44444444) >> 1) |
2342 | | ((x & 0x22222222) << 1) |
2343 | | ((x & 0x11111111) << 3); |
2344 | return x; |
2345 | } |
2346 | |
2347 | #if defined(CONFIG_USER_ONLY1) |
2348 | |
2349 | void arm_cpu_do_interrupt(CPUState *cs) |
2350 | { |
2351 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2351, __func__)); |
2352 | CPUARMState *env = &cpu->env; |
2353 | |
2354 | env->exception_index = -1; |
2355 | } |
2356 | |
2357 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
2358 | int mmu_idx) |
2359 | { |
2360 | if (rw == 2) { |
2361 | env->exception_index = EXCP_PREFETCH_ABORT3; |
2362 | env->cp15.c6_insn = address; |
2363 | } else { |
2364 | env->exception_index = EXCP_DATA_ABORT4; |
2365 | env->cp15.c6_data = address; |
2366 | } |
2367 | return 1; |
2368 | } |
2369 | |
2370 | /* These should probably raise undefined insn exceptions. */ |
2371 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) |
2372 | { |
2373 | cpu_abort(env, "v7m_mrs %d\n", reg); |
2374 | } |
2375 | |
2376 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) |
2377 | { |
2378 | cpu_abort(env, "v7m_mrs %d\n", reg); |
2379 | return 0; |
2380 | } |
2381 | |
2382 | void switch_mode(CPUARMState *env, int mode) |
2383 | { |
2384 | if (mode != ARM_CPU_MODE_USR) |
2385 | cpu_abort(env, "Tried to switch out of user mode\n"); |
2386 | } |
2387 | |
2388 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) |
2389 | { |
2390 | cpu_abort(env, "banked r13 write\n"); |
2391 | } |
2392 | |
2393 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) |
2394 | { |
2395 | cpu_abort(env, "banked r13 read\n"); |
2396 | return 0; |
2397 | } |
2398 | |
2399 | #else |
2400 | |
2401 | /* Map CPU modes onto saved register banks. */ |
2402 | int bank_number(int mode) |
2403 | { |
2404 | switch (mode) { |
2405 | case ARM_CPU_MODE_USR: |
2406 | case ARM_CPU_MODE_SYS: |
2407 | return 0; |
2408 | case ARM_CPU_MODE_SVC: |
2409 | return 1; |
2410 | case ARM_CPU_MODE_ABT: |
2411 | return 2; |
2412 | case ARM_CPU_MODE_UND: |
2413 | return 3; |
2414 | case ARM_CPU_MODE_IRQ: |
2415 | return 4; |
2416 | case ARM_CPU_MODE_FIQ: |
2417 | return 5; |
2418 | } |
2419 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
2420 | } |
2421 | |
2422 | void switch_mode(CPUARMState *env, int mode) |
2423 | { |
2424 | int old_mode; |
2425 | int i; |
2426 | |
2427 | old_mode = env->uncached_cpsr & CPSR_M(0x1fU); |
2428 | if (mode == old_mode) |
2429 | return; |
2430 | |
2431 | if (old_mode == ARM_CPU_MODE_FIQ) { |
2432 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
2433 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
2434 | } else if (mode == ARM_CPU_MODE_FIQ) { |
2435 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
2436 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
2437 | } |
2438 | |
2439 | i = bank_number(old_mode); |
2440 | env->banked_r13[i] = env->regs[13]; |
2441 | env->banked_r14[i] = env->regs[14]; |
2442 | env->banked_spsr[i] = env->spsr; |
2443 | |
2444 | i = bank_number(mode); |
2445 | env->regs[13] = env->banked_r13[i]; |
2446 | env->regs[14] = env->banked_r14[i]; |
2447 | env->spsr = env->banked_spsr[i]; |
2448 | } |
2449 | |
2450 | static void v7m_push(CPUARMState *env, uint32_t val) |
2451 | { |
2452 | env->regs[13] -= 4; |
2453 | stl_phys(env->regs[13], val); |
2454 | } |
2455 | |
2456 | static uint32_t v7m_pop(CPUARMState *env) |
2457 | { |
2458 | uint32_t val; |
2459 | val = ldl_phys(env->regs[13]); |
2460 | env->regs[13] += 4; |
2461 | return val; |
2462 | } |
2463 | |
2464 | /* Switch to V7M main or process stack pointer. */ |
2465 | static void switch_v7m_sp(CPUARMState *env, int process) |
2466 | { |
2467 | uint32_t tmp; |
2468 | if (env->v7m.current_sp != process) { |
2469 | tmp = env->v7m.other_sp; |
2470 | env->v7m.other_sp = env->regs[13]; |
2471 | env->regs[13] = tmp; |
2472 | env->v7m.current_sp = process; |
2473 | } |
2474 | } |
2475 | |
2476 | static void do_v7m_exception_exit(CPUARMState *env) |
2477 | { |
2478 | uint32_t type; |
2479 | uint32_t xpsr; |
2480 | |
2481 | type = env->regs[15]; |
2482 | if (env->v7m.exception != 0) |
2483 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
2484 | |
2485 | /* Switch to the target stack. */ |
2486 | switch_v7m_sp(env, (type & 4) != 0); |
2487 | /* Pop registers. */ |
2488 | env->regs[0] = v7m_pop(env); |
2489 | env->regs[1] = v7m_pop(env); |
2490 | env->regs[2] = v7m_pop(env); |
2491 | env->regs[3] = v7m_pop(env); |
2492 | env->regs[12] = v7m_pop(env); |
2493 | env->regs[14] = v7m_pop(env); |
2494 | env->regs[15] = v7m_pop(env); |
2495 | xpsr = v7m_pop(env); |
2496 | xpsr_write(env, xpsr, 0xfffffdff); |
2497 | /* Undo stack alignment. */ |
2498 | if (xpsr & 0x200) |
2499 | env->regs[13] |= 4; |
2500 | /* ??? The exception return type specifies Thread/Handler mode. However |
2501 | this is also implied by the xPSR value. Not sure what to do |
2502 | if there is a mismatch. */ |
2503 | /* ??? Likewise for mismatches between the CONTROL register and the stack |
2504 | pointer. */ |
2505 | } |
2506 | |
2507 | /* Exception names for debug logging; note that not all of these |
2508 | * precisely correspond to architectural exceptions. |
2509 | */ |
2510 | static const char * const excnames[] = { |
2511 | [EXCP_UDEF1] = "Undefined Instruction", |
2512 | [EXCP_SWI2] = "SVC", |
2513 | [EXCP_PREFETCH_ABORT3] = "Prefetch Abort", |
2514 | [EXCP_DATA_ABORT4] = "Data Abort", |
2515 | [EXCP_IRQ5] = "IRQ", |
2516 | [EXCP_FIQ6] = "FIQ", |
2517 | [EXCP_BKPT7] = "Breakpoint", |
2518 | [EXCP_EXCEPTION_EXIT8] = "QEMU v7M exception exit", |
2519 | [EXCP_KERNEL_TRAP9] = "QEMU intercept of kernel commpage", |
2520 | [EXCP_STREX10] = "QEMU intercept of STREX", |
2521 | }; |
2522 | |
2523 | static inline void arm_log_exception(int idx) |
2524 | { |
2525 | if (qemu_loglevel_mask(CPU_LOG_INT(1 << 4))) { |
2526 | const char *exc = NULL((void*)0); |
2527 | |
2528 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)(sizeof(excnames) / sizeof((excnames)[0]))) { |
2529 | exc = excnames[idx]; |
2530 | } |
2531 | if (!exc) { |
2532 | exc = "unknown"; |
2533 | } |
2534 | qemu_log_mask(CPU_LOG_INT(1 << 4), "Taking exception %d [%s]\n", idx, exc); |
2535 | } |
2536 | } |
2537 | |
2538 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
2539 | { |
2540 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2540, __func__)); |
2541 | CPUARMState *env = &cpu->env; |
2542 | uint32_t xpsr = xpsr_read(env); |
2543 | uint32_t lr; |
2544 | uint32_t addr; |
2545 | |
2546 | arm_log_exception(env->exception_index); |
2547 | |
2548 | lr = 0xfffffff1; |
2549 | if (env->v7m.current_sp) |
2550 | lr |= 4; |
2551 | if (env->v7m.exception == 0) |
2552 | lr |= 8; |
2553 | |
2554 | /* For exceptions we just mark as pending on the NVIC, and let that |
2555 | handle it. */ |
2556 | /* TODO: Need to escalate if the current priority is higher than the |
2557 | one we're raising. */ |
2558 | switch (env->exception_index) { |
2559 | case EXCP_UDEF1: |
2560 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE6); |
2561 | return; |
2562 | case EXCP_SWI2: |
2563 | /* The PC already points to the next instruction. */ |
2564 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC11); |
2565 | return; |
2566 | case EXCP_PREFETCH_ABORT3: |
2567 | case EXCP_DATA_ABORT4: |
2568 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM4); |
2569 | return; |
2570 | case EXCP_BKPT7: |
2571 | if (semihosting_enabled) { |
2572 | int nr; |
2573 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2574 | if (nr == 0xab) { |
2575 | env->regs[15] += 2; |
2576 | env->regs[0] = do_arm_semihosting(env); |
2577 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
2578 | return; |
2579 | } |
2580 | } |
2581 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG12); |
2582 | return; |
2583 | case EXCP_IRQ5: |
2584 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
2585 | break; |
2586 | case EXCP_EXCEPTION_EXIT8: |
2587 | do_v7m_exception_exit(env); |
2588 | return; |
2589 | default: |
2590 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
2591 | return; /* Never happens. Keep compiler happy. */ |
2592 | } |
2593 | |
2594 | /* Align stack pointer. */ |
2595 | /* ??? Should only do this if Configuration Control Register |
2596 | STACKALIGN bit is set. */ |
2597 | if (env->regs[13] & 4) { |
2598 | env->regs[13] -= 4; |
2599 | xpsr |= 0x200; |
2600 | } |
2601 | /* Switch to the handler mode. */ |
2602 | v7m_push(env, xpsr); |
2603 | v7m_push(env, env->regs[15]); |
2604 | v7m_push(env, env->regs[14]); |
2605 | v7m_push(env, env->regs[12]); |
2606 | v7m_push(env, env->regs[3]); |
2607 | v7m_push(env, env->regs[2]); |
2608 | v7m_push(env, env->regs[1]); |
2609 | v7m_push(env, env->regs[0]); |
2610 | switch_v7m_sp(env, 0); |
2611 | /* Clear IT bits */ |
2612 | env->condexec_bits = 0; |
2613 | env->regs[14] = lr; |
2614 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); |
2615 | env->regs[15] = addr & 0xfffffffe; |
2616 | env->thumb = addr & 1; |
2617 | } |
2618 | |
2619 | /* Handle a CPU exception. */ |
2620 | void arm_cpu_do_interrupt(CPUState *cs) |
2621 | { |
2622 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 2622, __func__)); |
2623 | CPUARMState *env = &cpu->env; |
2624 | uint32_t addr; |
2625 | uint32_t mask; |
2626 | int new_mode; |
2627 | uint32_t offset; |
2628 | |
2629 | assert(!IS_M(env))((!arm_feature(env, ARM_FEATURE_M)) ? (void) (0) : __assert_fail ("!arm_feature(env, ARM_FEATURE_M)", "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c" , 2629, __PRETTY_FUNCTION__)); |
2630 | |
2631 | arm_log_exception(env->exception_index); |
2632 | |
2633 | /* TODO: Vectored interrupt controller. */ |
2634 | switch (env->exception_index) { |
2635 | case EXCP_UDEF1: |
2636 | new_mode = ARM_CPU_MODE_UND; |
2637 | addr = 0x04; |
2638 | mask = CPSR_I(1U << 7); |
2639 | if (env->thumb) |
2640 | offset = 2; |
2641 | else |
2642 | offset = 4; |
2643 | break; |
2644 | case EXCP_SWI2: |
2645 | if (semihosting_enabled) { |
2646 | /* Check for semihosting interrupt. */ |
2647 | if (env->thumb) { |
2648 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
2649 | & 0xff; |
2650 | } else { |
2651 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
2652 | & 0xffffff; |
2653 | } |
2654 | /* Only intercept calls from privileged modes, to provide some |
2655 | semblance of security. */ |
2656 | if (((mask == 0x123456 && !env->thumb) |
2657 | || (mask == 0xab && env->thumb)) |
2658 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { |
2659 | env->regs[0] = do_arm_semihosting(env); |
2660 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
2661 | return; |
2662 | } |
2663 | } |
2664 | new_mode = ARM_CPU_MODE_SVC; |
2665 | addr = 0x08; |
2666 | mask = CPSR_I(1U << 7); |
2667 | /* The PC already points to the next instruction. */ |
2668 | offset = 0; |
2669 | break; |
2670 | case EXCP_BKPT7: |
2671 | /* See if this is a semihosting syscall. */ |
2672 | if (env->thumb && semihosting_enabled) { |
2673 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2674 | if (mask == 0xab |
2675 | && (env->uncached_cpsr & CPSR_M(0x1fU)) != ARM_CPU_MODE_USR) { |
2676 | env->regs[15] += 2; |
2677 | env->regs[0] = do_arm_semihosting(env); |
2678 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...handled as semihosting call\n"); |
2679 | return; |
2680 | } |
2681 | } |
2682 | env->cp15.c5_insn = 2; |
2683 | /* Fall through to prefetch abort. */ |
2684 | case EXCP_PREFETCH_ABORT3: |
2685 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with IFSR 0x%x IFAR 0x%x\n", |
2686 | env->cp15.c5_insn, env->cp15.c6_insn); |
2687 | new_mode = ARM_CPU_MODE_ABT; |
2688 | addr = 0x0c; |
2689 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
2690 | offset = 4; |
2691 | break; |
2692 | case EXCP_DATA_ABORT4: |
2693 | qemu_log_mask(CPU_LOG_INT(1 << 4), "...with DFSR 0x%x DFAR 0x%x\n", |
2694 | env->cp15.c5_data, env->cp15.c6_data); |
2695 | new_mode = ARM_CPU_MODE_ABT; |
2696 | addr = 0x10; |
2697 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
2698 | offset = 8; |
2699 | break; |
2700 | case EXCP_IRQ5: |
2701 | new_mode = ARM_CPU_MODE_IRQ; |
2702 | addr = 0x18; |
2703 | /* Disable IRQ and imprecise data aborts. */ |
2704 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7); |
2705 | offset = 4; |
2706 | break; |
2707 | case EXCP_FIQ6: |
2708 | new_mode = ARM_CPU_MODE_FIQ; |
2709 | addr = 0x1c; |
2710 | /* Disable FIQ, IRQ and imprecise data aborts. */ |
2711 | mask = CPSR_A(1U << 8) | CPSR_I(1U << 7) | CPSR_F(1U << 6); |
2712 | offset = 4; |
2713 | break; |
2714 | default: |
2715 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
2716 | return; /* Never happens. Keep compiler happy. */ |
2717 | } |
2718 | /* High vectors. */ |
2719 | if (env->cp15.c1_sys & (1 << 13)) { |
2720 | /* when enabled, base address cannot be remapped. */ |
2721 | addr += 0xffff0000; |
2722 | } else { |
2723 | /* ARM v7 architectures provide a vector base address register to remap |
2724 | * the interrupt vector table. |
2725 | * This register is only followed in non-monitor mode, and has a secure |
2726 | * and un-secure copy. Since the cpu is always in a un-secure operation |
2727 | * and is never in monitor mode this feature is always active. |
2728 | * Note: only bits 31:5 are valid. |
2729 | */ |
2730 | addr += env->cp15.c12_vbar; |
2731 | } |
2732 | switch_mode (env, new_mode); |
2733 | env->spsr = cpsr_read(env); |
2734 | /* Clear IT bits. */ |
2735 | env->condexec_bits = 0; |
2736 | /* Switch to the new mode, and to the correct instruction set. */ |
2737 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M(0x1fU)) | new_mode; |
2738 | env->uncached_cpsr |= mask; |
2739 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
2740 | * and we should just guard the thumb mode on V4 */ |
2741 | if (arm_feature(env, ARM_FEATURE_V4T)) { |
2742 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; |
2743 | } |
2744 | env->regs[14] = env->regs[15] + offset; |
2745 | env->regs[15] = addr; |
2746 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB0x0004; |
2747 | } |
2748 | |
2749 | /* Check section/page access permissions. |
2750 | Returns the page protection flags, or zero if the access is not |
2751 | permitted. */ |
2752 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
2753 | int access_type, int is_user) |
2754 | { |
2755 | int prot_ro; |
2756 | |
2757 | if (domain_prot == 3) { |
2758 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
2759 | } |
2760 | |
2761 | if (access_type == 1) |
2762 | prot_ro = 0; |
2763 | else |
2764 | prot_ro = PAGE_READ0x0001; |
2765 | |
2766 | switch (ap) { |
2767 | case 0: |
2768 | if (access_type == 1) |
2769 | return 0; |
2770 | switch ((env->cp15.c1_sys >> 8) & 3) { |
2771 | case 1: |
2772 | return is_user ? 0 : PAGE_READ0x0001; |
2773 | case 2: |
2774 | return PAGE_READ0x0001; |
2775 | default: |
2776 | return 0; |
2777 | } |
2778 | case 1: |
2779 | return is_user ? 0 : PAGE_READ0x0001 | PAGE_WRITE0x0002; |
2780 | case 2: |
2781 | if (is_user) |
2782 | return prot_ro; |
2783 | else |
2784 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
2785 | case 3: |
2786 | return PAGE_READ0x0001 | PAGE_WRITE0x0002; |
2787 | case 4: /* Reserved. */ |
2788 | return 0; |
2789 | case 5: |
2790 | return is_user ? 0 : prot_ro; |
2791 | case 6: |
2792 | return prot_ro; |
2793 | case 7: |
2794 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
2795 | return 0; |
2796 | return prot_ro; |
2797 | default: |
2798 | abort(); |
2799 | } |
2800 | } |
2801 | |
2802 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
2803 | { |
2804 | uint32_t table; |
2805 | |
2806 | if (address & env->cp15.c2_mask) |
2807 | table = env->cp15.c2_base1 & 0xffffc000; |
2808 | else |
2809 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
2810 | |
2811 | table |= (address >> 18) & 0x3ffc; |
2812 | return table; |
2813 | } |
2814 | |
2815 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
2816 | int is_user, hwaddr *phys_ptr, |
2817 | int *prot, target_ulong *page_size) |
2818 | { |
2819 | int code; |
2820 | uint32_t table; |
2821 | uint32_t desc; |
2822 | int type; |
2823 | int ap; |
2824 | int domain; |
2825 | int domain_prot; |
2826 | hwaddr phys_addr; |
2827 | |
2828 | /* Pagetable walk. */ |
2829 | /* Lookup l1 descriptor. */ |
2830 | table = get_level1_table_address(env, address); |
2831 | desc = ldl_phys(table); |
2832 | type = (desc & 3); |
2833 | domain = (desc >> 5) & 0x0f; |
2834 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
2835 | if (type == 0) { |
2836 | /* Section translation fault. */ |
2837 | code = 5; |
2838 | goto do_fault; |
2839 | } |
2840 | if (domain_prot == 0 || domain_prot == 2) { |
2841 | if (type == 2) |
2842 | code = 9; /* Section domain fault. */ |
2843 | else |
2844 | code = 11; /* Page domain fault. */ |
2845 | goto do_fault; |
2846 | } |
2847 | if (type == 2) { |
2848 | /* 1Mb section. */ |
2849 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
2850 | ap = (desc >> 10) & 3; |
2851 | code = 13; |
2852 | *page_size = 1024 * 1024; |
2853 | } else { |
2854 | /* Lookup l2 entry. */ |
2855 | if (type == 1) { |
2856 | /* Coarse pagetable. */ |
2857 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
2858 | } else { |
2859 | /* Fine pagetable. */ |
2860 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
2861 | } |
2862 | desc = ldl_phys(table); |
2863 | switch (desc & 3) { |
2864 | case 0: /* Page translation fault. */ |
2865 | code = 7; |
2866 | goto do_fault; |
2867 | case 1: /* 64k page. */ |
2868 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
2869 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
2870 | *page_size = 0x10000; |
2871 | break; |
2872 | case 2: /* 4k page. */ |
2873 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
2874 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
2875 | *page_size = 0x1000; |
2876 | break; |
2877 | case 3: /* 1k page. */ |
2878 | if (type == 1) { |
2879 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
2880 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
2881 | } else { |
2882 | /* Page translation fault. */ |
2883 | code = 7; |
2884 | goto do_fault; |
2885 | } |
2886 | } else { |
2887 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
2888 | } |
2889 | ap = (desc >> 4) & 3; |
2890 | *page_size = 0x400; |
2891 | break; |
2892 | default: |
2893 | /* Never happens, but compiler isn't smart enough to tell. */ |
2894 | abort(); |
2895 | } |
2896 | code = 15; |
2897 | } |
2898 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
2899 | if (!*prot) { |
2900 | /* Access permission fault. */ |
2901 | goto do_fault; |
2902 | } |
2903 | *prot |= PAGE_EXEC0x0004; |
2904 | *phys_ptr = phys_addr; |
2905 | return 0; |
2906 | do_fault: |
2907 | return code | (domain << 4); |
2908 | } |
2909 | |
2910 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
2911 | int is_user, hwaddr *phys_ptr, |
2912 | int *prot, target_ulong *page_size) |
2913 | { |
2914 | int code; |
2915 | uint32_t table; |
2916 | uint32_t desc; |
2917 | uint32_t xn; |
2918 | uint32_t pxn = 0; |
2919 | int type; |
2920 | int ap; |
2921 | int domain = 0; |
2922 | int domain_prot; |
2923 | hwaddr phys_addr; |
2924 | |
2925 | /* Pagetable walk. */ |
2926 | /* Lookup l1 descriptor. */ |
2927 | table = get_level1_table_address(env, address); |
2928 | desc = ldl_phys(table); |
2929 | type = (desc & 3); |
2930 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
2931 | /* Section translation fault, or attempt to use the encoding |
2932 | * which is Reserved on implementations without PXN. |
2933 | */ |
2934 | code = 5; |
2935 | goto do_fault; |
2936 | } |
2937 | if ((type == 1) || !(desc & (1 << 18))) { |
2938 | /* Page or Section. */ |
2939 | domain = (desc >> 5) & 0x0f; |
2940 | } |
2941 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
2942 | if (domain_prot == 0 || domain_prot == 2) { |
2943 | if (type != 1) { |
2944 | code = 9; /* Section domain fault. */ |
2945 | } else { |
2946 | code = 11; /* Page domain fault. */ |
2947 | } |
2948 | goto do_fault; |
2949 | } |
2950 | if (type != 1) { |
2951 | if (desc & (1 << 18)) { |
2952 | /* Supersection. */ |
2953 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
2954 | *page_size = 0x1000000; |
2955 | } else { |
2956 | /* Section. */ |
2957 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
2958 | *page_size = 0x100000; |
2959 | } |
2960 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
2961 | xn = desc & (1 << 4); |
2962 | pxn = desc & 1; |
2963 | code = 13; |
2964 | } else { |
2965 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
2966 | pxn = (desc >> 2) & 1; |
2967 | } |
2968 | /* Lookup l2 entry. */ |
2969 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
2970 | desc = ldl_phys(table); |
2971 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
2972 | switch (desc & 3) { |
2973 | case 0: /* Page translation fault. */ |
2974 | code = 7; |
2975 | goto do_fault; |
2976 | case 1: /* 64k page. */ |
2977 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
2978 | xn = desc & (1 << 15); |
2979 | *page_size = 0x10000; |
2980 | break; |
2981 | case 2: case 3: /* 4k page. */ |
2982 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
2983 | xn = desc & 1; |
2984 | *page_size = 0x1000; |
2985 | break; |
2986 | default: |
2987 | /* Never happens, but compiler isn't smart enough to tell. */ |
2988 | abort(); |
2989 | } |
2990 | code = 15; |
2991 | } |
2992 | if (domain_prot == 3) { |
2993 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
2994 | } else { |
2995 | if (pxn && !is_user) { |
2996 | xn = 1; |
2997 | } |
2998 | if (xn && access_type == 2) |
2999 | goto do_fault; |
3000 | |
3001 | /* The simplified model uses AP[0] as an access control bit. */ |
3002 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { |
3003 | /* Access flag fault. */ |
3004 | code = (code == 15) ? 6 : 3; |
3005 | goto do_fault; |
3006 | } |
3007 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
3008 | if (!*prot) { |
3009 | /* Access permission fault. */ |
3010 | goto do_fault; |
3011 | } |
3012 | if (!xn) { |
3013 | *prot |= PAGE_EXEC0x0004; |
3014 | } |
3015 | } |
3016 | *phys_ptr = phys_addr; |
3017 | return 0; |
3018 | do_fault: |
3019 | return code | (domain << 4); |
3020 | } |
3021 | |
3022 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
3023 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. |
3024 | */ |
3025 | typedef enum { |
3026 | translation_fault = 1, |
3027 | access_fault = 2, |
3028 | permission_fault = 3, |
3029 | } MMUFaultType; |
3030 | |
3031 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, |
3032 | int access_type, int is_user, |
3033 | hwaddr *phys_ptr, int *prot, |
3034 | target_ulong *page_size_ptr) |
3035 | { |
3036 | /* Read an LPAE long-descriptor translation table. */ |
3037 | MMUFaultType fault_type = translation_fault; |
3038 | uint32_t level = 1; |
3039 | uint32_t epd; |
3040 | uint32_t tsz; |
3041 | uint64_t ttbr; |
3042 | int ttbr_select; |
3043 | int n; |
3044 | hwaddr descaddr; |
3045 | uint32_t tableattrs; |
3046 | target_ulong page_size; |
3047 | uint32_t attrs; |
3048 | |
3049 | /* Determine whether this address is in the region controlled by |
3050 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). |
3051 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by |
3052 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: |
3053 | */ |
3054 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); |
3055 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); |
3056 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { |
3057 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
3058 | ttbr_select = 0; |
3059 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { |
3060 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
3061 | ttbr_select = 1; |
3062 | } else if (!t0sz) { |
3063 | /* ttbr0 region is "everything not in the ttbr1 region" */ |
3064 | ttbr_select = 0; |
3065 | } else if (!t1sz) { |
3066 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
3067 | ttbr_select = 1; |
3068 | } else { |
3069 | /* in the gap between the two regions, this is a Translation fault */ |
3070 | fault_type = translation_fault; |
3071 | goto do_fault; |
3072 | } |
3073 | |
3074 | /* Note that QEMU ignores shareability and cacheability attributes, |
3075 | * so we don't need to do anything with the SH, ORGN, IRGN fields |
3076 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
3077 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
3078 | * implement any ASID-like capability so we can ignore it (instead |
3079 | * we will always flush the TLB any time the ASID is changed). |
3080 | */ |
3081 | if (ttbr_select == 0) { |
3082 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
3083 | epd = extract32(env->cp15.c2_control, 7, 1); |
3084 | tsz = t0sz; |
3085 | } else { |
3086 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
3087 | epd = extract32(env->cp15.c2_control, 23, 1); |
3088 | tsz = t1sz; |
3089 | } |
3090 | |
3091 | if (epd) { |
3092 | /* Translation table walk disabled => Translation fault on TLB miss */ |
3093 | goto do_fault; |
3094 | } |
3095 | |
3096 | /* If the region is small enough we will skip straight to a 2nd level |
3097 | * lookup. This affects the number of bits of the address used in |
3098 | * combination with the TTBR to find the first descriptor. ('n' here |
3099 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are |
3100 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). |
3101 | */ |
3102 | if (tsz > 1) { |
3103 | level = 2; |
3104 | n = 14 - tsz; |
3105 | } else { |
3106 | n = 5 - tsz; |
3107 | } |
3108 | |
3109 | /* Clear the vaddr bits which aren't part of the within-region address, |
3110 | * so that we don't have to special case things when calculating the |
3111 | * first descriptor address. |
3112 | */ |
3113 | address &= (0xffffffffU >> tsz); |
3114 | |
3115 | /* Now we can extract the actual base address from the TTBR */ |
3116 | descaddr = extract64(ttbr, 0, 40); |
3117 | descaddr &= ~((1ULL << n) - 1); |
3118 | |
3119 | tableattrs = 0; |
3120 | for (;;) { |
3121 | uint64_t descriptor; |
3122 | |
3123 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); |
3124 | descriptor = ldq_phys(descaddr); |
3125 | if (!(descriptor & 1) || |
3126 | (!(descriptor & 2) && (level == 3))) { |
3127 | /* Invalid, or the Reserved level 3 encoding */ |
3128 | goto do_fault; |
3129 | } |
3130 | descaddr = descriptor & 0xfffffff000ULL; |
3131 | |
3132 | if ((descriptor & 2) && (level < 3)) { |
3133 | /* Table entry. The top five bits are attributes which may |
3134 | * propagate down through lower levels of the table (and |
3135 | * which are all arranged so that 0 means "no effect", so |
3136 | * we can gather them up by ORing in the bits at each level). |
3137 | */ |
3138 | tableattrs |= extract64(descriptor, 59, 5); |
3139 | level++; |
3140 | continue; |
3141 | } |
3142 | /* Block entry at level 1 or 2, or page entry at level 3. |
3143 | * These are basically the same thing, although the number |
3144 | * of bits we pull in from the vaddr varies. |
3145 | */ |
3146 | page_size = (1 << (39 - (9 * level))); |
3147 | descaddr |= (address & (page_size - 1)); |
3148 | /* Extract attributes from the descriptor and merge with table attrs */ |
3149 | attrs = extract64(descriptor, 2, 10) |
3150 | | (extract64(descriptor, 52, 12) << 10); |
3151 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
3152 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ |
3153 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
3154 | * means "force PL1 access only", which means forcing AP[1] to 0. |
3155 | */ |
3156 | if (extract32(tableattrs, 2, 1)) { |
3157 | attrs &= ~(1 << 4); |
3158 | } |
3159 | /* Since we're always in the Non-secure state, NSTable is ignored. */ |
3160 | break; |
3161 | } |
3162 | /* Here descaddr is the final physical address, and attributes |
3163 | * are all in attrs. |
3164 | */ |
3165 | fault_type = access_fault; |
3166 | if ((attrs & (1 << 8)) == 0) { |
3167 | /* Access flag */ |
3168 | goto do_fault; |
3169 | } |
3170 | fault_type = permission_fault; |
3171 | if (is_user && !(attrs & (1 << 4))) { |
3172 | /* Unprivileged access not enabled */ |
3173 | goto do_fault; |
3174 | } |
3175 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
3176 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { |
3177 | /* XN or PXN */ |
3178 | if (access_type == 2) { |
3179 | goto do_fault; |
3180 | } |
3181 | *prot &= ~PAGE_EXEC0x0004; |
3182 | } |
3183 | if (attrs & (1 << 5)) { |
3184 | /* Write access forbidden */ |
3185 | if (access_type == 1) { |
3186 | goto do_fault; |
3187 | } |
3188 | *prot &= ~PAGE_WRITE0x0002; |
3189 | } |
3190 | |
3191 | *phys_ptr = descaddr; |
3192 | *page_size_ptr = page_size; |
3193 | return 0; |
3194 | |
3195 | do_fault: |
3196 | /* Long-descriptor format IFSR/DFSR value */ |
3197 | return (1 << 9) | (fault_type << 2) | level; |
3198 | } |
3199 | |
3200 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
3201 | int access_type, int is_user, |
3202 | hwaddr *phys_ptr, int *prot) |
3203 | { |
3204 | int n; |
3205 | uint32_t mask; |
3206 | uint32_t base; |
3207 | |
3208 | *phys_ptr = address; |
3209 | for (n = 7; n >= 0; n--) { |
3210 | base = env->cp15.c6_region[n]; |
3211 | if ((base & 1) == 0) |
3212 | continue; |
3213 | mask = 1 << ((base >> 1) & 0x1f); |
3214 | /* Keep this shift separate from the above to avoid an |
3215 | (undefined) << 32. */ |
3216 | mask = (mask << 1) - 1; |
3217 | if (((base ^ address) & ~mask) == 0) |
3218 | break; |
3219 | } |
3220 | if (n < 0) |
3221 | return 2; |
3222 | |
3223 | if (access_type == 2) { |
3224 | mask = env->cp15.c5_insn; |
3225 | } else { |
3226 | mask = env->cp15.c5_data; |
3227 | } |
3228 | mask = (mask >> (n * 4)) & 0xf; |
3229 | switch (mask) { |
3230 | case 0: |
3231 | return 1; |
3232 | case 1: |
3233 | if (is_user) |
3234 | return 1; |
3235 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; |
3236 | break; |
3237 | case 2: |
3238 | *prot = PAGE_READ0x0001; |
3239 | if (!is_user) |
3240 | *prot |= PAGE_WRITE0x0002; |
3241 | break; |
3242 | case 3: |
3243 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002; |
3244 | break; |
3245 | case 5: |
3246 | if (is_user) |
3247 | return 1; |
3248 | *prot = PAGE_READ0x0001; |
3249 | break; |
3250 | case 6: |
3251 | *prot = PAGE_READ0x0001; |
3252 | break; |
3253 | default: |
3254 | /* Bad permission. */ |
3255 | return 1; |
3256 | } |
3257 | *prot |= PAGE_EXEC0x0004; |
3258 | return 0; |
3259 | } |
3260 | |
3261 | /* get_phys_addr - get the physical address for this virtual address |
3262 | * |
3263 | * Find the physical address corresponding to the given virtual address, |
3264 | * by doing a translation table walk on MMU based systems or using the |
3265 | * MPU state on MPU based systems. |
3266 | * |
3267 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, |
3268 | * prot and page_size are not filled in, and the return value provides |
3269 | * information on why the translation aborted, in the format of a |
3270 | * DFSR/IFSR fault register, with the following caveats: |
3271 | * * we honour the short vs long DFSR format differences. |
3272 | * * the WnR bit is never set (the caller must do this). |
3273 | * * for MPU based systems we don't bother to return a full FSR format |
3274 | * value. |
3275 | * |
3276 | * @env: CPUARMState |
3277 | * @address: virtual address to get physical address for |
3278 | * @access_type: 0 for read, 1 for write, 2 for execute |
3279 | * @is_user: 0 for privileged access, 1 for user |
3280 | * @phys_ptr: set to the physical address corresponding to the virtual address |
3281 | * @prot: set to the permissions for the page containing phys_ptr |
3282 | * @page_size: set to the size of the page containing phys_ptr |
3283 | */ |
3284 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
3285 | int access_type, int is_user, |
3286 | hwaddr *phys_ptr, int *prot, |
3287 | target_ulong *page_size) |
3288 | { |
3289 | /* Fast Context Switch Extension. */ |
3290 | if (address < 0x02000000) |
3291 | address += env->cp15.c13_fcse; |
3292 | |
3293 | if ((env->cp15.c1_sys & 1) == 0) { |
3294 | /* MMU/MPU disabled. */ |
3295 | *phys_ptr = address; |
3296 | *prot = PAGE_READ0x0001 | PAGE_WRITE0x0002 | PAGE_EXEC0x0004; |
3297 | *page_size = TARGET_PAGE_SIZE(1 << 12); |
3298 | return 0; |
3299 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
3300 | *page_size = TARGET_PAGE_SIZE(1 << 12); |
3301 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
3302 | prot); |
3303 | } else if (extended_addresses_enabled(env)) { |
3304 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, |
3305 | prot, page_size); |
3306 | } else if (env->cp15.c1_sys & (1 << 23)) { |
3307 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
3308 | prot, page_size); |
3309 | } else { |
3310 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
3311 | prot, page_size); |
3312 | } |
3313 | } |
3314 | |
3315 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
3316 | int access_type, int mmu_idx) |
3317 | { |
3318 | hwaddr phys_addr; |
3319 | target_ulong page_size; |
3320 | int prot; |
3321 | int ret, is_user; |
3322 | |
3323 | is_user = mmu_idx == MMU_USER_IDX1; |
3324 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
3325 | &page_size); |
3326 | if (ret == 0) { |
3327 | /* Map a single [sub]page. */ |
3328 | phys_addr &= ~(hwaddr)0x3ff; |
3329 | address &= ~(uint32_t)0x3ff; |
3330 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
3331 | return 0; |
3332 | } |
3333 | |
3334 | if (access_type == 2) { |
3335 | env->cp15.c5_insn = ret; |
3336 | env->cp15.c6_insn = address; |
3337 | env->exception_index = EXCP_PREFETCH_ABORT3; |
3338 | } else { |
3339 | env->cp15.c5_data = ret; |
3340 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
3341 | env->cp15.c5_data |= (1 << 11); |
3342 | env->cp15.c6_data = address; |
3343 | env->exception_index = EXCP_DATA_ABORT4; |
3344 | } |
3345 | return 1; |
3346 | } |
3347 | |
3348 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
3349 | { |
3350 | ARMCPU *cpu = ARM_CPU(cs)((ARMCPU *)object_dynamic_cast_assert(((Object *)((cs))), ("arm-cpu" ), "/home/stefan/src/qemu/qemu.org/qemu/target-arm/helper.c", 3350, __func__)); |
3351 | hwaddr phys_addr; |
3352 | target_ulong page_size; |
3353 | int prot; |
3354 | int ret; |
3355 | |
3356 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
3357 | |
3358 | if (ret != 0) { |
3359 | return -1; |
3360 | } |
3361 | |
3362 | return phys_addr; |
3363 | } |
3364 | |
3365 | void HELPER(set_r13_banked)helper_set_r13_banked(CPUARMState *env, uint32_t mode, uint32_t val) |
3366 | { |
3367 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { |
3368 | env->regs[13] = val; |
3369 | } else { |
3370 | env->banked_r13[bank_number(mode)] = val; |
3371 | } |
3372 | } |
3373 | |
3374 | uint32_t HELPER(get_r13_banked)helper_get_r13_banked(CPUARMState *env, uint32_t mode) |
3375 | { |
3376 | if ((env->uncached_cpsr & CPSR_M(0x1fU)) == mode) { |
3377 | return env->regs[13]; |
3378 | } else { |
3379 | return env->banked_r13[bank_number(mode)]; |
3380 | } |
3381 | } |
3382 | |
3383 | uint32_t HELPER(v7m_mrs)helper_v7m_mrs(CPUARMState *env, uint32_t reg) |
3384 | { |
3385 | switch (reg) { |
3386 | case 0: /* APSR */ |
3387 | return xpsr_read(env) & 0xf8000000; |
3388 | case 1: /* IAPSR */ |
3389 | return xpsr_read(env) & 0xf80001ff; |
3390 | case 2: /* EAPSR */ |
3391 | return xpsr_read(env) & 0xff00fc00; |
3392 | case 3: /* xPSR */ |
3393 | return xpsr_read(env) & 0xff00fdff; |
3394 | case 5: /* IPSR */ |
3395 | return xpsr_read(env) & 0x000001ff; |
3396 | case 6: /* EPSR */ |
3397 | return xpsr_read(env) & 0x0700fc00; |
3398 | case 7: /* IEPSR */ |
3399 | return xpsr_read(env) & 0x0700edff; |
3400 | case 8: /* MSP */ |
3401 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
3402 | case 9: /* PSP */ |
3403 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
3404 | case 16: /* PRIMASK */ |
3405 | return (env->uncached_cpsr & CPSR_I(1U << 7)) != 0; |
3406 | case 17: /* BASEPRI */ |
3407 | case 18: /* BASEPRI_MAX */ |
3408 | return env->v7m.basepri; |
3409 | case 19: /* FAULTMASK */ |
3410 | return (env->uncached_cpsr & CPSR_F(1U << 6)) != 0; |
3411 | case 20: /* CONTROL */ |
3412 | return env->v7m.control; |
3413 | default: |
3414 | /* ??? For debugging only. */ |
3415 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
3416 | return 0; |
3417 | } |
3418 | } |
3419 | |
3420 | void HELPER(v7m_msr)helper_v7m_msr(CPUARMState *env, uint32_t reg, uint32_t val) |
3421 | { |
3422 | switch (reg) { |
3423 | case 0: /* APSR */ |
3424 | xpsr_write(env, val, 0xf8000000); |
3425 | break; |
3426 | case 1: /* IAPSR */ |
3427 | xpsr_write(env, val, 0xf8000000); |
3428 | break; |
3429 | case 2: /* EAPSR */ |
3430 | xpsr_write(env, val, 0xfe00fc00); |
3431 | break; |
3432 | case 3: /* xPSR */ |
3433 | xpsr_write(env, val, 0xfe00fc00); |
3434 | break; |
3435 | case 5: /* IPSR */ |
3436 | /* IPSR bits are readonly. */ |
3437 | break; |
3438 | case 6: /* EPSR */ |
3439 | xpsr_write(env, val, 0x0600fc00); |
3440 | break; |
3441 | case 7: /* IEPSR */ |
3442 | xpsr_write(env, val, 0x0600fc00); |
3443 | break; |
3444 | case 8: /* MSP */ |
3445 | if (env->v7m.current_sp) |
3446 | env->v7m.other_sp = val; |
3447 | else |
3448 | env->regs[13] = val; |
3449 | break; |
3450 | case 9: /* PSP */ |
3451 | if (env->v7m.current_sp) |
3452 | env->regs[13] = val; |
3453 | else |
3454 | env->v7m.other_sp = val; |
3455 | break; |
3456 | case 16: /* PRIMASK */ |
3457 | if (val & 1) |
3458 | env->uncached_cpsr |= CPSR_I(1U << 7); |
3459 | else |
3460 | env->uncached_cpsr &= ~CPSR_I(1U << 7); |
3461 | break; |
3462 | case 17: /* BASEPRI */ |
3463 | env->v7m.basepri = val & 0xff; |
3464 | break; |
3465 | case 18: /* BASEPRI_MAX */ |
3466 | val &= 0xff; |
3467 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
3468 | env->v7m.basepri = val; |
3469 | break; |
3470 | case 19: /* FAULTMASK */ |
3471 | if (val & 1) |
3472 | env->uncached_cpsr |= CPSR_F(1U << 6); |
3473 | else |
3474 | env->uncached_cpsr &= ~CPSR_F(1U << 6); |
3475 | break; |
3476 | case 20: /* CONTROL */ |
3477 | env->v7m.control = val & 3; |
3478 | switch_v7m_sp(env, (val & 2) != 0); |
3479 | break; |
3480 | default: |
3481 | /* ??? For debugging only. */ |
3482 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
3483 | return; |
3484 | } |
3485 | } |
3486 | |
3487 | #endif |
3488 | |
3489 | /* Note that signed overflow is undefined in C. The following routines are |
3490 | careful to use unsigned types where modulo arithmetic is required. |
3491 | Failure to do so _will_ break on newer gcc. */ |
3492 | |
3493 | /* Signed saturating arithmetic. */ |
3494 | |
3495 | /* Perform 16-bit signed saturating addition. */ |
3496 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
3497 | { |
3498 | uint16_t res; |
3499 | |
3500 | res = a + b; |
3501 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
3502 | if (a & 0x8000) |
3503 | res = 0x8000; |
3504 | else |
3505 | res = 0x7fff; |
3506 | } |
3507 | return res; |
3508 | } |
3509 | |
3510 | /* Perform 8-bit signed saturating addition. */ |
3511 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
3512 | { |
3513 | uint8_t res; |
3514 | |
3515 | res = a + b; |
3516 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
3517 | if (a & 0x80) |
3518 | res = 0x80; |
3519 | else |
3520 | res = 0x7f; |
3521 | } |
3522 | return res; |
3523 | } |
3524 | |
3525 | /* Perform 16-bit signed saturating subtraction. */ |
3526 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
3527 | { |
3528 | uint16_t res; |
3529 | |
3530 | res = a - b; |
3531 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
3532 | if (a & 0x8000) |
3533 | res = 0x8000; |
3534 | else |
3535 | res = 0x7fff; |
3536 | } |
3537 | return res; |
3538 | } |
3539 | |
3540 | /* Perform 8-bit signed saturating subtraction. */ |
3541 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
3542 | { |
3543 | uint8_t res; |
3544 | |
3545 | res = a - b; |
3546 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
3547 | if (a & 0x80) |
3548 | res = 0x80; |
3549 | else |
3550 | res = 0x7f; |
3551 | } |
3552 | return res; |
3553 | } |
3554 | |
3555 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
3556 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
3557 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
3558 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
3559 | #define PFX q |
3560 | |
3561 | #include "op_addsub.h" |
3562 | |
3563 | /* Unsigned saturating arithmetic. */ |
3564 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
3565 | { |
3566 | uint16_t res; |
3567 | res = a + b; |
3568 | if (res < a) |
3569 | res = 0xffff; |
3570 | return res; |
3571 | } |
3572 | |
3573 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
3574 | { |
3575 | if (a > b) |
3576 | return a - b; |
3577 | else |
3578 | return 0; |
3579 | } |
3580 | |
3581 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
3582 | { |
3583 | uint8_t res; |
3584 | res = a + b; |
3585 | if (res < a) |
3586 | res = 0xff; |
3587 | return res; |
3588 | } |
3589 | |
3590 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
3591 | { |
3592 | if (a > b) |
3593 | return a - b; |
3594 | else |
3595 | return 0; |
3596 | } |
3597 | |
3598 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
3599 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
3600 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
3601 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
3602 | #define PFX uq |
3603 | |
3604 | #include "op_addsub.h" |
3605 | |
3606 | /* Signed modulo arithmetic. */ |
3607 | #define SARITH16(a, b, n, op)do { int32_t sum; sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) do { \ |
3608 | int32_t sum; \ |
3609 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
3610 | RESULT(sum, n, 16); \ |
3611 | if (sum >= 0) \ |
3612 | ge |= 3 << (n * 2); \ |
3613 | } while(0) |
3614 | |
3615 | #define SARITH8(a, b, n, op)do { int32_t sum; sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) do { \ |
3616 | int32_t sum; \ |
3617 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
3618 | RESULT(sum, n, 8); \ |
3619 | if (sum >= 0) \ |
3620 | ge |= 1 << n; \ |
3621 | } while(0) |
3622 | |
3623 | |
3624 | #define ADD16(a, b, n) SARITH16(a, b, n, +)do { int32_t sum; sum = (int32_t)(int16_t)(a) + (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) |
3625 | #define SUB16(a, b, n) SARITH16(a, b, n, -)do { int32_t sum; sum = (int32_t)(int16_t)(a) - (int32_t)(int16_t )(b); RESULT(sum, n, 16); if (sum >= 0) ge |= 3 << ( n * 2); } while(0) |
3626 | #define ADD8(a, b, n) SARITH8(a, b, n, +)do { int32_t sum; sum = (int32_t)(int8_t)(a) + (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) |
3627 | #define SUB8(a, b, n) SARITH8(a, b, n, -)do { int32_t sum; sum = (int32_t)(int8_t)(a) - (int32_t)(int8_t )(b); RESULT(sum, n, 8); if (sum >= 0) ge |= 1 << n; } while(0) |
3628 | #define PFX s |
3629 | #define ARITH_GE |
3630 | |
3631 | #include "op_addsub.h" |
3632 | |
3633 | /* Unsigned modulo arithmetic. */ |
3634 | #define ADD16(a, b, n) do { \ |
3635 | uint32_t sum; \ |
3636 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
3637 | RESULT(sum, n, 16); \ |
3638 | if ((sum >> 16) == 1) \ |
3639 | ge |= 3 << (n * 2); \ |
3640 | } while(0) |
3641 | |
3642 | #define ADD8(a, b, n) do { \ |
3643 | uint32_t sum; \ |
3644 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
3645 | RESULT(sum, n, 8); \ |
3646 | if ((sum >> 8) == 1) \ |
3647 | ge |= 1 << n; \ |
3648 | } while(0) |
3649 | |
3650 | #define SUB16(a, b, n) do { \ |
3651 | uint32_t sum; \ |
3652 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
3653 | RESULT(sum, n, 16); \ |
3654 | if ((sum >> 16) == 0) \ |
3655 | ge |= 3 << (n * 2); \ |
3656 | } while(0) |
3657 | |
3658 | #define SUB8(a, b, n) do { \ |
3659 | uint32_t sum; \ |
3660 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
3661 | RESULT(sum, n, 8); \ |
3662 | if ((sum >> 8) == 0) \ |
3663 | ge |= 1 << n; \ |
3664 | } while(0) |
3665 | |
3666 | #define PFX u |
3667 | #define ARITH_GE |
3668 | |
3669 | #include "op_addsub.h" |
3670 | |
3671 | /* Halved signed arithmetic. */ |
3672 | #define ADD16(a, b, n) \ |
3673 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
3674 | #define SUB16(a, b, n) \ |
3675 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
3676 | #define ADD8(a, b, n) \ |
3677 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
3678 | #define SUB8(a, b, n) \ |
3679 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
3680 | #define PFX sh |
3681 | |
3682 | #include "op_addsub.h" |
3683 | |
3684 | /* Halved unsigned arithmetic. */ |
3685 | #define ADD16(a, b, n) \ |
3686 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
3687 | #define SUB16(a, b, n) \ |
3688 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
3689 | #define ADD8(a, b, n) \ |
3690 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
3691 | #define SUB8(a, b, n) \ |
3692 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
3693 | #define PFX uh |
3694 | |
3695 | #include "op_addsub.h" |
3696 | |
3697 | static inline uint8_t do_usad(uint8_t a, uint8_t b) |
3698 | { |
3699 | if (a > b) |
3700 | return a - b; |
3701 | else |
3702 | return b - a; |
3703 | } |
3704 | |
3705 | /* Unsigned sum of absolute byte differences. */ |
3706 | uint32_t HELPER(usad8)helper_usad8(uint32_t a, uint32_t b) |
3707 | { |
3708 | uint32_t sum; |
3709 | sum = do_usad(a, b); |
3710 | sum += do_usad(a >> 8, b >> 8); |
3711 | sum += do_usad(a >> 16, b >>16); |
3712 | sum += do_usad(a >> 24, b >> 24); |
3713 | return sum; |
3714 | } |
3715 | |
3716 | /* For ARMv6 SEL instruction. */ |
3717 | uint32_t HELPER(sel_flags)helper_sel_flags(uint32_t flags, uint32_t a, uint32_t b) |
3718 | { |
3719 | uint32_t mask; |
3720 | |
3721 | mask = 0; |
3722 | if (flags & 1) |
3723 | mask |= 0xff; |
3724 | if (flags & 2) |
3725 | mask |= 0xff00; |
3726 | if (flags & 4) |
3727 | mask |= 0xff0000; |
3728 | if (flags & 8) |
3729 | mask |= 0xff000000; |
3730 | return (a & mask) | (b & ~mask); |
3731 | } |
3732 | |
3733 | /* VFP support. We follow the convention used for VFP instructions: |
3734 | Single precision routines have a "s" suffix, double precision a |
3735 | "d" suffix. */ |
3736 | |
3737 | /* Convert host exception flags to vfp form. */ |
3738 | static inline int vfp_exceptbits_from_host(int host_bits) |
3739 | { |
3740 | int target_bits = 0; |
3741 | |
3742 | if (host_bits & float_flag_invalid) |
3743 | target_bits |= 1; |
3744 | if (host_bits & float_flag_divbyzero) |
3745 | target_bits |= 2; |
3746 | if (host_bits & float_flag_overflow) |
3747 | target_bits |= 4; |
3748 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
3749 | target_bits |= 8; |
3750 | if (host_bits & float_flag_inexact) |
3751 | target_bits |= 0x10; |
3752 | if (host_bits & float_flag_input_denormal) |
3753 | target_bits |= 0x80; |
3754 | return target_bits; |
3755 | } |
3756 | |
3757 | uint32_t HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(CPUARMState *env) |
3758 | { |
3759 | int i; |
3760 | uint32_t fpscr; |
3761 | |
3762 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR1] & 0xffc8ffff) |
3763 | | (env->vfp.vec_len << 16) |
3764 | | (env->vfp.vec_stride << 20); |
3765 | i = get_float_exception_flags(&env->vfp.fp_status); |
3766 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
3767 | fpscr |= vfp_exceptbits_from_host(i); |
3768 | return fpscr; |
3769 | } |
3770 | |
3771 | uint32_t vfp_get_fpscr(CPUARMState *env) |
3772 | { |
3773 | return HELPER(vfp_get_fpscr)helper_vfp_get_fpscr(env); |
3774 | } |
3775 | |
3776 | /* Convert vfp exception flags to target form. */ |
3777 | static inline int vfp_exceptbits_to_host(int target_bits) |
3778 | { |
3779 | int host_bits = 0; |
3780 | |
3781 | if (target_bits & 1) |
3782 | host_bits |= float_flag_invalid; |
3783 | if (target_bits & 2) |
3784 | host_bits |= float_flag_divbyzero; |
3785 | if (target_bits & 4) |
3786 | host_bits |= float_flag_overflow; |
3787 | if (target_bits & 8) |
3788 | host_bits |= float_flag_underflow; |
3789 | if (target_bits & 0x10) |
3790 | host_bits |= float_flag_inexact; |
3791 | if (target_bits & 0x80) |
3792 | host_bits |= float_flag_input_denormal; |
3793 | return host_bits; |
3794 | } |
3795 | |
3796 | void HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(CPUARMState *env, uint32_t val) |
3797 | { |
3798 | int i; |
3799 | uint32_t changed; |
3800 | |
3801 | changed = env->vfp.xregs[ARM_VFP_FPSCR1]; |
3802 | env->vfp.xregs[ARM_VFP_FPSCR1] = (val & 0xffc8ffff); |
3803 | env->vfp.vec_len = (val >> 16) & 7; |
3804 | env->vfp.vec_stride = (val >> 20) & 3; |
3805 | |
3806 | changed ^= val; |
3807 | if (changed & (3 << 22)) { |
3808 | i = (val >> 22) & 3; |
3809 | switch (i) { |
3810 | case FPROUNDING_TIEEVEN: |
3811 | i = float_round_nearest_even; |
3812 | break; |
3813 | case FPROUNDING_POSINF: |
3814 | i = float_round_up; |
3815 | break; |
3816 | case FPROUNDING_NEGINF: |
3817 | i = float_round_down; |
3818 | break; |
3819 | case FPROUNDING_ZERO: |
3820 | i = float_round_to_zero; |
3821 | break; |
3822 | } |
3823 | set_float_rounding_mode(i, &env->vfp.fp_status); |
3824 | } |
3825 | if (changed & (1 << 24)) { |
3826 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
3827 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
3828 | } |
3829 | if (changed & (1 << 25)) |
3830 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
3831 | |
3832 | i = vfp_exceptbits_to_host(val); |
3833 | set_float_exception_flags(i, &env->vfp.fp_status); |
3834 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
3835 | } |
3836 | |
3837 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
3838 | { |
3839 | HELPER(vfp_set_fpscr)helper_vfp_set_fpscr(env, val); |
3840 | } |
3841 | |
3842 | #define VFP_HELPER(name, p)helper_vfp_namep HELPER(glue(glue(vfp_,name),p))helper_vfp_namep |
3843 | |
3844 | #define VFP_BINOP(name) \ |
3845 | float32 VFP_HELPER(name, s)helper_vfp_names(float32 a, float32 b, void *fpstp) \ |
3846 | { \ |
3847 | float_status *fpst = fpstp; \ |
3848 | return float32_ ## name(a, b, fpst); \ |
3849 | } \ |
3850 | float64 VFP_HELPER(name, d)helper_vfp_named(float64 a, float64 b, void *fpstp) \ |
3851 | { \ |
3852 | float_status *fpst = fpstp; \ |
3853 | return float64_ ## name(a, b, fpst); \ |
3854 | } |
3855 | VFP_BINOP(add) |
3856 | VFP_BINOP(sub) |
3857 | VFP_BINOP(mul) |
3858 | VFP_BINOP(div) |
3859 | VFP_BINOP(min) |
3860 | VFP_BINOP(max) |
3861 | VFP_BINOP(minnum) |
3862 | VFP_BINOP(maxnum) |
3863 | #undef VFP_BINOP |
3864 | |
3865 | float32 VFP_HELPER(neg, s)helper_vfp_negs(float32 a) |
3866 | { |
3867 | return float32_chs(a); |
3868 | } |
3869 | |
3870 | float64 VFP_HELPER(neg, d)helper_vfp_negd(float64 a) |
3871 | { |
3872 | return float64_chs(a); |
3873 | } |
3874 | |
3875 | float32 VFP_HELPER(abs, s)helper_vfp_abss(float32 a) |
3876 | { |
3877 | return float32_abs(a); |
3878 | } |
3879 | |
3880 | float64 VFP_HELPER(abs, d)helper_vfp_absd(float64 a) |
3881 | { |
3882 | return float64_abs(a); |
3883 | } |
3884 | |
3885 | float32 VFP_HELPER(sqrt, s)helper_vfp_sqrts(float32 a, CPUARMState *env) |
3886 | { |
3887 | return float32_sqrt(a, &env->vfp.fp_status); |
3888 | } |
3889 | |
3890 | float64 VFP_HELPER(sqrt, d)helper_vfp_sqrtd(float64 a, CPUARMState *env) |
3891 | { |
3892 | return float64_sqrt(a, &env->vfp.fp_status); |
3893 | } |
3894 | |
3895 | /* XXX: check quiet/signaling case */ |
3896 | #define DO_VFP_cmp(p, type) \ |
3897 | void VFP_HELPER(cmp, p)helper_vfp_cmpp(type a, type b, CPUARMState *env) \ |
3898 | { \ |
3899 | uint32_t flags; \ |
3900 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
3901 | case 0: flags = 0x6; break; \ |
3902 | case -1: flags = 0x8; break; \ |
3903 | case 1: flags = 0x2; break; \ |
3904 | default: case 2: flags = 0x3; break; \ |
3905 | } \ |
3906 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ |
3907 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ |
3908 | } \ |
3909 | void VFP_HELPER(cmpe, p)helper_vfp_cmpep(type a, type b, CPUARMState *env) \ |
3910 | { \ |
3911 | uint32_t flags; \ |
3912 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
3913 | case 0: flags = 0x6; break; \ |
3914 | case -1: flags = 0x8; break; \ |
3915 | case 1: flags = 0x2; break; \ |
3916 | default: case 2: flags = 0x3; break; \ |
3917 | } \ |
3918 | env->vfp.xregs[ARM_VFP_FPSCR1] = (flags << 28) \ |
3919 | | (env->vfp.xregs[ARM_VFP_FPSCR1] & 0x0fffffff); \ |
3920 | } |
3921 | DO_VFP_cmp(s, float32) |
3922 | DO_VFP_cmp(d, float64) |
3923 | #undef DO_VFP_cmp |
3924 | |
3925 | /* Integer to float and float to integer conversions */ |
3926 | |
3927 | #define CONV_ITOF(name, fsz, sign) \ |
3928 | float##fsz HELPER(name)helper_name(uint32_t x, void *fpstp) \ |
3929 | { \ |
3930 | float_status *fpst = fpstp; \ |
3931 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
3932 | } |
3933 | |
3934 | #define CONV_FTOI(name, fsz, sign, round) \ |
3935 | uint32_t HELPER(name)helper_name(float##fsz x, void *fpstp) \ |
3936 | { \ |
3937 | float_status *fpst = fpstp; \ |
3938 | if (float##fsz##_is_any_nan(x)) { \ |
3939 | float_raise(float_flag_invalid, fpst); \ |
3940 | return 0; \ |
3941 | } \ |
3942 | return float##fsz##_to_##sign##int32##round(x, fpst); \ |
3943 | } |
3944 | |
3945 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
3946 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
3947 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
3948 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
3949 | |
3950 | FLOAT_CONVS(si, s, 32, ) |
3951 | FLOAT_CONVS(si, d, 64, ) |
3952 | FLOAT_CONVS(ui, s, 32, u) |
3953 | FLOAT_CONVS(ui, d, 64, u) |
3954 | |
3955 | #undef CONV_ITOF |
3956 | #undef CONV_FTOI |
3957 | #undef FLOAT_CONVS |
3958 | |
3959 | /* floating point conversion */ |
3960 | float64 VFP_HELPER(fcvtd, s)helper_vfp_fcvtds(float32 x, CPUARMState *env) |
3961 | { |
3962 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
3963 | /* ARM requires that S<->D conversion of any kind of NaN generates |
3964 | * a quiet NaN by forcing the most significant frac bit to 1. |
3965 | */ |
3966 | return float64_maybe_silence_nan(r); |
3967 | } |
3968 | |
3969 | float32 VFP_HELPER(fcvts, d)helper_vfp_fcvtsd(float64 x, CPUARMState *env) |
3970 | { |
3971 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
3972 | /* ARM requires that S<->D conversion of any kind of NaN generates |
3973 | * a quiet NaN by forcing the most significant frac bit to 1. |
3974 | */ |
3975 | return float32_maybe_silence_nan(r); |
3976 | } |
3977 | |
3978 | /* VFP3 fixed point conversion. */ |
3979 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
3980 | float##fsz HELPER(vfp_##name##to##p)helper_vfp_##name##to##p(uint##isz##_t x, uint32_t shift, \ |
3981 | void *fpstp) \ |
3982 | { \ |
3983 | float_status *fpst = fpstp; \ |
3984 | float##fsz tmp; \ |
3985 | tmp = itype##_to_##float##fsz(x, fpst); \ |
3986 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
3987 | } |
3988 | |
3989 | /* Notice that we want only input-denormal exception flags from the |
3990 | * scalbn operation: the other possible flags (overflow+inexact if |
3991 | * we overflow to infinity, output-denormal) aren't correct for the |
3992 | * complete scale-and-convert operation. |
3993 | */ |
3994 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
3995 | uint##isz##_t HELPER(vfp_to##name##p##round)helper_vfp_to##name##p##round(float##fsz x, \ |
3996 | uint32_t shift, \ |
3997 | void *fpstp) \ |
3998 | { \ |
3999 | float_status *fpst = fpstp; \ |
4000 | int old_exc_flags = get_float_exception_flags(fpst); \ |
4001 | float##fsz tmp; \ |
4002 | if (float##fsz##_is_any_nan(x)) { \ |
4003 | float_raise(float_flag_invalid, fpst); \ |
4004 | return 0; \ |
4005 | } \ |
4006 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
4007 | old_exc_flags |= get_float_exception_flags(fpst) \ |
4008 | & float_flag_input_denormal; \ |
4009 | set_float_exception_flags(old_exc_flags, fpst); \ |
4010 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
4011 | } |
4012 | |
4013 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
4014 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
4015 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
4016 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
4017 | |
4018 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) VFP_CONV_FLOAT_FIX_ROUND (name, p, fsz, isz, itype, ) \ |
4019 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
4020 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
4021 | |
4022 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
4023 | VFP_CONV_FIX(sl, d, 64, 64, int32) |
4024 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64)VFP_CONV_FIX_FLOAT(sq, d, 64, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, d, 64, 64, int64, ) |
4025 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
4026 | VFP_CONV_FIX(ul, d, 64, 64, uint32) |
4027 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)VFP_CONV_FIX_FLOAT(uq, d, 64, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, d, 64, 64, uint64, ) |
4028 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
4029 | VFP_CONV_FIX(sl, s, 32, 32, int32) |
4030 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64)VFP_CONV_FIX_FLOAT(sq, s, 32, 64, int64) VFP_CONV_FLOAT_FIX_ROUND (sq, s, 32, 64, int64, ) |
4031 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
4032 | VFP_CONV_FIX(ul, s, 32, 32, uint32) |
4033 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)VFP_CONV_FIX_FLOAT(uq, s, 32, 64, uint64) VFP_CONV_FLOAT_FIX_ROUND (uq, s, 32, 64, uint64, ) |
4034 | #undef VFP_CONV_FIX |
4035 | #undef VFP_CONV_FIX_FLOAT |
4036 | #undef VFP_CONV_FLOAT_FIX_ROUND |
4037 | |
4038 | /* Set the current fp rounding mode and return the old one. |
4039 | * The argument is a softfloat float_round_ value. |
4040 | */ |
4041 | uint32_t HELPER(set_rmode)helper_set_rmode(uint32_t rmode, CPUARMState *env) |
4042 | { |
4043 | float_status *fp_status = &env->vfp.fp_status; |
4044 | |
4045 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
4046 | set_float_rounding_mode(rmode, fp_status); |
4047 | |
4048 | return prev_rmode; |
4049 | } |
4050 | |
4051 | /* Half precision conversions. */ |
4052 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
4053 | { |
4054 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
4055 | float32 r = float16_to_float32(make_float16(a)(a), ieee, s); |
4056 | if (ieee) { |
4057 | return float32_maybe_silence_nan(r); |
4058 | } |
4059 | return r; |
4060 | } |
4061 | |
4062 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
4063 | { |
4064 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
4065 | float16 r = float32_to_float16(a, ieee, s); |
4066 | if (ieee) { |
4067 | r = float16_maybe_silence_nan(r); |
4068 | } |
4069 | return float16_val(r)(r); |
4070 | } |
4071 | |
4072 | float32 HELPER(neon_fcvt_f16_to_f32)helper_neon_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) |
4073 | { |
4074 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
4075 | } |
4076 | |
4077 | uint32_t HELPER(neon_fcvt_f32_to_f16)helper_neon_fcvt_f32_to_f16(float32 a, CPUARMState *env) |
4078 | { |
4079 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
4080 | } |
4081 | |
4082 | float32 HELPER(vfp_fcvt_f16_to_f32)helper_vfp_fcvt_f16_to_f32(uint32_t a, CPUARMState *env) |
4083 | { |
4084 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
4085 | } |
4086 | |
4087 | uint32_t HELPER(vfp_fcvt_f32_to_f16)helper_vfp_fcvt_f32_to_f16(float32 a, CPUARMState *env) |
4088 | { |
4089 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
4090 | } |
4091 | |
4092 | float64 HELPER(vfp_fcvt_f16_to_f64)helper_vfp_fcvt_f16_to_f64(uint32_t a, CPUARMState *env) |
4093 | { |
4094 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
4095 | float64 r = float16_to_float64(make_float16(a)(a), ieee, &env->vfp.fp_status); |
4096 | if (ieee) { |
4097 | return float64_maybe_silence_nan(r); |
4098 | } |
4099 | return r; |
4100 | } |
4101 | |
4102 | uint32_t HELPER(vfp_fcvt_f64_to_f16)helper_vfp_fcvt_f64_to_f16(float64 a, CPUARMState *env) |
4103 | { |
4104 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR1] & (1 << 26)) == 0; |
4105 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); |
4106 | if (ieee) { |
4107 | r = float16_maybe_silence_nan(r); |
4108 | } |
4109 | return float16_val(r)(r); |
4110 | } |
4111 | |
4112 | #define float32_two(0x40000000) make_float32(0x40000000)(0x40000000) |
4113 | #define float32_three(0x40400000) make_float32(0x40400000)(0x40400000) |
4114 | #define float32_one_point_five(0x3fc00000) make_float32(0x3fc00000)(0x3fc00000) |
4115 | |
4116 | float32 HELPER(recps_f32)helper_recps_f32(float32 a, float32 b, CPUARMState *env) |
4117 | { |
4118 | float_status *s = &env->vfp.standard_fp_status; |
4119 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
4120 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
4121 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4122 | float_raise(float_flag_input_denormal, s); |
4123 | } |
4124 | return float32_two(0x40000000); |
4125 | } |
4126 | return float32_sub(float32_two(0x40000000), float32_mul(a, b, s), s); |
4127 | } |
4128 | |
4129 | float32 HELPER(rsqrts_f32)helper_rsqrts_f32(float32 a, float32 b, CPUARMState *env) |
4130 | { |
4131 | float_status *s = &env->vfp.standard_fp_status; |
4132 | float32 product; |
4133 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
4134 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
4135 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4136 | float_raise(float_flag_input_denormal, s); |
4137 | } |
4138 | return float32_one_point_five(0x3fc00000); |
4139 | } |
4140 | product = float32_mul(a, b, s); |
4141 | return float32_div(float32_sub(float32_three(0x40400000), product, s), float32_two(0x40000000), s); |
4142 | } |
4143 | |
4144 | /* NEON helpers. */ |
4145 | |
4146 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
4147 | * int->float conversions at run-time. */ |
4148 | #define float64_256(0x4070000000000000LL) make_float64(0x4070000000000000LL)(0x4070000000000000LL) |
4149 | #define float64_512(0x4080000000000000LL) make_float64(0x4080000000000000LL)(0x4080000000000000LL) |
4150 | |
4151 | /* The algorithm that must be used to calculate the estimate |
4152 | * is specified by the ARM ARM. |
4153 | */ |
4154 | static float64 recip_estimate(float64 a, CPUARMState *env) |
4155 | { |
4156 | /* These calculations mustn't set any fp exception flags, |
4157 | * so we use a local copy of the fp_status. |
4158 | */ |
4159 | float_status dummy_status = env->vfp.standard_fp_status; |
4160 | float_status *s = &dummy_status; |
4161 | /* q = (int)(a * 512.0) */ |
4162 | float64 q = float64_mul(float64_512(0x4080000000000000LL), a, s); |
4163 | int64_t q_int = float64_to_int64_round_to_zero(q, s); |
4164 | |
4165 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
4166 | q = int64_to_float64(q_int, s); |
4167 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
4168 | q = float64_div(q, float64_512(0x4080000000000000LL), s); |
4169 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
4170 | |
4171 | /* s = (int)(256.0 * r + 0.5) */ |
4172 | q = float64_mul(q, float64_256(0x4070000000000000LL), s); |
4173 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
4174 | q_int = float64_to_int64_round_to_zero(q, s); |
4175 | |
4176 | /* return (double)s / 256.0 */ |
4177 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); |
4178 | } |
4179 | |
4180 | float32 HELPER(recpe_f32)helper_recpe_f32(float32 a, CPUARMState *env) |
4181 | { |
4182 | float_status *s = &env->vfp.standard_fp_status; |
4183 | float64 f64; |
4184 | uint32_t val32 = float32_val(a)(a); |
4185 | |
4186 | int result_exp; |
4187 | int a_exp = (val32 & 0x7f800000) >> 23; |
4188 | int sign = val32 & 0x80000000; |
4189 | |
4190 | if (float32_is_any_nan(a)) { |
4191 | if (float32_is_signaling_nan(a)) { |
4192 | float_raise(float_flag_invalid, s); |
4193 | } |
4194 | return float32_default_nan; |
4195 | } else if (float32_is_infinity(a)) { |
4196 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); |
4197 | } else if (float32_is_zero_or_denormal(a)) { |
4198 | if (!float32_is_zero(a)) { |
4199 | float_raise(float_flag_input_denormal, s); |
4200 | } |
4201 | float_raise(float_flag_divbyzero, s); |
4202 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); |
4203 | } else if (a_exp >= 253) { |
4204 | float_raise(float_flag_underflow, s); |
4205 | return float32_set_sign(float32_zero(0), float32_is_neg(a)); |
4206 | } |
4207 | |
4208 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)) |
4209 | | ((int64_t)(val32 & 0x7fffff) << 29))((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)); |
4210 | |
4211 | result_exp = 253 - a_exp; |
4212 | |
4213 | f64 = recip_estimate(f64, env); |
4214 | |
4215 | val32 = sign |
4216 | | ((result_exp & 0xff) << 23) |
4217 | | ((float64_val(f64)(f64) >> 29) & 0x7fffff); |
4218 | return make_float32(val32)(val32); |
4219 | } |
4220 | |
4221 | /* The algorithm that must be used to calculate the estimate |
4222 | * is specified by the ARM ARM. |
4223 | */ |
4224 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
4225 | { |
4226 | /* These calculations mustn't set any fp exception flags, |
4227 | * so we use a local copy of the fp_status. |
4228 | */ |
4229 | float_status dummy_status = env->vfp.standard_fp_status; |
4230 | float_status *s = &dummy_status; |
4231 | float64 q; |
4232 | int64_t q_int; |
4233 | |
4234 | if (float64_lt(a, float64_half(0x3fe0000000000000LL), s)) { |
4235 | /* range 0.25 <= a < 0.5 */ |
4236 | |
4237 | /* a in units of 1/512 rounded down */ |
4238 | /* q0 = (int)(a * 512.0); */ |
4239 | q = float64_mul(float64_512(0x4080000000000000LL), a, s); |
4240 | q_int = float64_to_int64_round_to_zero(q, s); |
4241 | |
4242 | /* reciprocal root r */ |
4243 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
4244 | q = int64_to_float64(q_int, s); |
4245 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
4246 | q = float64_div(q, float64_512(0x4080000000000000LL), s); |
4247 | q = float64_sqrt(q, s); |
4248 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
4249 | } else { |
4250 | /* range 0.5 <= a < 1.0 */ |
4251 | |
4252 | /* a in units of 1/256 rounded down */ |
4253 | /* q1 = (int)(a * 256.0); */ |
4254 | q = float64_mul(float64_256(0x4070000000000000LL), a, s); |
4255 | int64_t q_int = float64_to_int64_round_to_zero(q, s); |
4256 | |
4257 | /* reciprocal root r */ |
4258 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
4259 | q = int64_to_float64(q_int, s); |
4260 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
4261 | q = float64_div(q, float64_256(0x4070000000000000LL), s); |
4262 | q = float64_sqrt(q, s); |
4263 | q = float64_div(float64_one(0x3ff0000000000000LL), q, s); |
4264 | } |
4265 | /* r in units of 1/256 rounded to nearest */ |
4266 | /* s = (int)(256.0 * r + 0.5); */ |
4267 | |
4268 | q = float64_mul(q, float64_256(0x4070000000000000LL),s ); |
4269 | q = float64_add(q, float64_half(0x3fe0000000000000LL), s); |
4270 | q_int = float64_to_int64_round_to_zero(q, s); |
4271 | |
4272 | /* return (double)s / 256.0;*/ |
4273 | return float64_div(int64_to_float64(q_int, s), float64_256(0x4070000000000000LL), s); |
4274 | } |
4275 | |
4276 | float32 HELPER(rsqrte_f32)helper_rsqrte_f32(float32 a, CPUARMState *env) |
4277 | { |
4278 | float_status *s = &env->vfp.standard_fp_status; |
4279 | int result_exp; |
4280 | float64 f64; |
4281 | uint32_t val; |
4282 | uint64_t val64; |
4283 | |
4284 | val = float32_val(a)(a); |
4285 | |
4286 | if (float32_is_any_nan(a)) { |
4287 | if (float32_is_signaling_nan(a)) { |
4288 | float_raise(float_flag_invalid, s); |
4289 | } |
4290 | return float32_default_nan; |
4291 | } else if (float32_is_zero_or_denormal(a)) { |
4292 | if (!float32_is_zero(a)) { |
4293 | float_raise(float_flag_input_denormal, s); |
4294 | } |
4295 | float_raise(float_flag_divbyzero, s); |
4296 | return float32_set_sign(float32_infinity(0x7f800000), float32_is_neg(a)); |
4297 | } else if (float32_is_neg(a)) { |
4298 | float_raise(float_flag_invalid, s); |
4299 | return float32_default_nan; |
4300 | } else if (float32_is_infinity(a)) { |
4301 | return float32_zero(0); |
4302 | } |
4303 | |
4304 | /* Normalize to a double-precision value between 0.25 and 1.0, |
4305 | * preserving the parity of the exponent. */ |
4306 | if ((val & 0x800000) == 0) { |
4307 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
4308 | | (0x3feULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
4309 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); |
4310 | } else { |
4311 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
4312 | | (0x3fdULL << 52)(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)) |
4313 | | ((uint64_t)(val & 0x7fffff) << 29))(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); |
4314 | } |
4315 | |
4316 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; |
4317 | |
4318 | f64 = recip_sqrt_estimate(f64, env); |
4319 | |
4320 | val64 = float64_val(f64)(f64); |
4321 | |
4322 | val = ((result_exp & 0xff) << 23) |
4323 | | ((val64 >> 29) & 0x7fffff); |
4324 | return make_float32(val)(val); |
4325 | } |
4326 | |
4327 | uint32_t HELPER(recpe_u32)helper_recpe_u32(uint32_t a, CPUARMState *env) |
4328 | { |
4329 | float64 f64; |
4330 | |
4331 | if ((a & 0x80000000) == 0) { |
4332 | return 0xffffffff; |
4333 | } |
4334 | |
4335 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)) |
4336 | | ((int64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); |
4337 | |
4338 | f64 = recip_estimate (f64, env); |
4339 | |
4340 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); |
4341 | } |
4342 | |
4343 | uint32_t HELPER(rsqrte_u32)helper_rsqrte_u32(uint32_t a, CPUARMState *env) |
4344 | { |
4345 | float64 f64; |
4346 | |
4347 | if ((a & 0xc0000000) == 0) { |
4348 | return 0xffffffff; |
4349 | } |
4350 | |
4351 | if (a & 0x80000000) { |
4352 | f64 = make_float64((0x3feULL << 52)((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)) |
4353 | | ((uint64_t)(a & 0x7fffffff) << 21))((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); |
4354 | } else { /* bits 31-30 == '01' */ |
4355 | f64 = make_float64((0x3fdULL << 52)((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)) |
4356 | | ((uint64_t)(a & 0x3fffffff) << 22))((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); |
4357 | } |
4358 | |
4359 | f64 = recip_sqrt_estimate(f64, env); |
4360 | |
4361 | return 0x80000000 | ((float64_val(f64)(f64) >> 21) & 0x7fffffff); |
4362 | } |
4363 | |
4364 | /* VFPv4 fused multiply-accumulate */ |
4365 | float32 VFP_HELPER(muladd, s)helper_vfp_muladds(float32 a, float32 b, float32 c, void *fpstp) |
4366 | { |
4367 | float_status *fpst = fpstp; |
4368 | return float32_muladd(a, b, c, 0, fpst); |
4369 | } |
4370 | |
4371 | float64 VFP_HELPER(muladd, d)helper_vfp_muladdd(float64 a, float64 b, float64 c, void *fpstp) |
4372 | { |
4373 | float_status *fpst = fpstp; |
4374 | return float64_muladd(a, b, c, 0, fpst); |
4375 | } |
4376 | |
4377 | /* ARMv8 round to integral */ |
4378 | float32 HELPER(rints_exact)helper_rints_exact(float32 x, void *fp_status) |
4379 | { |
4380 | return float32_round_to_int(x, fp_status); |
4381 | } |
4382 | |
4383 | float64 HELPER(rintd_exact)helper_rintd_exact(float64 x, void *fp_status) |
4384 | { |
4385 | return float64_round_to_int(x, fp_status); |
4386 | } |
4387 | |
4388 | float32 HELPER(rints)helper_rints(float32 x, void *fp_status) |
4389 | { |
4390 | int old_flags = get_float_exception_flags(fp_status), new_flags; |
4391 | float32 ret; |
4392 | |
4393 | ret = float32_round_to_int(x, fp_status); |
4394 | |
4395 | /* Suppress any inexact exceptions the conversion produced */ |
4396 | if (!(old_flags & float_flag_inexact)) { |
4397 | new_flags = get_float_exception_flags(fp_status); |
4398 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
4399 | } |
4400 | |
4401 | return ret; |
4402 | } |
4403 | |
4404 | float64 HELPER(rintd)helper_rintd(float64 x, void *fp_status) |
4405 | { |
4406 | int old_flags = get_float_exception_flags(fp_status), new_flags; |
4407 | float64 ret; |
4408 | |
4409 | ret = float64_round_to_int(x, fp_status); |
4410 | |
4411 | new_flags = get_float_exception_flags(fp_status); |
Value stored to 'new_flags' is never read | |
4412 | |
4413 | /* Suppress any inexact exceptions the conversion produced */ |
4414 | if (!(old_flags & float_flag_inexact)) { |
4415 | new_flags = get_float_exception_flags(fp_status); |
4416 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
4417 | } |
4418 | |
4419 | return ret; |
4420 | } |