Bug Summary

File:hw/usb/hcd-ehci.c
Location:line 2174, column 13
Description:Value stored to 'again' is never read

Annotated Source Code

1/*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25#include "hw/hw.h"
26#include "qemu-timer.h"
27#include "hw/usb.h"
28#include "hw/pci.h"
29#include "monitor.h"
30#include "trace.h"
31#include "dma.h"
32
33#define EHCI_DEBUG0 0
34
35#if EHCI_DEBUG0
36#define DPRINTF printf
37#else
38#define DPRINTF(...)
39#endif
40
41/* internal processing - reset HC to try and recover */
42#define USB_RET_PROCERR(-99) (-99)
43
44#define MMIO_SIZE0x1000 0x1000
45
46/* Capability Registers Base Address - section 2.2 */
47#define CAPREGBASE0x0000 0x0000
48#define CAPLENGTH0x0000 + 0x0000 CAPREGBASE0x0000 + 0x0000 // 1-byte, 0x0001 reserved
49#define HCIVERSION0x0000 + 0x0002 CAPREGBASE0x0000 + 0x0002 // 2-bytes, i/f version #
50#define HCSPARAMS0x0000 + 0x0004 CAPREGBASE0x0000 + 0x0004 // 4-bytes, structural params
51#define HCCPARAMS0x0000 + 0x0008 CAPREGBASE0x0000 + 0x0008 // 4-bytes, capability params
52#define EECP0x0000 + 0x0008 + 1 HCCPARAMS0x0000 + 0x0008 + 1
53#define HCSPPORTROUTE10x0000 + 0x000c CAPREGBASE0x0000 + 0x000c
54#define HCSPPORTROUTE20x0000 + 0x0010 CAPREGBASE0x0000 + 0x0010
55
56#define OPREGBASE0x0020 0x0020 // Operational Registers Base Address
57
58#define USBCMD0x0020 + 0x0000 OPREGBASE0x0020 + 0x0000
59#define USBCMD_RUNSTOP(1 << 0) (1 << 0) // run / Stop
60#define USBCMD_HCRESET(1 << 1) (1 << 1) // HC Reset
61#define USBCMD_FLS(3 << 2) (3 << 2) // Frame List Size
62#define USBCMD_FLS_SH2 2 // Frame List Size Shift
63#define USBCMD_PSE(1 << 4) (1 << 4) // Periodic Schedule Enable
64#define USBCMD_ASE(1 << 5) (1 << 5) // Asynch Schedule Enable
65#define USBCMD_IAAD(1 << 6) (1 << 6) // Int Asynch Advance Doorbell
66#define USBCMD_LHCR(1 << 7) (1 << 7) // Light Host Controller Reset
67#define USBCMD_ASPMC(3 << 8) (3 << 8) // Async Sched Park Mode Count
68#define USBCMD_ASPME(1 << 11) (1 << 11) // Async Sched Park Mode Enable
69#define USBCMD_ITC(0x7f << 16) (0x7f << 16) // Int Threshold Control
70#define USBCMD_ITC_SH16 16 // Int Threshold Control Shift
71
72#define USBSTS0x0020 + 0x0004 OPREGBASE0x0020 + 0x0004
73#define USBSTS_RO_MASK0x0000003f 0x0000003f
74#define USBSTS_INT(1 << 0) (1 << 0) // USB Interrupt
75#define USBSTS_ERRINT(1 << 1) (1 << 1) // Error Interrupt
76#define USBSTS_PCD(1 << 2) (1 << 2) // Port Change Detect
77#define USBSTS_FLR(1 << 3) (1 << 3) // Frame List Rollover
78#define USBSTS_HSE(1 << 4) (1 << 4) // Host System Error
79#define USBSTS_IAA(1 << 5) (1 << 5) // Interrupt on Async Advance
80#define USBSTS_HALT(1 << 12) (1 << 12) // HC Halted
81#define USBSTS_REC(1 << 13) (1 << 13) // Reclamation
82#define USBSTS_PSS(1 << 14) (1 << 14) // Periodic Schedule Status
83#define USBSTS_ASS(1 << 15) (1 << 15) // Asynchronous Schedule Status
84
85/*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89#define USBINTR0x0020 + 0x0008 OPREGBASE0x0020 + 0x0008
90#define USBINTR_MASK0x0000003f 0x0000003f
91
92#define FRINDEX0x0020 + 0x000c OPREGBASE0x0020 + 0x000c
93#define CTRLDSSEGMENT0x0020 + 0x0010 OPREGBASE0x0020 + 0x0010
94#define PERIODICLISTBASE0x0020 + 0x0014 OPREGBASE0x0020 + 0x0014
95#define ASYNCLISTADDR0x0020 + 0x0018 OPREGBASE0x0020 + 0x0018
96#define ASYNCLISTADDR_MASK0xffffffe0 0xffffffe0
97
98#define CONFIGFLAG0x0020 + 0x0040 OPREGBASE0x0020 + 0x0040
99
100#define PORTSC(0x0020 + 0x0044) (OPREGBASE0x0020 + 0x0044)
101#define PORTSC_BEGIN(0x0020 + 0x0044) PORTSC(0x0020 + 0x0044)
102#define PORTSC_END((0x0020 + 0x0044) + 4 * 6) (PORTSC(0x0020 + 0x0044) + 4 * NB_PORTS6)
103/*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107#define PORTSC_RO_MASK0x007001c0 0x007001c0
108#define PORTSC_RWC_MASK0x0000002a 0x0000002a
109#define PORTSC_WKOC_E(1 << 22) (1 << 22) // Wake on Over Current Enable
110#define PORTSC_WKDS_E(1 << 21) (1 << 21) // Wake on Disconnect Enable
111#define PORTSC_WKCN_E(1 << 20) (1 << 20) // Wake on Connect Enable
112#define PORTSC_PTC(15 << 16) (15 << 16) // Port Test Control
113#define PORTSC_PTC_SH16 16 // Port Test Control shift
114#define PORTSC_PIC(3 << 14) (3 << 14) // Port Indicator Control
115#define PORTSC_PIC_SH14 14 // Port Indicator Control Shift
116#define PORTSC_POWNER(1 << 13) (1 << 13) // Port Owner
117#define PORTSC_PPOWER(1 << 12) (1 << 12) // Port Power
118#define PORTSC_LINESTAT(3 << 10) (3 << 10) // Port Line Status
119#define PORTSC_LINESTAT_SH10 10 // Port Line Status Shift
120#define PORTSC_PRESET(1 << 8) (1 << 8) // Port Reset
121#define PORTSC_SUSPEND(1 << 7) (1 << 7) // Port Suspend
122#define PORTSC_FPRES(1 << 6) (1 << 6) // Force Port Resume
123#define PORTSC_OCC(1 << 5) (1 << 5) // Over Current Change
124#define PORTSC_OCA(1 << 4) (1 << 4) // Over Current Active
125#define PORTSC_PEDC(1 << 3) (1 << 3) // Port Enable/Disable Change
126#define PORTSC_PED(1 << 2) (1 << 2) // Port Enable/Disable
127#define PORTSC_CSC(1 << 1) (1 << 1) // Connect Status Change
128#define PORTSC_CONNECT(1 << 0) (1 << 0) // Current Connect Status
129
130#define FRAME_TIMER_FREQ1000 1000
131#define FRAME_TIMER_NS(1000000000 / 1000) (1000000000 / FRAME_TIMER_FREQ1000)
132
133#define NB_MAXINTRATE8 8 // Max rate at which controller issues ints
134#define NB_PORTS6 6 // Number of downstream ports
135#define BUFF_SIZE5*4096 5*4096 // Max bytes to transfer per transaction
136#define MAX_QH100 100 // Max allowable queue heads in a chain
137
138/* Internal periodic / asynchronous schedule state machine states
139 */
140typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
146 */
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_FETCHSITD,
152 EST_ADVANCEQUEUE,
153 EST_FETCHQTD,
154 EST_EXECUTE,
155 EST_WRITEBACK,
156 EST_HORIZONTALQH
157} EHCI_STATES;
158
159/* macros for accessing fields within next link pointer entry */
160#define NLPTR_GET(x)((x) & 0xffffffe0) ((x) & 0xffffffe0)
161#define NLPTR_TYPE_GET(x)(((x) >> 1) & 3) (((x) >> 1) & 3)
162#define NLPTR_TBIT(x)((x) & 1) ((x) & 1) // 1=invalid, 0=valid
163
164/* link pointer types */
165#define NLPTR_TYPE_ITD0 0 // isoc xfer descriptor
166#define NLPTR_TYPE_QH1 1 // queue head
167#define NLPTR_TYPE_STITD2 2 // split xaction, isoc xfer descriptor
168#define NLPTR_TYPE_FSTN3 3 // frame span traversal node
169
170
171/* EHCI spec version 1.0 Section 3.3
172 */
173typedef struct EHCIitd {
174 uint32_t next;
175
176 uint32_t transact[8];
177#define ITD_XACT_ACTIVE(1 << 31) (1 << 31)
178#define ITD_XACT_DBERROR(1 << 30) (1 << 30)
179#define ITD_XACT_BABBLE(1 << 29) (1 << 29)
180#define ITD_XACT_XACTERR(1 << 28) (1 << 28)
181#define ITD_XACT_LENGTH_MASK0x0fff0000 0x0fff0000
182#define ITD_XACT_LENGTH_SH16 16
183#define ITD_XACT_IOC(1 << 15) (1 << 15)
184#define ITD_XACT_PGSEL_MASK0x00007000 0x00007000
185#define ITD_XACT_PGSEL_SH12 12
186#define ITD_XACT_OFFSET_MASK0x00000fff 0x00000fff
187
188 uint32_t bufptr[7];
189#define ITD_BUFPTR_MASK0xfffff000 0xfffff000
190#define ITD_BUFPTR_SH12 12
191#define ITD_BUFPTR_EP_MASK0x00000f00 0x00000f00
192#define ITD_BUFPTR_EP_SH8 8
193#define ITD_BUFPTR_DEVADDR_MASK0x0000007f 0x0000007f
194#define ITD_BUFPTR_DEVADDR_SH0 0
195#define ITD_BUFPTR_DIRECTION(1 << 11) (1 << 11)
196#define ITD_BUFPTR_MAXPKT_MASK0x000007ff 0x000007ff
197#define ITD_BUFPTR_MAXPKT_SH0 0
198#define ITD_BUFPTR_MULT_MASK0x00000003 0x00000003
199#define ITD_BUFPTR_MULT_SH0 0
200} EHCIitd;
201
202/* EHCI spec version 1.0 Section 3.4
203 */
204typedef struct EHCIsitd {
205 uint32_t next; // Standard next link pointer
206 uint32_t epchar;
207#define SITD_EPCHAR_IO(1 << 31) (1 << 31)
208#define SITD_EPCHAR_PORTNUM_MASK0x7f000000 0x7f000000
209#define SITD_EPCHAR_PORTNUM_SH24 24
210#define SITD_EPCHAR_HUBADD_MASK0x007f0000 0x007f0000
211#define SITD_EPCHAR_HUBADDR_SH16 16
212#define SITD_EPCHAR_EPNUM_MASK0x00000f00 0x00000f00
213#define SITD_EPCHAR_EPNUM_SH8 8
214#define SITD_EPCHAR_DEVADDR_MASK0x0000007f 0x0000007f
215
216 uint32_t uframe;
217#define SITD_UFRAME_CMASK_MASK0x0000ff00 0x0000ff00
218#define SITD_UFRAME_CMASK_SH8 8
219#define SITD_UFRAME_SMASK_MASK0x000000ff 0x000000ff
220
221 uint32_t results;
222#define SITD_RESULTS_IOC(1 << 31) (1 << 31)
223#define SITD_RESULTS_PGSEL(1 << 30) (1 << 30)
224#define SITD_RESULTS_TBYTES_MASK0x03ff0000 0x03ff0000
225#define SITD_RESULTS_TYBYTES_SH16 16
226#define SITD_RESULTS_CPROGMASK_MASK0x0000ff00 0x0000ff00
227#define SITD_RESULTS_CPROGMASK_SH8 8
228#define SITD_RESULTS_ACTIVE(1 << 7) (1 << 7)
229#define SITD_RESULTS_ERR(1 << 6) (1 << 6)
230#define SITD_RESULTS_DBERR(1 << 5) (1 << 5)
231#define SITD_RESULTS_BABBLE(1 << 4) (1 << 4)
232#define SITD_RESULTS_XACTERR(1 << 3) (1 << 3)
233#define SITD_RESULTS_MISSEDUF(1 << 2) (1 << 2)
234#define SITD_RESULTS_SPLITXSTATE(1 << 1) (1 << 1)
235
236 uint32_t bufptr[2];
237#define SITD_BUFPTR_MASK0xfffff000 0xfffff000
238#define SITD_BUFPTR_CURROFF_MASK0x00000fff 0x00000fff
239#define SITD_BUFPTR_TPOS_MASK0x00000018 0x00000018
240#define SITD_BUFPTR_TPOS_SH3 3
241#define SITD_BUFPTR_TCNT_MASK0x00000007 0x00000007
242
243 uint32_t backptr; // Standard next link pointer
244} EHCIsitd;
245
246/* EHCI spec version 1.0 Section 3.5
247 */
248typedef struct EHCIqtd {
249 uint32_t next; // Standard next link pointer
250 uint32_t altnext; // Standard next link pointer
251 uint32_t token;
252#define QTD_TOKEN_DTOGGLE(1 << 31) (1 << 31)
253#define QTD_TOKEN_TBYTES_MASK0x7fff0000 0x7fff0000
254#define QTD_TOKEN_TBYTES_SH16 16
255#define QTD_TOKEN_IOC(1 << 15) (1 << 15)
256#define QTD_TOKEN_CPAGE_MASK0x00007000 0x00007000
257#define QTD_TOKEN_CPAGE_SH12 12
258#define QTD_TOKEN_CERR_MASK0x00000c00 0x00000c00
259#define QTD_TOKEN_CERR_SH10 10
260#define QTD_TOKEN_PID_MASK0x00000300 0x00000300
261#define QTD_TOKEN_PID_SH8 8
262#define QTD_TOKEN_ACTIVE(1 << 7) (1 << 7)
263#define QTD_TOKEN_HALT(1 << 6) (1 << 6)
264#define QTD_TOKEN_DBERR(1 << 5) (1 << 5)
265#define QTD_TOKEN_BABBLE(1 << 4) (1 << 4)
266#define QTD_TOKEN_XACTERR(1 << 3) (1 << 3)
267#define QTD_TOKEN_MISSEDUF(1 << 2) (1 << 2)
268#define QTD_TOKEN_SPLITXSTATE(1 << 1) (1 << 1)
269#define QTD_TOKEN_PING(1 << 0) (1 << 0)
270
271 uint32_t bufptr[5]; // Standard buffer pointer
272#define QTD_BUFPTR_MASK0xfffff000 0xfffff000
273#define QTD_BUFPTR_SH12 12
274} EHCIqtd;
275
276/* EHCI spec version 1.0 Section 3.6
277 */
278typedef struct EHCIqh {
279 uint32_t next; // Standard next link pointer
280
281 /* endpoint characteristics */
282 uint32_t epchar;
283#define QH_EPCHAR_RL_MASK0xf0000000 0xf0000000
284#define QH_EPCHAR_RL_SH28 28
285#define QH_EPCHAR_C(1 << 27) (1 << 27)
286#define QH_EPCHAR_MPLEN_MASK0x07FF0000 0x07FF0000
287#define QH_EPCHAR_MPLEN_SH16 16
288#define QH_EPCHAR_H(1 << 15) (1 << 15)
289#define QH_EPCHAR_DTC(1 << 14) (1 << 14)
290#define QH_EPCHAR_EPS_MASK0x00003000 0x00003000
291#define QH_EPCHAR_EPS_SH12 12
292#define EHCI_QH_EPS_FULL0 0
293#define EHCI_QH_EPS_LOW1 1
294#define EHCI_QH_EPS_HIGH2 2
295#define EHCI_QH_EPS_RESERVED3 3
296
297#define QH_EPCHAR_EP_MASK0x00000f00 0x00000f00
298#define QH_EPCHAR_EP_SH8 8
299#define QH_EPCHAR_I(1 << 7) (1 << 7)
300#define QH_EPCHAR_DEVADDR_MASK0x0000007f 0x0000007f
301#define QH_EPCHAR_DEVADDR_SH0 0
302
303 /* endpoint capabilities */
304 uint32_t epcap;
305#define QH_EPCAP_MULT_MASK0xc0000000 0xc0000000
306#define QH_EPCAP_MULT_SH30 30
307#define QH_EPCAP_PORTNUM_MASK0x3f800000 0x3f800000
308#define QH_EPCAP_PORTNUM_SH23 23
309#define QH_EPCAP_HUBADDR_MASK0x007f0000 0x007f0000
310#define QH_EPCAP_HUBADDR_SH16 16
311#define QH_EPCAP_CMASK_MASK0x0000ff00 0x0000ff00
312#define QH_EPCAP_CMASK_SH8 8
313#define QH_EPCAP_SMASK_MASK0x000000ff 0x000000ff
314#define QH_EPCAP_SMASK_SH0 0
315
316 uint32_t current_qtd; // Standard next link pointer
317 uint32_t next_qtd; // Standard next link pointer
318 uint32_t altnext_qtd;
319#define QH_ALTNEXT_NAKCNT_MASK0x0000001e 0x0000001e
320#define QH_ALTNEXT_NAKCNT_SH1 1
321
322 uint32_t token; // Same as QTD token
323 uint32_t bufptr[5]; // Standard buffer pointer
324#define BUFPTR_CPROGMASK_MASK0x000000ff 0x000000ff
325#define BUFPTR_FRAMETAG_MASK0x0000001f 0x0000001f
326#define BUFPTR_SBYTES_MASK0x00000fe0 0x00000fe0
327#define BUFPTR_SBYTES_SH5 5
328} EHCIqh;
329
330/* EHCI spec version 1.0 Section 3.7
331 */
332typedef struct EHCIfstn {
333 uint32_t next; // Standard next link pointer
334 uint32_t backptr; // Standard next link pointer
335} EHCIfstn;
336
337typedef struct EHCIPacket EHCIPacket;
338typedef struct EHCIQueue EHCIQueue;
339typedef struct EHCIState EHCIState;
340
341enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345};
346
347struct EHCIPacket {
348 EHCIQueue *queue;
349 QTAILQ_ENTRY(EHCIPacket)struct { struct EHCIPacket *tqe_next; struct EHCIPacket * *tqe_prev
; }
next;
350
351 EHCIqtd qtd; /* copy of current QTD (being worked on) */
352 uint32_t qtdaddr; /* address QTD read from */
353
354 USBPacket packet;
355 QEMUSGList sgl;
356 int pid;
357 uint32_t tbytes;
358 enum async_state async;
359 int usb_status;
360};
361
362struct EHCIQueue {
363 EHCIState *ehci;
364 QTAILQ_ENTRY(EHCIQueue)struct { struct EHCIQueue *tqe_next; struct EHCIQueue * *tqe_prev
; }
next;
365 uint32_t seen;
366 uint64_t ts;
367 int async;
368
369 /* cached data from guest - needs to be flushed
370 * when guest removes an entry (doorbell, handshake sequence)
371 */
372 EHCIqh qh; /* copy of current QH (being worked on) */
373 uint32_t qhaddr; /* address QH read from */
374 uint32_t qtdaddr; /* address QTD read from */
375 USBDevice *dev;
376 QTAILQ_HEAD(, EHCIPacket)struct { struct EHCIPacket *tqh_first; struct EHCIPacket * *tqh_last
; }
packets;
377};
378
379typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue)struct EHCIQueueHead { struct EHCIQueue *tqh_first; struct EHCIQueue
* *tqh_last; }
EHCIQueueHead;
380
381struct EHCIState {
382 PCIDevice dev;
383 USBBus bus;
384 qemu_irq irq;
385 MemoryRegion mem;
386 int companion_count;
387
388 /* properties */
389 uint32_t maxframes;
390
391 /*
392 * EHCI spec version 1.0 Section 2.3
393 * Host Controller Operational Registers
394 */
395 union {
396 uint8_t mmio[MMIO_SIZE0x1000];
397 struct {
398 uint8_t cap[OPREGBASE0x0020];
399 uint32_t usbcmd;
400 uint32_t usbsts;
401 uint32_t usbintr;
402 uint32_t frindex;
403 uint32_t ctrldssegment;
404 uint32_t periodiclistbase;
405 uint32_t asynclistaddr;
406 uint32_t notused[9];
407 uint32_t configflag;
408 uint32_t portsc[NB_PORTS6];
409 };
410 };
411
412 /*
413 * Internal states, shadow registers, etc
414 */
415 QEMUTimer *frame_timer;
416 QEMUBH *async_bh;
417 uint32_t astate; /* Current state in asynchronous schedule */
418 uint32_t pstate; /* Current state in periodic schedule */
419 USBPort ports[NB_PORTS6];
420 USBPort *companion_ports[NB_PORTS6];
421 uint32_t usbsts_pending;
422 EHCIQueueHead aqueues;
423 EHCIQueueHead pqueues;
424
425 /* which address to look at next */
426 uint32_t a_fetch_addr;
427 uint32_t p_fetch_addr;
428
429 USBPacket ipacket;
430 QEMUSGList isgl;
431
432 uint64_t last_run_ns;
433 uint32_t async_stepdown;
434};
435
436#define SET_LAST_RUN_CLOCK(s)(s)->last_run_ns = qemu_get_clock_ns(vm_clock); \
437 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
438
439/* nifty macros from Arnon's EHCI version */
440#define get_field(data, field)(((data) & field_MASK) >> field_SH) \
441 (((data) & field##_MASK) >> field##_SH)
442
443#define set_field(data, newval, field)do { uint32_t val = *data; val &= ~ field_MASK; val |= ((
newval) << field_SH) & field_MASK; *data = val; } while
(0)
do { \
444 uint32_t val = *data; \
445 val &= ~ field##_MASK; \
446 val |= ((newval) << field##_SH) & field##_MASK; \
447 *data = val; \
448 } while(0)
449
450static const char *ehci_state_names[] = {
451 [EST_INACTIVE] = "INACTIVE",
452 [EST_ACTIVE] = "ACTIVE",
453 [EST_EXECUTING] = "EXECUTING",
454 [EST_SLEEPING] = "SLEEPING",
455 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
456 [EST_FETCHENTRY] = "FETCH ENTRY",
457 [EST_FETCHQH] = "FETCH QH",
458 [EST_FETCHITD] = "FETCH ITD",
459 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
460 [EST_FETCHQTD] = "FETCH QTD",
461 [EST_EXECUTE] = "EXECUTE",
462 [EST_WRITEBACK] = "WRITEBACK",
463 [EST_HORIZONTALQH] = "HORIZONTALQH",
464};
465
466static const char *ehci_mmio_names[] = {
467 [CAPLENGTH0x0000 + 0x0000] = "CAPLENGTH",
468 [HCIVERSION0x0000 + 0x0002] = "HCIVERSION",
469 [HCSPARAMS0x0000 + 0x0004] = "HCSPARAMS",
470 [HCCPARAMS0x0000 + 0x0008] = "HCCPARAMS",
471 [USBCMD0x0020 + 0x0000] = "USBCMD",
472 [USBSTS0x0020 + 0x0004] = "USBSTS",
473 [USBINTR0x0020 + 0x0008] = "USBINTR",
474 [FRINDEX0x0020 + 0x000c] = "FRINDEX",
475 [PERIODICLISTBASE0x0020 + 0x0014] = "P-LIST BASE",
476 [ASYNCLISTADDR0x0020 + 0x0018] = "A-LIST ADDR",
477 [PORTSC_BEGIN(0x0020 + 0x0044)] = "PORTSC #0",
478 [PORTSC_BEGIN(0x0020 + 0x0044) + 4] = "PORTSC #1",
479 [PORTSC_BEGIN(0x0020 + 0x0044) + 8] = "PORTSC #2",
480 [PORTSC_BEGIN(0x0020 + 0x0044) + 12] = "PORTSC #3",
481 [PORTSC_BEGIN(0x0020 + 0x0044) + 16] = "PORTSC #4",
482 [PORTSC_BEGIN(0x0020 + 0x0044) + 20] = "PORTSC #5",
483 [CONFIGFLAG0x0020 + 0x0040] = "CONFIGFLAG",
484};
485
486static const char *nr2str(const char **n, size_t len, uint32_t nr)
487{
488 if (nr < len && n[nr] != NULL((void*)0)) {
489 return n[nr];
490 } else {
491 return "unknown";
492 }
493}
494
495static const char *state2str(uint32_t state)
496{
497 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names)(sizeof(ehci_state_names) / sizeof((ehci_state_names)[0])), state);
498}
499
500static const char *addr2str(target_phys_addr_t addr)
501{
502 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names)(sizeof(ehci_mmio_names) / sizeof((ehci_mmio_names)[0])), addr);
503}
504
505static void ehci_trace_usbsts(uint32_t mask, int state)
506{
507 /* interrupts */
508 if (mask & USBSTS_INT(1 << 0)) {
509 trace_usb_ehci_usbsts("INT", state);
510 }
511 if (mask & USBSTS_ERRINT(1 << 1)) {
512 trace_usb_ehci_usbsts("ERRINT", state);
513 }
514 if (mask & USBSTS_PCD(1 << 2)) {
515 trace_usb_ehci_usbsts("PCD", state);
516 }
517 if (mask & USBSTS_FLR(1 << 3)) {
518 trace_usb_ehci_usbsts("FLR", state);
519 }
520 if (mask & USBSTS_HSE(1 << 4)) {
521 trace_usb_ehci_usbsts("HSE", state);
522 }
523 if (mask & USBSTS_IAA(1 << 5)) {
524 trace_usb_ehci_usbsts("IAA", state);
525 }
526
527 /* status */
528 if (mask & USBSTS_HALT(1 << 12)) {
529 trace_usb_ehci_usbsts("HALT", state);
530 }
531 if (mask & USBSTS_REC(1 << 13)) {
532 trace_usb_ehci_usbsts("REC", state);
533 }
534 if (mask & USBSTS_PSS(1 << 14)) {
535 trace_usb_ehci_usbsts("PSS", state);
536 }
537 if (mask & USBSTS_ASS(1 << 15)) {
538 trace_usb_ehci_usbsts("ASS", state);
539 }
540}
541
542static inline void ehci_set_usbsts(EHCIState *s, int mask)
543{
544 if ((s->usbsts & mask) == mask) {
545 return;
546 }
547 ehci_trace_usbsts(mask, 1);
548 s->usbsts |= mask;
549}
550
551static inline void ehci_clear_usbsts(EHCIState *s, int mask)
552{
553 if ((s->usbsts & mask) == 0) {
554 return;
555 }
556 ehci_trace_usbsts(mask, 0);
557 s->usbsts &= ~mask;
558}
559
560static inline void ehci_set_interrupt(EHCIState *s, int intr)
561{
562 int level = 0;
563
564 // TODO honour interrupt threshold requests
565
566 ehci_set_usbsts(s, intr);
567
568 if ((s->usbsts & USBINTR_MASK0x0000003f) & s->usbintr) {
569 level = 1;
570 }
571
572 trace_usb_ehci_interrupt(level, s->usbsts, s->usbintr);
573 qemu_set_irq(s->irq, level);
574}
575
576static inline void ehci_record_interrupt(EHCIState *s, int intr)
577{
578 s->usbsts_pending |= intr;
579}
580
581static inline void ehci_commit_interrupt(EHCIState *s)
582{
583 if (!s->usbsts_pending) {
584 return;
585 }
586 ehci_set_interrupt(s, s->usbsts_pending);
587 s->usbsts_pending = 0;
588}
589
590static void ehci_update_halt(EHCIState *s)
591{
592 if (s->usbcmd & USBCMD_RUNSTOP(1 << 0)) {
593 ehci_clear_usbsts(s, USBSTS_HALT(1 << 12));
594 } else {
595 if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
596 ehci_set_usbsts(s, USBSTS_HALT(1 << 12));
597 }
598 }
599}
600
601static void ehci_set_state(EHCIState *s, int async, int state)
602{
603 if (async) {
604 trace_usb_ehci_state("async", state2str(state));
605 s->astate = state;
606 if (s->astate == EST_INACTIVE) {
607 ehci_clear_usbsts(s, USBSTS_ASS(1 << 15));
608 ehci_update_halt(s);
609 } else {
610 ehci_set_usbsts(s, USBSTS_ASS(1 << 15));
611 }
612 } else {
613 trace_usb_ehci_state("periodic", state2str(state));
614 s->pstate = state;
615 if (s->pstate == EST_INACTIVE) {
616 ehci_clear_usbsts(s, USBSTS_PSS(1 << 14));
617 ehci_update_halt(s);
618 } else {
619 ehci_set_usbsts(s, USBSTS_PSS(1 << 14));
620 }
621 }
622}
623
624static int ehci_get_state(EHCIState *s, int async)
625{
626 return async ? s->astate : s->pstate;
627}
628
629static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
630{
631 if (async) {
632 s->a_fetch_addr = addr;
633 } else {
634 s->p_fetch_addr = addr;
635 }
636}
637
638static int ehci_get_fetch_addr(EHCIState *s, int async)
639{
640 return async ? s->a_fetch_addr : s->p_fetch_addr;
641}
642
643static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
644{
645 /* need three here due to argument count limits */
646 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
647 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
648 trace_usb_ehci_qh_fields(addr,
649 get_field(qh->epchar, QH_EPCHAR_RL)(((qh->epchar) & 0xf0000000) >> 28),
650 get_field(qh->epchar, QH_EPCHAR_MPLEN)(((qh->epchar) & 0x07FF0000) >> 16),
651 get_field(qh->epchar, QH_EPCHAR_EPS)(((qh->epchar) & 0x00003000) >> 12),
652 get_field(qh->epchar, QH_EPCHAR_EP)(((qh->epchar) & 0x00000f00) >> 8),
653 get_field(qh->epchar, QH_EPCHAR_DEVADDR)(((qh->epchar) & 0x0000007f) >> 0));
654 trace_usb_ehci_qh_bits(addr,
655 (bool_Bool)(qh->epchar & QH_EPCHAR_C(1 << 27)),
656 (bool_Bool)(qh->epchar & QH_EPCHAR_H(1 << 15)),
657 (bool_Bool)(qh->epchar & QH_EPCHAR_DTC(1 << 14)),
658 (bool_Bool)(qh->epchar & QH_EPCHAR_I(1 << 7)));
659}
660
661static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
662{
663 /* need three here due to argument count limits */
664 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
665 trace_usb_ehci_qtd_fields(addr,
666 get_field(qtd->token, QTD_TOKEN_TBYTES)(((qtd->token) & 0x7fff0000) >> 16),
667 get_field(qtd->token, QTD_TOKEN_CPAGE)(((qtd->token) & 0x00007000) >> 12),
668 get_field(qtd->token, QTD_TOKEN_CERR)(((qtd->token) & 0x00000c00) >> 10),
669 get_field(qtd->token, QTD_TOKEN_PID)(((qtd->token) & 0x00000300) >> 8));
670 trace_usb_ehci_qtd_bits(addr,
671 (bool_Bool)(qtd->token & QTD_TOKEN_IOC(1 << 15)),
672 (bool_Bool)(qtd->token & QTD_TOKEN_ACTIVE(1 << 7)),
673 (bool_Bool)(qtd->token & QTD_TOKEN_HALT(1 << 6)),
674 (bool_Bool)(qtd->token & QTD_TOKEN_BABBLE(1 << 4)),
675 (bool_Bool)(qtd->token & QTD_TOKEN_XACTERR(1 << 3)));
676}
677
678static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
679{
680 trace_usb_ehci_itd(addr, itd->next,
681 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT)(((itd->bufptr[1]) & 0x000007ff) >> 0),
682 get_field(itd->bufptr[2], ITD_BUFPTR_MULT)(((itd->bufptr[2]) & 0x00000003) >> 0),
683 get_field(itd->bufptr[0], ITD_BUFPTR_EP)(((itd->bufptr[0]) & 0x00000f00) >> 8),
684 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR)(((itd->bufptr[0]) & 0x0000007f) >> 0));
685}
686
687static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
688 EHCIsitd *sitd)
689{
690 trace_usb_ehci_sitd(addr, sitd->next,
691 (bool_Bool)(sitd->results & SITD_RESULTS_ACTIVE(1 << 7)));
692}
693
694static inline bool_Bool ehci_enabled(EHCIState *s)
695{
696 return s->usbcmd & USBCMD_RUNSTOP(1 << 0);
697}
698
699static inline bool_Bool ehci_async_enabled(EHCIState *s)
700{
701 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE(1 << 5));
702}
703
704static inline bool_Bool ehci_periodic_enabled(EHCIState *s)
705{
706 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE(1 << 4));
707}
708
709/* packet management */
710
711static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
712{
713 EHCIPacket *p;
714
715 p = g_new0(EHCIPacket, 1)((EHCIPacket *) g_malloc0_n ((1), sizeof (EHCIPacket)));
716 p->queue = q;
717 usb_packet_init(&p->packet);
718 QTAILQ_INSERT_TAIL(&q->packets, p, next)do { (p)->next.tqe_next = ((void*)0); (p)->next.tqe_prev
= (&q->packets)->tqh_last; *(&q->packets)->
tqh_last = (p); (&q->packets)->tqh_last = &(p)->
next.tqe_next; } while ( 0)
;
719 trace_usb_ehci_packet_action(p->queue, p, "alloc");
720 return p;
721}
722
723static void ehci_free_packet(EHCIPacket *p)
724{
725 trace_usb_ehci_packet_action(p->queue, p, "free");
726 if (p->async == EHCI_ASYNC_INFLIGHT) {
727 usb_cancel_packet(&p->packet);
728 }
729 QTAILQ_REMOVE(&p->queue->packets, p, next)do { if (((p)->next.tqe_next) != ((void*)0)) (p)->next.
tqe_next->next.tqe_prev = (p)->next.tqe_prev; else (&
p->queue->packets)->tqh_last = (p)->next.tqe_prev
; *(p)->next.tqe_prev = (p)->next.tqe_next; } while ( 0
)
;
730 usb_packet_cleanup(&p->packet);
731 g_free(p);
732}
733
734/* queue management */
735
736static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
737{
738 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
739 EHCIQueue *q;
740
741 q = g_malloc0(sizeof(*q));
742 q->ehci = ehci;
743 q->qhaddr = addr;
744 q->async = async;
745 QTAILQ_INIT(&q->packets)do { (&q->packets)->tqh_first = ((void*)0); (&q
->packets)->tqh_last = &(&q->packets)->tqh_first
; } while ( 0)
;
746 QTAILQ_INSERT_HEAD(head, q, next)do { if (((q)->next.tqe_next = (head)->tqh_first) != ((
void*)0)) (head)->tqh_first->next.tqe_prev = &(q)->
next.tqe_next; else (head)->tqh_last = &(q)->next.tqe_next
; (head)->tqh_first = (q); (q)->next.tqe_prev = &(head
)->tqh_first; } while ( 0)
;
747 trace_usb_ehci_queue_action(q, "alloc");
748 return q;
749}
750
751static void ehci_free_queue(EHCIQueue *q)
752{
753 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
754 EHCIPacket *p;
755
756 trace_usb_ehci_queue_action(q, "free");
757 while ((p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first)) != NULL((void*)0)) {
758 ehci_free_packet(p);
759 }
760 QTAILQ_REMOVE(head, q, next)do { if (((q)->next.tqe_next) != ((void*)0)) (q)->next.
tqe_next->next.tqe_prev = (q)->next.tqe_prev; else (head
)->tqh_last = (q)->next.tqe_prev; *(q)->next.tqe_prev
= (q)->next.tqe_next; } while ( 0)
;
761 g_free(q);
762}
763
764static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
765 int async)
766{
767 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
768 EHCIQueue *q;
769
770 QTAILQ_FOREACH(q, head, next)for ((q) = ((head)->tqh_first); (q); (q) = ((q)->next.tqe_next
))
{
771 if (addr == q->qhaddr) {
772 return q;
773 }
774 }
775 return NULL((void*)0);
776}
777
778static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
779{
780 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
781 uint64_t maxage = FRAME_TIMER_NS(1000000000 / 1000) * ehci->maxframes * 4;
782 EHCIQueue *q, *tmp;
783
784 QTAILQ_FOREACH_SAFE(q, head, next, tmp)for ((q) = ((head)->tqh_first); (q) && ((tmp) = ((
q)->next.tqe_next), 1); (q) = (tmp))
{
785 if (q->seen) {
786 q->seen = 0;
787 q->ts = ehci->last_run_ns;
788 continue;
789 }
790 if (!flush && ehci->last_run_ns < q->ts + maxage) {
791 continue;
792 }
793 ehci_free_queue(q);
794 }
795}
796
797static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
798{
799 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
800 EHCIQueue *q, *tmp;
801
802 QTAILQ_FOREACH_SAFE(q, head, next, tmp)for ((q) = ((head)->tqh_first); (q) && ((tmp) = ((
q)->next.tqe_next), 1); (q) = (tmp))
{
803 if (q->dev != dev) {
804 continue;
805 }
806 ehci_free_queue(q);
807 }
808}
809
810static void ehci_queues_rip_all(EHCIState *ehci, int async)
811{
812 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
813 EHCIQueue *q, *tmp;
814
815 QTAILQ_FOREACH_SAFE(q, head, next, tmp)for ((q) = ((head)->tqh_first); (q) && ((tmp) = ((
q)->next.tqe_next), 1); (q) = (tmp))
{
816 ehci_free_queue(q);
817 }
818}
819
820/* Attach or detach a device on root hub */
821
822static void ehci_attach(USBPort *port)
823{
824 EHCIState *s = port->opaque;
825 uint32_t *portsc = &s->portsc[port->index];
826 const char *owner = (*portsc & PORTSC_POWNER(1 << 13)) ? "comp" : "ehci";
827
828 trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
829
830 if (*portsc & PORTSC_POWNER(1 << 13)) {
831 USBPort *companion = s->companion_ports[port->index];
832 companion->dev = port->dev;
833 companion->ops->attach(companion);
834 return;
835 }
836
837 *portsc |= PORTSC_CONNECT(1 << 0);
838 *portsc |= PORTSC_CSC(1 << 1);
839
840 ehci_set_interrupt(s, USBSTS_PCD(1 << 2));
841}
842
843static void ehci_detach(USBPort *port)
844{
845 EHCIState *s = port->opaque;
846 uint32_t *portsc = &s->portsc[port->index];
847 const char *owner = (*portsc & PORTSC_POWNER(1 << 13)) ? "comp" : "ehci";
848
849 trace_usb_ehci_port_detach(port->index, owner);
850
851 if (*portsc & PORTSC_POWNER(1 << 13)) {
852 USBPort *companion = s->companion_ports[port->index];
853 companion->ops->detach(companion);
854 companion->dev = NULL((void*)0);
855 /*
856 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
857 * the port ownership is returned immediately to the EHCI controller."
858 */
859 *portsc &= ~PORTSC_POWNER(1 << 13);
860 return;
861 }
862
863 ehci_queues_rip_device(s, port->dev, 0);
864 ehci_queues_rip_device(s, port->dev, 1);
865
866 *portsc &= ~(PORTSC_CONNECT(1 << 0)|PORTSC_PED(1 << 2));
867 *portsc |= PORTSC_CSC(1 << 1);
868
869 ehci_set_interrupt(s, USBSTS_PCD(1 << 2));
870}
871
872static void ehci_child_detach(USBPort *port, USBDevice *child)
873{
874 EHCIState *s = port->opaque;
875 uint32_t portsc = s->portsc[port->index];
876
877 if (portsc & PORTSC_POWNER(1 << 13)) {
878 USBPort *companion = s->companion_ports[port->index];
879 companion->ops->child_detach(companion, child);
880 return;
881 }
882
883 ehci_queues_rip_device(s, child, 0);
884 ehci_queues_rip_device(s, child, 1);
885}
886
887static void ehci_wakeup(USBPort *port)
888{
889 EHCIState *s = port->opaque;
890 uint32_t portsc = s->portsc[port->index];
891
892 if (portsc & PORTSC_POWNER(1 << 13)) {
893 USBPort *companion = s->companion_ports[port->index];
894 if (companion->ops->wakeup) {
895 companion->ops->wakeup(companion);
896 } else {
897 qemu_bh_schedule(s->async_bh);
898 }
899 }
900}
901
902static int ehci_register_companion(USBBus *bus, USBPort *ports[],
903 uint32_t portcount, uint32_t firstport)
904{
905 EHCIState *s = container_of(bus, EHCIState, bus)({ const typeof(((EHCIState *) 0)->bus) *__mptr = (bus); (
EHCIState *) ((char *) __mptr - __builtin_offsetof(EHCIState,
bus));})
;
906 uint32_t i;
907
908 if (firstport + portcount > NB_PORTS6) {
909 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",qerror_report_internal("/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 910, __func__, "{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }"
, "firstport", "firstport on masterbus")
910 "firstport on masterbus")qerror_report_internal("/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 910, __func__, "{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }"
, "firstport", "firstport on masterbus")
;
911 error_printf_unless_qmp(
912 "firstport value of %u makes companion take ports %u - %u, which "
913 "is outside of the valid range of 0 - %u\n", firstport, firstport,
914 firstport + portcount - 1, NB_PORTS6 - 1);
915 return -1;
916 }
917
918 for (i = 0; i < portcount; i++) {
919 if (s->companion_ports[firstport + i]) {
920 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",qerror_report_internal("/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 921, __func__, "{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }"
, "masterbus", "an USB masterbus")
921 "an USB masterbus")qerror_report_internal("/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 921, __func__, "{ 'class': 'InvalidParameterValue', 'data': { 'name': %s, 'expected': %s } }"
, "masterbus", "an USB masterbus")
;
922 error_printf_unless_qmp(
923 "port %u on masterbus %s already has a companion assigned\n",
924 firstport + i, bus->qbus.name);
925 return -1;
926 }
927 }
928
929 for (i = 0; i < portcount; i++) {
930 s->companion_ports[firstport + i] = ports[i];
931 s->ports[firstport + i].speedmask |=
932 USB_SPEED_MASK_LOW(1 << 0) | USB_SPEED_MASK_FULL(1 << 1);
933 /* Ensure devs attached before the initial reset go to the companion */
934 s->portsc[firstport + i] = PORTSC_POWNER(1 << 13);
935 }
936
937 s->companion_count++;
938 s->mmio[0x05] = (s->companion_count << 4) | portcount;
939
940 return 0;
941}
942
943static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
944{
945 USBDevice *dev;
946 USBPort *port;
947 int i;
948
949 for (i = 0; i < NB_PORTS6; i++) {
950 port = &ehci->ports[i];
951 if (!(ehci->portsc[i] & PORTSC_PED(1 << 2))) {
952 DPRINTF("Port %d not enabled\n", i);
953 continue;
954 }
955 dev = usb_find_device(port, addr);
956 if (dev != NULL((void*)0)) {
957 return dev;
958 }
959 }
960 return NULL((void*)0);
961}
962
963/* 4.1 host controller initialization */
964static void ehci_reset(void *opaque)
965{
966 EHCIState *s = opaque;
967 int i;
968 USBDevice *devs[NB_PORTS6];
969
970 trace_usb_ehci_reset();
971
972 /*
973 * Do the detach before touching portsc, so that it correctly gets send to
974 * us or to our companion based on PORTSC_POWNER before the reset.
975 */
976 for(i = 0; i < NB_PORTS6; i++) {
977 devs[i] = s->ports[i].dev;
978 if (devs[i] && devs[i]->attached) {
979 usb_detach(&s->ports[i]);
980 }
981 }
982
983 memset(&s->mmio[OPREGBASE0x0020], 0x00, MMIO_SIZE0x1000 - OPREGBASE0x0020);
984
985 s->usbcmd = NB_MAXINTRATE8 << USBCMD_ITC_SH16;
986 s->usbsts = USBSTS_HALT(1 << 12);
987
988 s->astate = EST_INACTIVE;
989 s->pstate = EST_INACTIVE;
990
991 for(i = 0; i < NB_PORTS6; i++) {
992 if (s->companion_ports[i]) {
993 s->portsc[i] = PORTSC_POWNER(1 << 13) | PORTSC_PPOWER(1 << 12);
994 } else {
995 s->portsc[i] = PORTSC_PPOWER(1 << 12);
996 }
997 if (devs[i] && devs[i]->attached) {
998 usb_attach(&s->ports[i]);
999 usb_device_reset(devs[i]);
1000 }
1001 }
1002 ehci_queues_rip_all(s, 0);
1003 ehci_queues_rip_all(s, 1);
1004 qemu_del_timer(s->frame_timer);
1005 qemu_bh_cancel(s->async_bh);
1006}
1007
1008static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
1009{
1010 EHCIState *s = ptr;
1011 uint32_t val;
1012
1013 val = s->mmio[addr];
1014
1015 return val;
1016}
1017
1018static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1019{
1020 EHCIState *s = ptr;
1021 uint32_t val;
1022
1023 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1024
1025 return val;
1026}
1027
1028static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1029{
1030 EHCIState *s = ptr;
1031 uint32_t val;
1032
1033 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1034 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1035
1036 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1037 return val;
1038}
1039
1040static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1041{
1042 fprintf(stderrstderr, "EHCI doesn't handle byte writes to MMIO\n");
1043 exit(1);
1044}
1045
1046static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1047{
1048 fprintf(stderrstderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1049 exit(1);
1050}
1051
1052static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1053{
1054 USBDevice *dev = s->ports[port].dev;
1055 uint32_t *portsc = &s->portsc[port];
1056 uint32_t orig;
1057
1058 if (s->companion_ports[port] == NULL((void*)0))
1059 return;
1060
1061 owner = owner & PORTSC_POWNER(1 << 13);
1062 orig = *portsc & PORTSC_POWNER(1 << 13);
1063
1064 if (!(owner ^ orig)) {
1065 return;
1066 }
1067
1068 if (dev && dev->attached) {
1069 usb_detach(&s->ports[port]);
1070 }
1071
1072 *portsc &= ~PORTSC_POWNER(1 << 13);
1073 *portsc |= owner;
1074
1075 if (dev && dev->attached) {
1076 usb_attach(&s->ports[port]);
1077 }
1078}
1079
1080static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1081{
1082 uint32_t *portsc = &s->portsc[port];
1083 USBDevice *dev = s->ports[port].dev;
1084
1085 /* Clear rwc bits */
1086 *portsc &= ~(val & PORTSC_RWC_MASK0x0000002a);
1087 /* The guest may clear, but not set the PED bit */
1088 *portsc &= val | ~PORTSC_PED(1 << 2);
1089 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1090 handle_port_owner_write(s, port, val);
1091 /* And finally apply RO_MASK */
1092 val &= PORTSC_RO_MASK0x007001c0;
1093
1094 if ((val & PORTSC_PRESET(1 << 8)) && !(*portsc & PORTSC_PRESET(1 << 8))) {
1095 trace_usb_ehci_port_reset(port, 1);
1096 }
1097
1098 if (!(val & PORTSC_PRESET(1 << 8)) &&(*portsc & PORTSC_PRESET(1 << 8))) {
1099 trace_usb_ehci_port_reset(port, 0);
1100 if (dev && dev->attached) {
1101 usb_port_reset(&s->ports[port]);
1102 *portsc &= ~PORTSC_CSC(1 << 1);
1103 }
1104
1105 /*
1106 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1107 * to SW that this port has a high speed device attached
1108 */
1109 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH(1 << 2))) {
1110 val |= PORTSC_PED(1 << 2);
1111 }
1112 }
1113
1114 *portsc &= ~PORTSC_RO_MASK0x007001c0;
1115 *portsc |= val;
1116}
1117
1118static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1119{
1120 EHCIState *s = ptr;
1121 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1122 uint32_t old = *mmio;
1123 int i;
1124
1125 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1126
1127 /* Only aligned reads are allowed on OHCI */
1128 if (addr & 3) {
1129 fprintf(stderrstderr, "usb-ehci: Mis-aligned write to addr 0x"
1130 TARGET_FMT_plx"%08x" "\n", addr);
1131 return;
1132 }
1133
1134 if (addr >= PORTSC(0x0020 + 0x0044) && addr < PORTSC(0x0020 + 0x0044) + 4 * NB_PORTS6) {
1135 handle_port_status_write(s, (addr-PORTSC(0x0020 + 0x0044))/4, val);
1136 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1137 return;
1138 }
1139
1140 if (addr < OPREGBASE0x0020) {
1141 fprintf(stderrstderr, "usb-ehci: write attempt to read-only register"
1142 TARGET_FMT_plx"%08x" "\n", addr);
1143 return;
1144 }
1145
1146
1147 /* Do any register specific pre-write processing here. */
1148 switch(addr) {
1149 case USBCMD0x0020 + 0x0000:
1150 if (val & USBCMD_HCRESET(1 << 1)) {
1151 ehci_reset(s);
1152 val = s->usbcmd;
1153 break;
1154 }
1155
1156 if (((USBCMD_RUNSTOP(1 << 0) | USBCMD_PSE(1 << 4) | USBCMD_ASE(1 << 5)) & val) !=
1157 ((USBCMD_RUNSTOP(1 << 0) | USBCMD_PSE(1 << 4) | USBCMD_ASE(1 << 5)) & s->usbcmd)) {
1158 if (s->pstate == EST_INACTIVE) {
1159 SET_LAST_RUN_CLOCK(s)(s)->last_run_ns = qemu_get_clock_ns(vm_clock);;
1160 }
1161 ehci_update_halt(s);
1162 s->async_stepdown = 0;
1163 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1164 }
1165
1166 /* not supporting dynamic frame list size at the moment */
1167 if ((val & USBCMD_FLS(3 << 2)) && !(s->usbcmd & USBCMD_FLS(3 << 2))) {
1168 fprintf(stderrstderr, "attempt to set frame list size -- value %d\n",
1169 val & USBCMD_FLS(3 << 2));
1170 val &= ~USBCMD_FLS(3 << 2);
1171 }
1172 break;
1173
1174 case USBSTS0x0020 + 0x0004:
1175 val &= USBSTS_RO_MASK0x0000003f; // bits 6 through 31 are RO
1176 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
1177 val = s->usbsts;
1178 ehci_set_interrupt(s, 0);
1179 break;
1180
1181 case USBINTR0x0020 + 0x0008:
1182 val &= USBINTR_MASK0x0000003f;
1183 break;
1184
1185 case FRINDEX0x0020 + 0x000c:
1186 val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1187 break;
1188
1189 case CONFIGFLAG0x0020 + 0x0040:
1190 val &= 0x1;
1191 if (val) {
1192 for(i = 0; i < NB_PORTS6; i++)
1193 handle_port_owner_write(s, i, 0);
1194 }
1195 break;
1196
1197 case PERIODICLISTBASE0x0020 + 0x0014:
1198 if (ehci_periodic_enabled(s)) {
1199 fprintf(stderrstderr,
1200 "ehci: PERIODIC list base register set while periodic schedule\n"
1201 " is enabled and HC is enabled\n");
1202 }
1203 break;
1204
1205 case ASYNCLISTADDR0x0020 + 0x0018:
1206 if (ehci_async_enabled(s)) {
1207 fprintf(stderrstderr,
1208 "ehci: ASYNC list address register set while async schedule\n"
1209 " is enabled and HC is enabled\n");
1210 }
1211 break;
1212 }
1213
1214 *mmio = val;
1215 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1216}
1217
1218
1219// TODO : Put in common header file, duplication from usb-ohci.c
1220
1221/* Get an array of dwords from main memory */
1222static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1223 uint32_t *buf, int num)
1224{
1225 int i;
1226
1227 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1228 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1229 *buf = le32_to_cpu(*buf);
1230 }
1231
1232 return 1;
1233}
1234
1235/* Put an array of dwords in to main memory */
1236static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1237 uint32_t *buf, int num)
1238{
1239 int i;
1240
1241 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1242 uint32_t tmp = cpu_to_le32(*buf);
1243 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1244 }
1245
1246 return 1;
1247}
1248
1249// 4.10.2
1250
1251static int ehci_qh_do_overlay(EHCIQueue *q)
1252{
1253 EHCIPacket *p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1254 int i;
1255 int dtoggle;
1256 int ping;
1257 int eps;
1258 int reload;
1259
1260 assert(p != NULL)((p != ((void*)0)) ? (void) (0) : __assert_fail ("p != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 1260
, __PRETTY_FUNCTION__))
;
1261 assert(p->qtdaddr == q->qtdaddr)((p->qtdaddr == q->qtdaddr) ? (void) (0) : __assert_fail
("p->qtdaddr == q->qtdaddr", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1261, __PRETTY_FUNCTION__))
;
1262
1263 // remember values in fields to preserve in qh after overlay
1264
1265 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE(1 << 31);
1266 ping = q->qh.token & QTD_TOKEN_PING(1 << 0);
1267
1268 q->qh.current_qtd = p->qtdaddr;
1269 q->qh.next_qtd = p->qtd.next;
1270 q->qh.altnext_qtd = p->qtd.altnext;
1271 q->qh.token = p->qtd.token;
1272
1273
1274 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS)(((q->qh.epchar) & 0x00003000) >> 12);
1275 if (eps == EHCI_QH_EPS_HIGH2) {
1276 q->qh.token &= ~QTD_TOKEN_PING(1 << 0);
1277 q->qh.token |= ping;
1278 }
1279
1280 reload = get_field(q->qh.epchar, QH_EPCHAR_RL)(((q->qh.epchar) & 0xf0000000) >> 28);
1281 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT)do { uint32_t val = *&q->qh.altnext_qtd; val &= ~ 0x0000001e
; val |= ((reload) << 1) & 0x0000001e; *&q->
qh.altnext_qtd = val; } while(0)
;
1282
1283 for (i = 0; i < 5; i++) {
1284 q->qh.bufptr[i] = p->qtd.bufptr[i];
1285 }
1286
1287 if (!(q->qh.epchar & QH_EPCHAR_DTC(1 << 14))) {
1288 // preserve QH DT bit
1289 q->qh.token &= ~QTD_TOKEN_DTOGGLE(1 << 31);
1290 q->qh.token |= dtoggle;
1291 }
1292
1293 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK0x000000ff;
1294 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK0x0000001f;
1295
1296 put_dwords(q->ehci, NLPTR_GET(q->qhaddr)((q->qhaddr) & 0xffffffe0), (uint32_t *) &q->qh,
1297 sizeof(EHCIqh) >> 2);
1298
1299 return 0;
1300}
1301
1302static int ehci_init_transfer(EHCIPacket *p)
1303{
1304 uint32_t cpage, offset, bytes, plen;
1305 dma_addr_t page;
1306
1307 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE)(((p->qtd.token) & 0x00007000) >> 12);
1308 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES)(((p->qtd.token) & 0x7fff0000) >> 16);
1309 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK0xfffff000;
1310 pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1311
1312 while (bytes > 0) {
1313 if (cpage > 4) {
1314 fprintf(stderrstderr, "cpage out of range (%d)\n", cpage);
1315 return USB_RET_PROCERR(-99);
1316 }
1317
1318 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK0xfffff000;
1319 page += offset;
1320 plen = bytes;
1321 if (plen > 4096 - offset) {
1322 plen = 4096 - offset;
1323 offset = 0;
1324 cpage++;
1325 }
1326
1327 qemu_sglist_add(&p->sgl, page, plen);
1328 bytes -= plen;
1329 }
1330 return 0;
1331}
1332
1333static void ehci_finish_transfer(EHCIQueue *q, int status)
1334{
1335 uint32_t cpage, offset;
1336
1337 if (status > 0) {
1338 /* update cpage & offset */
1339 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE)(((q->qh.token) & 0x00007000) >> 12);
1340 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK0xfffff000;
1341
1342 offset += status;
1343 cpage += offset >> QTD_BUFPTR_SH12;
1344 offset &= ~QTD_BUFPTR_MASK0xfffff000;
1345
1346 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE)do { uint32_t val = *&q->qh.token; val &= ~ 0x00007000
; val |= ((cpage) << 12) & 0x00007000; *&q->
qh.token = val; } while(0)
;
1347 q->qh.bufptr[0] &= QTD_BUFPTR_MASK0xfffff000;
1348 q->qh.bufptr[0] |= offset;
1349 }
1350}
1351
1352static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1353{
1354 EHCIPacket *p;
1355 EHCIState *s = port->opaque;
1356 uint32_t portsc = s->portsc[port->index];
1357
1358 if (portsc & PORTSC_POWNER(1 << 13)) {
1359 USBPort *companion = s->companion_ports[port->index];
1360 companion->ops->complete(companion, packet);
1361 return;
1362 }
1363
1364 p = container_of(packet, EHCIPacket, packet)({ const typeof(((EHCIPacket *) 0)->packet) *__mptr = (packet
); (EHCIPacket *) ((char *) __mptr - __builtin_offsetof(EHCIPacket
, packet));})
;
1365 trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1366 assert(p->async == EHCI_ASYNC_INFLIGHT)((p->async == EHCI_ASYNC_INFLIGHT) ? (void) (0) : __assert_fail
("p->async == EHCI_ASYNC_INFLIGHT", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1366, __PRETTY_FUNCTION__))
;
1367 p->async = EHCI_ASYNC_FINISHED;
1368 p->usb_status = packet->result;
1369
1370 if (p->queue->async) {
1371 qemu_bh_schedule(p->queue->ehci->async_bh);
1372 }
1373}
1374
1375static void ehci_execute_complete(EHCIQueue *q)
1376{
1377 EHCIPacket *p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1378
1379 assert(p != NULL)((p != ((void*)0)) ? (void) (0) : __assert_fail ("p != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 1379
, __PRETTY_FUNCTION__))
;
1380 assert(p->qtdaddr == q->qtdaddr)((p->qtdaddr == q->qtdaddr) ? (void) (0) : __assert_fail
("p->qtdaddr == q->qtdaddr", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1380, __PRETTY_FUNCTION__))
;
1381 assert(p->async != EHCI_ASYNC_INFLIGHT)((p->async != EHCI_ASYNC_INFLIGHT) ? (void) (0) : __assert_fail
("p->async != EHCI_ASYNC_INFLIGHT", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1381, __PRETTY_FUNCTION__))
;
1382 p->async = EHCI_ASYNC_NONE;
1383
1384 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1385 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1386
1387 if (p->usb_status < 0) {
1388 switch (p->usb_status) {
1389 case USB_RET_IOERROR(-5):
1390 case USB_RET_NODEV(-1):
1391 q->qh.token |= (QTD_TOKEN_HALT(1 << 6) | QTD_TOKEN_XACTERR(1 << 3));
1392 set_field(&q->qh.token, 0, QTD_TOKEN_CERR)do { uint32_t val = *&q->qh.token; val &= ~ 0x00000c00
; val |= ((0) << 10) & 0x00000c00; *&q->qh.token
= val; } while(0)
;
1393 ehci_record_interrupt(q->ehci, USBSTS_ERRINT(1 << 1));
1394 break;
1395 case USB_RET_STALL(-3):
1396 q->qh.token |= QTD_TOKEN_HALT(1 << 6);
1397 ehci_record_interrupt(q->ehci, USBSTS_ERRINT(1 << 1));
1398 break;
1399 case USB_RET_NAK(-2):
1400 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT)do { uint32_t val = *&q->qh.altnext_qtd; val &= ~ 0x0000001e
; val |= ((0) << 1) & 0x0000001e; *&q->qh.altnext_qtd
= val; } while(0)
;
1401 return; /* We're not done yet with this transaction */
1402 case USB_RET_BABBLE(-4):
1403 q->qh.token |= (QTD_TOKEN_HALT(1 << 6) | QTD_TOKEN_BABBLE(1 << 4));
1404 ehci_record_interrupt(q->ehci, USBSTS_ERRINT(1 << 1));
1405 break;
1406 default:
1407 /* should not be triggerable */
1408 fprintf(stderrstderr, "USB invalid response %d\n", p->usb_status);
1409 assert(0)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1409, __PRETTY_FUNCTION__))
;
1410 break;
1411 }
1412 } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN0x69)) {
1413 p->usb_status = USB_RET_BABBLE(-4);
1414 q->qh.token |= (QTD_TOKEN_HALT(1 << 6) | QTD_TOKEN_BABBLE(1 << 4));
1415 ehci_record_interrupt(q->ehci, USBSTS_ERRINT(1 << 1));
1416 } else {
1417 // TODO check 4.12 for splits
1418
1419 if (p->tbytes && p->pid == USB_TOKEN_IN0x69) {
1420 p->tbytes -= p->usb_status;
1421 } else {
1422 p->tbytes = 0;
1423 }
1424
1425 DPRINTF("updating tbytes to %d\n", p->tbytes);
1426 set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES)do { uint32_t val = *&q->qh.token; val &= ~ 0x7fff0000
; val |= ((p->tbytes) << 16) & 0x7fff0000; *&
q->qh.token = val; } while(0)
;
1427 }
1428 ehci_finish_transfer(q, p->usb_status);
1429 usb_packet_unmap(&p->packet, &p->sgl);
1430 qemu_sglist_destroy(&p->sgl);
1431
1432 q->qh.token ^= QTD_TOKEN_DTOGGLE(1 << 31);
1433 q->qh.token &= ~QTD_TOKEN_ACTIVE(1 << 7);
1434
1435 if (q->qh.token & QTD_TOKEN_IOC(1 << 15)) {
1436 ehci_record_interrupt(q->ehci, USBSTS_INT(1 << 0));
1437 }
1438}
1439
1440// 4.10.3
1441
1442static int ehci_execute(EHCIPacket *p, const char *action)
1443{
1444 USBEndpoint *ep;
1445 int ret;
1446 int endp;
1447
1448 if (!(p->qtd.token & QTD_TOKEN_ACTIVE(1 << 7))) {
1449 fprintf(stderrstderr, "Attempting to execute inactive qtd\n");
1450 return USB_RET_PROCERR(-99);
1451 }
1452
1453 p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK0x7fff0000) >> QTD_TOKEN_TBYTES_SH16;
1454 if (p->tbytes > BUFF_SIZE5*4096) {
1455 fprintf(stderrstderr, "Request for more bytes than allowed\n");
1456 return USB_RET_PROCERR(-99);
1457 }
1458
1459 p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK0x00000300) >> QTD_TOKEN_PID_SH8;
1460 switch (p->pid) {
1461 case 0:
1462 p->pid = USB_TOKEN_OUT0xe1;
1463 break;
1464 case 1:
1465 p->pid = USB_TOKEN_IN0x69;
1466 break;
1467 case 2:
1468 p->pid = USB_TOKEN_SETUP0x2d;
1469 break;
1470 default:
1471 fprintf(stderrstderr, "bad token\n");
1472 break;
1473 }
1474
1475 if (ehci_init_transfer(p) != 0) {
1476 return USB_RET_PROCERR(-99);
1477 }
1478
1479 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP)(((p->queue->qh.epchar) & 0x00000f00) >> 8);
1480 ep = usb_ep_get(p->queue->dev, p->pid, endp);
1481
1482 usb_packet_setup(&p->packet, p->pid, ep);
1483 usb_packet_map(&p->packet, &p->sgl);
1484
1485 trace_usb_ehci_packet_action(p->queue, p, action);
1486 ret = usb_handle_packet(p->queue->dev, &p->packet);
1487 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1488 "(total %d) endp %x ret %d\n",
1489 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1490 q->packet.iov.size, q->tbytes, endp, ret);
1491
1492 if (ret > BUFF_SIZE5*4096) {
1493 fprintf(stderrstderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1494 return USB_RET_PROCERR(-99);
1495 }
1496
1497 return ret;
1498}
1499
1500/* 4.7.2
1501 */
1502
1503static int ehci_process_itd(EHCIState *ehci,
1504 EHCIitd *itd)
1505{
1506 USBDevice *dev;
1507 USBEndpoint *ep;
1508 int ret;
1509 uint32_t i, len, pid, dir, devaddr, endp;
1510 uint32_t pg, off, ptr1, ptr2, max, mult;
1511
1512 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION(1 << 11));
1513 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR)(((itd->bufptr[0]) & 0x0000007f) >> 0);
1514 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP)(((itd->bufptr[0]) & 0x00000f00) >> 8);
1515 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT)(((itd->bufptr[1]) & 0x000007ff) >> 0);
1516 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT)(((itd->bufptr[2]) & 0x00000003) >> 0);
1517
1518 for(i = 0; i < 8; i++) {
1519 if (itd->transact[i] & ITD_XACT_ACTIVE(1 << 31)) {
1520 pg = get_field(itd->transact[i], ITD_XACT_PGSEL)(((itd->transact[i]) & 0x00007000) >> 12);
1521 off = itd->transact[i] & ITD_XACT_OFFSET_MASK0x00000fff;
1522 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK0xfffff000);
1523 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK0xfffff000);
1524 len = get_field(itd->transact[i], ITD_XACT_LENGTH)(((itd->transact[i]) & 0x0fff0000) >> 16);
1525
1526 if (len > max * mult) {
1527 len = max * mult;
1528 }
1529
1530 if (len > BUFF_SIZE5*4096) {
1531 return USB_RET_PROCERR(-99);
1532 }
1533
1534 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1535 if (off + len > 4096) {
1536 /* transfer crosses page border */
1537 uint32_t len2 = off + len - 4096;
1538 uint32_t len1 = len - len2;
1539 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1540 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1541 } else {
1542 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1543 }
1544
1545 pid = dir ? USB_TOKEN_IN0x69 : USB_TOKEN_OUT0xe1;
1546
1547 dev = ehci_find_device(ehci, devaddr);
1548 ep = usb_ep_get(dev, pid, endp);
1549 if (ep->type == USB_ENDPOINT_XFER_ISOC1) {
1550 usb_packet_setup(&ehci->ipacket, pid, ep);
1551 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1552 ret = usb_handle_packet(dev, &ehci->ipacket);
1553 assert(ret != USB_RET_ASYNC)((ret != (-6)) ? (void) (0) : __assert_fail ("ret != (-6)", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1553, __PRETTY_FUNCTION__))
;
1554 usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
1555 } else {
1556 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1557 ret = USB_RET_NAK(-2);
1558 }
1559 qemu_sglist_destroy(&ehci->isgl);
1560
1561 if (ret < 0) {
1562 switch (ret) {
1563 default:
1564 fprintf(stderrstderr, "Unexpected iso usb result: %d\n", ret);
1565 /* Fall through */
1566 case USB_RET_IOERROR(-5):
1567 case USB_RET_NODEV(-1):
1568 /* 3.3.2: XACTERR is only allowed on IN transactions */
1569 if (dir) {
1570 itd->transact[i] |= ITD_XACT_XACTERR(1 << 28);
1571 ehci_record_interrupt(ehci, USBSTS_ERRINT(1 << 1));
1572 }
1573 break;
1574 case USB_RET_BABBLE(-4):
1575 itd->transact[i] |= ITD_XACT_BABBLE(1 << 29);
1576 ehci_record_interrupt(ehci, USBSTS_ERRINT(1 << 1));
1577 break;
1578 case USB_RET_NAK(-2):
1579 /* no data for us, so do a zero-length transfer */
1580 ret = 0;
1581 break;
1582 }
1583 }
1584 if (ret >= 0) {
1585 if (!dir) {
1586 /* OUT */
1587 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH)do { uint32_t val = *&itd->transact[i]; val &= ~ 0x0fff0000
; val |= ((len - ret) << 16) & 0x0fff0000; *&itd
->transact[i] = val; } while(0)
;
1588 } else {
1589 /* IN */
1590 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH)do { uint32_t val = *&itd->transact[i]; val &= ~ 0x0fff0000
; val |= ((ret) << 16) & 0x0fff0000; *&itd->
transact[i] = val; } while(0)
;
1591 }
1592 }
1593 if (itd->transact[i] & ITD_XACT_IOC(1 << 15)) {
1594 ehci_record_interrupt(ehci, USBSTS_INT(1 << 0));
1595 }
1596 itd->transact[i] &= ~ITD_XACT_ACTIVE(1 << 31);
1597 }
1598 }
1599 return 0;
1600}
1601
1602
1603/*
1604 * Write the qh back to guest physical memory. This step isn't
1605 * in the EHCI spec but we need to do it since we don't share
1606 * physical memory with our guest VM.
1607 *
1608 * The first three dwords are read-only for the EHCI, so skip them
1609 * when writing back the qh.
1610 */
1611static void ehci_flush_qh(EHCIQueue *q)
1612{
1613 uint32_t *qh = (uint32_t *) &q->qh;
1614 uint32_t dwords = sizeof(EHCIqh) >> 2;
1615 uint32_t addr = NLPTR_GET(q->qhaddr)((q->qhaddr) & 0xffffffe0);
1616
1617 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1618}
1619
1620/* This state is the entry point for asynchronous schedule
1621 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1622 */
1623static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1624{
1625 EHCIqh qh;
1626 int i = 0;
1627 int again = 0;
1628 uint32_t entry = ehci->asynclistaddr;
1629
1630 /* set reclamation flag at start event (4.8.6) */
1631 if (async) {
1632 ehci_set_usbsts(ehci, USBSTS_REC(1 << 13));
1633 }
1634
1635 ehci_queues_rip_unused(ehci, async, 0);
1636
1637 /* Find the head of the list (4.9.1.1) */
1638 for(i = 0; i < MAX_QH100; i++) {
1639 get_dwords(ehci, NLPTR_GET(entry)((entry) & 0xffffffe0), (uint32_t *) &qh,
1640 sizeof(EHCIqh) >> 2);
1641 ehci_trace_qh(NULL((void*)0), NLPTR_GET(entry)((entry) & 0xffffffe0), &qh);
1642
1643 if (qh.epchar & QH_EPCHAR_H(1 << 15)) {
1644 if (async) {
1645 entry |= (NLPTR_TYPE_QH1 << 1);
1646 }
1647
1648 ehci_set_fetch_addr(ehci, async, entry);
1649 ehci_set_state(ehci, async, EST_FETCHENTRY);
1650 again = 1;
1651 goto out;
1652 }
1653
1654 entry = qh.next;
1655 if (entry == ehci->asynclistaddr) {
1656 break;
1657 }
1658 }
1659
1660 /* no head found for list. */
1661
1662 ehci_set_state(ehci, async, EST_ACTIVE);
1663
1664out:
1665 return again;
1666}
1667
1668
1669/* This state is the entry point for periodic schedule processing as
1670 * well as being a continuation state for async processing.
1671 */
1672static int ehci_state_fetchentry(EHCIState *ehci, int async)
1673{
1674 int again = 0;
1675 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1676
1677 if (NLPTR_TBIT(entry)((entry) & 1)) {
1678 ehci_set_state(ehci, async, EST_ACTIVE);
1679 goto out;
1680 }
1681
1682 /* section 4.8, only QH in async schedule */
1683 if (async && (NLPTR_TYPE_GET(entry)(((entry) >> 1) & 3) != NLPTR_TYPE_QH1)) {
1684 fprintf(stderrstderr, "non queue head request in async schedule\n");
1685 return -1;
1686 }
1687
1688 switch (NLPTR_TYPE_GET(entry)(((entry) >> 1) & 3)) {
1689 case NLPTR_TYPE_QH1:
1690 ehci_set_state(ehci, async, EST_FETCHQH);
1691 again = 1;
1692 break;
1693
1694 case NLPTR_TYPE_ITD0:
1695 ehci_set_state(ehci, async, EST_FETCHITD);
1696 again = 1;
1697 break;
1698
1699 case NLPTR_TYPE_STITD2:
1700 ehci_set_state(ehci, async, EST_FETCHSITD);
1701 again = 1;
1702 break;
1703
1704 default:
1705 /* TODO: handle FSTN type */
1706 fprintf(stderrstderr, "FETCHENTRY: entry at %X is of type %d "
1707 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry)(((entry) >> 1) & 3));
1708 return -1;
1709 }
1710
1711out:
1712 return again;
1713}
1714
1715static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1716{
1717 EHCIPacket *p;
1718 uint32_t entry, devaddr;
1719 EHCIQueue *q;
1720
1721 entry = ehci_get_fetch_addr(ehci, async);
1722 q = ehci_find_queue_by_qh(ehci, entry, async);
1723 if (NULL((void*)0) == q) {
1724 q = ehci_alloc_queue(ehci, entry, async);
1725 }
1726 p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1727
1728 q->seen++;
1729 if (q->seen > 1) {
1730 /* we are going in circles -- stop processing */
1731 ehci_set_state(ehci, async, EST_ACTIVE);
1732 q = NULL((void*)0);
1733 goto out;
1734 }
1735
1736 get_dwords(ehci, NLPTR_GET(q->qhaddr)((q->qhaddr) & 0xffffffe0),
1737 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1738 ehci_trace_qh(q, NLPTR_GET(q->qhaddr)((q->qhaddr) & 0xffffffe0), &q->qh);
1739
1740 devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)(((q->qh.epchar) & 0x0000007f) >> 0);
1741 if (q->dev != NULL((void*)0) && q->dev->addr != devaddr) {
1742 if (!QTAILQ_EMPTY(&q->packets)((&q->packets)->tqh_first == ((void*)0))) {
1743 /* should not happen (guest bug) */
1744 while ((p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first)) != NULL((void*)0)) {
1745 ehci_free_packet(p);
1746 }
1747 }
1748 q->dev = NULL((void*)0);
1749 }
1750 if (q->dev == NULL((void*)0)) {
1751 q->dev = ehci_find_device(q->ehci, devaddr);
1752 }
1753
1754 if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1755 /* I/O still in progress -- skip queue */
1756 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1757 goto out;
1758 }
1759 if (p && p->async == EHCI_ASYNC_FINISHED) {
1760 /* I/O finished -- continue processing queue */
1761 trace_usb_ehci_packet_action(p->queue, p, "complete");
1762 ehci_set_state(ehci, async, EST_EXECUTING);
1763 goto out;
1764 }
1765
1766 if (async && (q->qh.epchar & QH_EPCHAR_H(1 << 15))) {
1767
1768 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1769 if (ehci->usbsts & USBSTS_REC(1 << 13)) {
1770 ehci_clear_usbsts(ehci, USBSTS_REC(1 << 13));
1771 } else {
1772 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1773 " - done processing\n", q->qhaddr);
1774 ehci_set_state(ehci, async, EST_ACTIVE);
1775 q = NULL((void*)0);
1776 goto out;
1777 }
1778 }
1779
1780#if EHCI_DEBUG0
1781 if (q->qhaddr != q->qh.next) {
1782 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1783 q->qhaddr,
1784 q->qh.epchar & QH_EPCHAR_H,
1785 q->qh.token & QTD_TOKEN_HALT,
1786 q->qh.token & QTD_TOKEN_ACTIVE,
1787 q->qh.next);
1788 }
1789#endif
1790
1791 if (q->qh.token & QTD_TOKEN_HALT(1 << 6)) {
1792 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1793
1794 } else if ((q->qh.token & QTD_TOKEN_ACTIVE(1 << 7)) &&
1795 (NLPTR_TBIT(q->qh.current_qtd)((q->qh.current_qtd) & 1) == 0)) {
1796 q->qtdaddr = q->qh.current_qtd;
1797 ehci_set_state(ehci, async, EST_FETCHQTD);
1798
1799 } else {
1800 /* EHCI spec version 1.0 Section 4.10.2 */
1801 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1802 }
1803
1804out:
1805 return q;
1806}
1807
1808static int ehci_state_fetchitd(EHCIState *ehci, int async)
1809{
1810 uint32_t entry;
1811 EHCIitd itd;
1812
1813 assert(!async)((!async) ? (void) (0) : __assert_fail ("!async", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1813, __PRETTY_FUNCTION__))
;
1814 entry = ehci_get_fetch_addr(ehci, async);
1815
1816 get_dwords(ehci, NLPTR_GET(entry)((entry) & 0xffffffe0), (uint32_t *) &itd,
1817 sizeof(EHCIitd) >> 2);
1818 ehci_trace_itd(ehci, entry, &itd);
1819
1820 if (ehci_process_itd(ehci, &itd) != 0) {
1821 return -1;
1822 }
1823
1824 put_dwords(ehci, NLPTR_GET(entry)((entry) & 0xffffffe0), (uint32_t *) &itd,
1825 sizeof(EHCIitd) >> 2);
1826 ehci_set_fetch_addr(ehci, async, itd.next);
1827 ehci_set_state(ehci, async, EST_FETCHENTRY);
1828
1829 return 1;
1830}
1831
1832static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1833{
1834 uint32_t entry;
1835 EHCIsitd sitd;
1836
1837 assert(!async)((!async) ? (void) (0) : __assert_fail ("!async", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1837, __PRETTY_FUNCTION__))
;
1838 entry = ehci_get_fetch_addr(ehci, async);
1839
1840 get_dwords(ehci, NLPTR_GET(entry)((entry) & 0xffffffe0), (uint32_t *)&sitd,
1841 sizeof(EHCIsitd) >> 2);
1842 ehci_trace_sitd(ehci, entry, &sitd);
1843
1844 if (!(sitd.results & SITD_RESULTS_ACTIVE(1 << 7))) {
1845 /* siTD is not active, nothing to do */;
1846 } else {
1847 /* TODO: split transfers are not implemented */
1848 fprintf(stderrstderr, "WARNING: Skipping active siTD\n");
1849 }
1850
1851 ehci_set_fetch_addr(ehci, async, sitd.next);
1852 ehci_set_state(ehci, async, EST_FETCHENTRY);
1853 return 1;
1854}
1855
1856/* Section 4.10.2 - paragraph 3 */
1857static int ehci_state_advqueue(EHCIQueue *q)
1858{
1859#if 0
1860 /* TO-DO: 4.10.2 - paragraph 2
1861 * if I-bit is set to 1 and QH is not active
1862 * go to horizontal QH
1863 */
1864 if (I-bit set) {
1865 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1866 goto out;
1867 }
1868#endif
1869
1870 /*
1871 * want data and alt-next qTD is valid
1872 */
1873 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK0x7fff0000) != 0) &&
1874 (NLPTR_TBIT(q->qh.altnext_qtd)((q->qh.altnext_qtd) & 1) == 0)) {
1875 q->qtdaddr = q->qh.altnext_qtd;
1876 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1877
1878 /*
1879 * next qTD is valid
1880 */
1881 } else if (NLPTR_TBIT(q->qh.next_qtd)((q->qh.next_qtd) & 1) == 0) {
1882 q->qtdaddr = q->qh.next_qtd;
1883 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1884
1885 /*
1886 * no valid qTD, try next QH
1887 */
1888 } else {
1889 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1890 }
1891
1892 return 1;
1893}
1894
1895/* Section 4.10.2 - paragraph 4 */
1896static int ehci_state_fetchqtd(EHCIQueue *q)
1897{
1898 EHCIqtd qtd;
1899 EHCIPacket *p;
1900 int again = 0;
1901
1902 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr)((q->qtdaddr) & 0xffffffe0), (uint32_t *) &qtd,
1903 sizeof(EHCIqtd) >> 2);
1904 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr)((q->qtdaddr) & 0xffffffe0), &qtd);
1905
1906 p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1907 while (p != NULL((void*)0) && p->qtdaddr != q->qtdaddr) {
1908 /* should not happen (guest bug) */
1909 ehci_free_packet(p);
1910 p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1911 }
1912 if (p != NULL((void*)0)) {
1913 ehci_qh_do_overlay(q);
1914 ehci_flush_qh(q);
1915 if (p->async == EHCI_ASYNC_INFLIGHT) {
1916 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1917 } else {
1918 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1919 }
1920 again = 1;
1921 } else if (qtd.token & QTD_TOKEN_ACTIVE(1 << 7)) {
1922 p = ehci_alloc_packet(q);
1923 p->qtdaddr = q->qtdaddr;
1924 p->qtd = qtd;
1925 ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1926 again = 1;
1927 } else {
1928 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1929 again = 1;
1930 }
1931
1932 return again;
1933}
1934
1935static int ehci_state_horizqh(EHCIQueue *q)
1936{
1937 int again = 0;
1938
1939 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1940 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1941 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1942 again = 1;
1943 } else {
1944 ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1945 }
1946
1947 return again;
1948}
1949
1950static void ehci_fill_queue(EHCIPacket *p)
1951{
1952 EHCIQueue *q = p->queue;
1953 EHCIqtd qtd = p->qtd;
1954 uint32_t qtdaddr;
1955
1956 for (;;) {
1957 if (NLPTR_TBIT(qtd.altnext)((qtd.altnext) & 1) == 0) {
1958 break;
1959 }
1960 if (NLPTR_TBIT(qtd.next)((qtd.next) & 1) != 0) {
1961 break;
1962 }
1963 qtdaddr = qtd.next;
1964 get_dwords(q->ehci, NLPTR_GET(qtdaddr)((qtdaddr) & 0xffffffe0),
1965 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
1966 ehci_trace_qtd(q, NLPTR_GET(qtdaddr)((qtdaddr) & 0xffffffe0), &qtd);
1967 if (!(qtd.token & QTD_TOKEN_ACTIVE(1 << 7))) {
1968 break;
1969 }
1970 p = ehci_alloc_packet(q);
1971 p->qtdaddr = qtdaddr;
1972 p->qtd = qtd;
1973 p->usb_status = ehci_execute(p, "queue");
1974 assert(p->usb_status = USB_RET_ASYNC)((p->usb_status = (-6)) ? (void) (0) : __assert_fail ("p->usb_status = (-6)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 1974
, __PRETTY_FUNCTION__))
;
1975 p->async = EHCI_ASYNC_INFLIGHT;
1976 }
1977}
1978
1979static int ehci_state_execute(EHCIQueue *q)
1980{
1981 EHCIPacket *p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
1982 int again = 0;
1983
1984 assert(p != NULL)((p != ((void*)0)) ? (void) (0) : __assert_fail ("p != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 1984
, __PRETTY_FUNCTION__))
;
1985 assert(p->qtdaddr == q->qtdaddr)((p->qtdaddr == q->qtdaddr) ? (void) (0) : __assert_fail
("p->qtdaddr == q->qtdaddr", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 1985, __PRETTY_FUNCTION__))
;
1986
1987 if (ehci_qh_do_overlay(q) != 0) {
1988 return -1;
1989 }
1990
1991 // TODO verify enough time remains in the uframe as in 4.4.1.1
1992 // TODO write back ptr to async list when done or out of time
1993 // TODO Windows does not seem to ever set the MULT field
1994
1995 if (!q->async) {
1996 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT)(((q->qh.epcap) & 0xc0000000) >> 30);
1997 if (!transactCtr) {
1998 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1999 again = 1;
2000 goto out;
2001 }
2002 }
2003
2004 if (q->async) {
2005 ehci_set_usbsts(q->ehci, USBSTS_REC(1 << 13));
2006 }
2007
2008 p->usb_status = ehci_execute(p, "process");
2009 if (p->usb_status == USB_RET_PROCERR(-99)) {
2010 again = -1;
2011 goto out;
2012 }
2013 if (p->usb_status == USB_RET_ASYNC(-6)) {
2014 ehci_flush_qh(q);
2015 trace_usb_ehci_packet_action(p->queue, p, "async");
2016 p->async = EHCI_ASYNC_INFLIGHT;
2017 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2018 again = 1;
2019 ehci_fill_queue(p);
2020 goto out;
2021 }
2022
2023 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2024 again = 1;
2025
2026out:
2027 return again;
2028}
2029
2030static int ehci_state_executing(EHCIQueue *q)
2031{
2032 EHCIPacket *p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
2033 int again = 0;
2034
2035 assert(p != NULL)((p != ((void*)0)) ? (void) (0) : __assert_fail ("p != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 2035
, __PRETTY_FUNCTION__))
;
2036 assert(p->qtdaddr == q->qtdaddr)((p->qtdaddr == q->qtdaddr) ? (void) (0) : __assert_fail
("p->qtdaddr == q->qtdaddr", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 2036, __PRETTY_FUNCTION__))
;
2037
2038 ehci_execute_complete(q);
2039 if (p->usb_status == USB_RET_ASYNC(-6)) {
2040 goto out;
2041 }
2042 if (p->usb_status == USB_RET_PROCERR(-99)) {
2043 again = -1;
2044 goto out;
2045 }
2046
2047 // 4.10.3
2048 if (!q->async) {
2049 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT)(((q->qh.epcap) & 0xc0000000) >> 30);
2050 transactCtr--;
2051 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT)do { uint32_t val = *&q->qh.epcap; val &= ~ 0xc0000000
; val |= ((transactCtr) << 30) & 0xc0000000; *&
q->qh.epcap = val; } while(0)
;
2052 // 4.10.3, bottom of page 82, should exit this state when transaction
2053 // counter decrements to 0
2054 }
2055
2056 /* 4.10.5 */
2057 if (p->usb_status == USB_RET_NAK(-2)) {
2058 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2059 } else {
2060 ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2061 }
2062
2063 again = 1;
2064
2065out:
2066 ehci_flush_qh(q);
2067 return again;
2068}
2069
2070
2071static int ehci_state_writeback(EHCIQueue *q)
2072{
2073 EHCIPacket *p = QTAILQ_FIRST(&q->packets)((&q->packets)->tqh_first);
2074 int again = 0;
2075
2076 /* Write back the QTD from the QH area */
2077 assert(p != NULL)((p != ((void*)0)) ? (void) (0) : __assert_fail ("p != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 2077
, __PRETTY_FUNCTION__))
;
2078 assert(p->qtdaddr == q->qtdaddr)((p->qtdaddr == q->qtdaddr) ? (void) (0) : __assert_fail
("p->qtdaddr == q->qtdaddr", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 2078, __PRETTY_FUNCTION__))
;
2079
2080 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr)((p->qtdaddr) & 0xffffffe0), (EHCIqtd *) &q->qh.next_qtd);
2081 put_dwords(q->ehci, NLPTR_GET(p->qtdaddr)((p->qtdaddr) & 0xffffffe0), (uint32_t *) &q->qh.next_qtd,
2082 sizeof(EHCIqtd) >> 2);
2083 ehci_free_packet(p);
2084
2085 /*
2086 * EHCI specs say go horizontal here.
2087 *
2088 * We can also advance the queue here for performance reasons. We
2089 * need to take care to only take that shortcut in case we've
2090 * processed the qtd just written back without errors, i.e. halt
2091 * bit is clear.
2092 */
2093 if (q->qh.token & QTD_TOKEN_HALT(1 << 6)) {
2094 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2095 again = 1;
2096 } else {
2097 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2098 again = 1;
2099 }
2100 return again;
2101}
2102
2103/*
2104 * This is the state machine that is common to both async and periodic
2105 */
2106
2107static void ehci_advance_state(EHCIState *ehci, int async)
2108{
2109 EHCIQueue *q = NULL((void*)0);
2110 int again;
2111
2112 do {
2113 switch(ehci_get_state(ehci, async)) {
2114 case EST_WAITLISTHEAD:
2115 again = ehci_state_waitlisthead(ehci, async);
2116 break;
2117
2118 case EST_FETCHENTRY:
2119 again = ehci_state_fetchentry(ehci, async);
2120 break;
2121
2122 case EST_FETCHQH:
2123 q = ehci_state_fetchqh(ehci, async);
2124 if (q != NULL((void*)0)) {
2125 assert(q->async == async)((q->async == async) ? (void) (0) : __assert_fail ("q->async == async"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 2125
, __PRETTY_FUNCTION__))
;
2126 again = 1;
2127 } else {
2128 again = 0;
2129 }
2130 break;
2131
2132 case EST_FETCHITD:
2133 again = ehci_state_fetchitd(ehci, async);
2134 break;
2135
2136 case EST_FETCHSITD:
2137 again = ehci_state_fetchsitd(ehci, async);
2138 break;
2139
2140 case EST_ADVANCEQUEUE:
2141 again = ehci_state_advqueue(q);
2142 break;
2143
2144 case EST_FETCHQTD:
2145 again = ehci_state_fetchqtd(q);
2146 break;
2147
2148 case EST_HORIZONTALQH:
2149 again = ehci_state_horizqh(q);
2150 break;
2151
2152 case EST_EXECUTE:
2153 again = ehci_state_execute(q);
2154 if (async) {
2155 ehci->async_stepdown = 0;
2156 }
2157 break;
2158
2159 case EST_EXECUTING:
2160 assert(q != NULL)((q != ((void*)0)) ? (void) (0) : __assert_fail ("q != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 2160
, __PRETTY_FUNCTION__))
;
2161 if (async) {
2162 ehci->async_stepdown = 0;
2163 }
2164 again = ehci_state_executing(q);
2165 break;
2166
2167 case EST_WRITEBACK:
2168 assert(q != NULL)((q != ((void*)0)) ? (void) (0) : __assert_fail ("q != ((void*)0)"
, "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c", 2168
, __PRETTY_FUNCTION__))
;
2169 again = ehci_state_writeback(q);
2170 break;
2171
2172 default:
2173 fprintf(stderrstderr, "Bad state!\n");
2174 again = -1;
Value stored to 'again' is never read
2175 assert(0)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 2175, __PRETTY_FUNCTION__))
;
2176 break;
2177 }
2178
2179 if (again < 0) {
2180 fprintf(stderrstderr, "processing error - resetting ehci HC\n");
2181 ehci_reset(ehci);
2182 again = 0;
2183 }
2184 }
2185 while (again);
2186
2187 ehci_commit_interrupt(ehci);
2188}
2189
2190static void ehci_advance_async_state(EHCIState *ehci)
2191{
2192 const int async = 1;
2193
2194 switch(ehci_get_state(ehci, async)) {
2195 case EST_INACTIVE:
2196 if (!ehci_async_enabled(ehci)) {
2197 break;
2198 }
2199 ehci_set_state(ehci, async, EST_ACTIVE);
2200 // No break, fall through to ACTIVE
2201
2202 case EST_ACTIVE:
2203 if (!ehci_async_enabled(ehci)) {
2204 ehci_queues_rip_all(ehci, async);
2205 ehci_set_state(ehci, async, EST_INACTIVE);
2206 break;
2207 }
2208
2209 /* make sure guest has acknowledged the doorbell interrupt */
2210 /* TO-DO: is this really needed? */
2211 if (ehci->usbsts & USBSTS_IAA(1 << 5)) {
2212 DPRINTF("IAA status bit still set.\n");
2213 break;
2214 }
2215
2216 /* check that address register has been set */
2217 if (ehci->asynclistaddr == 0) {
2218 break;
2219 }
2220
2221 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2222 ehci_advance_state(ehci, async);
2223
2224 /* If the doorbell is set, the guest wants to make a change to the
2225 * schedule. The host controller needs to release cached data.
2226 * (section 4.8.2)
2227 */
2228 if (ehci->usbcmd & USBCMD_IAAD(1 << 6)) {
2229 /* Remove all unseen qhs from the async qhs queue */
2230 ehci_queues_rip_unused(ehci, async, 1);
2231 DPRINTF("ASYNC: doorbell request acknowledged\n");
2232 ehci->usbcmd &= ~USBCMD_IAAD(1 << 6);
2233 ehci_set_interrupt(ehci, USBSTS_IAA(1 << 5));
2234 }
2235 break;
2236
2237 default:
2238 /* this should only be due to a developer mistake */
2239 fprintf(stderrstderr, "ehci: Bad asynchronous state %d. "
2240 "Resetting to active\n", ehci->astate);
2241 assert(0)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 2241, __PRETTY_FUNCTION__))
;
2242 }
2243}
2244
2245static void ehci_advance_periodic_state(EHCIState *ehci)
2246{
2247 uint32_t entry;
2248 uint32_t list;
2249 const int async = 0;
2250
2251 // 4.6
2252
2253 switch(ehci_get_state(ehci, async)) {
2254 case EST_INACTIVE:
2255 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2256 ehci_set_state(ehci, async, EST_ACTIVE);
2257 // No break, fall through to ACTIVE
2258 } else
2259 break;
2260
2261 case EST_ACTIVE:
2262 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2263 ehci_queues_rip_all(ehci, async);
2264 ehci_set_state(ehci, async, EST_INACTIVE);
2265 break;
2266 }
2267
2268 list = ehci->periodiclistbase & 0xfffff000;
2269 /* check that register has been set */
2270 if (list == 0) {
2271 break;
2272 }
2273 list |= ((ehci->frindex & 0x1ff8) >> 1);
2274
2275 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2276 entry = le32_to_cpu(entry);
2277
2278 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2279 ehci->frindex / 8, list, entry);
2280 ehci_set_fetch_addr(ehci, async,entry);
2281 ehci_set_state(ehci, async, EST_FETCHENTRY);
2282 ehci_advance_state(ehci, async);
2283 ehci_queues_rip_unused(ehci, async, 0);
2284 break;
2285
2286 default:
2287 /* this should only be due to a developer mistake */
2288 fprintf(stderrstderr, "ehci: Bad periodic state %d. "
2289 "Resetting to active\n", ehci->pstate);
2290 assert(0)((0) ? (void) (0) : __assert_fail ("0", "/home/stefan/src/qemu/qemu.org/qemu/hw/usb/hcd-ehci.c"
, 2290, __PRETTY_FUNCTION__))
;
2291 }
2292}
2293
2294static void ehci_update_frindex(EHCIState *ehci, int frames)
2295{
2296 int i;
2297
2298 if (!ehci_enabled(ehci)) {
2299 return;
2300 }
2301
2302 for (i = 0; i < frames; i++) {
2303 ehci->frindex += 8;
2304
2305 if (ehci->frindex == 0x00002000) {
2306 ehci_set_interrupt(ehci, USBSTS_FLR(1 << 3));
2307 }
2308
2309 if (ehci->frindex == 0x00004000) {
2310 ehci_set_interrupt(ehci, USBSTS_FLR(1 << 3));
2311 ehci->frindex = 0;
2312 }
2313 }
2314}
2315
2316static void ehci_frame_timer(void *opaque)
2317{
2318 EHCIState *ehci = opaque;
2319 int schedules = 0;
2320 int64_t expire_time, t_now;
2321 uint64_t ns_elapsed;
2322 int frames, skipped_frames;
2323 int i;
2324
2325 t_now = qemu_get_clock_ns(vm_clock);
2326 ns_elapsed = t_now - ehci->last_run_ns;
2327 frames = ns_elapsed / FRAME_TIMER_NS(1000000000 / 1000);
2328
2329 if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
2330 schedules++;
2331 expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ1000);
2332
2333 if (frames > ehci->maxframes) {
2334 skipped_frames = frames - ehci->maxframes;
2335 ehci_update_frindex(ehci, skipped_frames);
2336 ehci->last_run_ns += FRAME_TIMER_NS(1000000000 / 1000) * skipped_frames;
2337 frames -= skipped_frames;
2338 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2339 }
2340
2341 for (i = 0; i < frames; i++) {
2342 ehci_update_frindex(ehci, 1);
2343 ehci_advance_periodic_state(ehci);
2344 ehci->last_run_ns += FRAME_TIMER_NS(1000000000 / 1000);
2345 }
2346 } else {
2347 if (ehci->async_stepdown < ehci->maxframes / 2) {
2348 ehci->async_stepdown++;
2349 }
2350 expire_time = t_now + (get_ticks_per_sec()
2351 * ehci->async_stepdown / FRAME_TIMER_FREQ1000);
2352 ehci_update_frindex(ehci, frames);
2353 ehci->last_run_ns += FRAME_TIMER_NS(1000000000 / 1000) * frames;
2354 }
2355
2356 /* Async is not inside loop since it executes everything it can once
2357 * called
2358 */
2359 if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
2360 schedules++;
2361 qemu_bh_schedule(ehci->async_bh);
2362 }
2363
2364 if (schedules) {
2365 qemu_mod_timer(ehci->frame_timer, expire_time);
2366 }
2367}
2368
2369static void ehci_async_bh(void *opaque)
2370{
2371 EHCIState *ehci = opaque;
2372 ehci_advance_async_state(ehci);
2373}
2374
2375static const MemoryRegionOps ehci_mem_ops = {
2376 .old_mmio = {
2377 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2378 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2379 },
2380 .endianness = DEVICE_LITTLE_ENDIAN,
2381};
2382
2383static int usb_ehci_initfn(PCIDevice *dev);
2384
2385static USBPortOps ehci_port_ops = {
2386 .attach = ehci_attach,
2387 .detach = ehci_detach,
2388 .child_detach = ehci_child_detach,
2389 .wakeup = ehci_wakeup,
2390 .complete = ehci_async_complete_packet,
2391};
2392
2393static USBBusOps ehci_bus_ops = {
2394 .register_companion = ehci_register_companion,
2395};
2396
2397static int usb_ehci_post_load(void *opaque, int version_id)
2398{
2399 EHCIState *s = opaque;
2400 int i;
2401
2402 for (i = 0; i < NB_PORTS6; i++) {
2403 USBPort *companion = s->companion_ports[i];
2404 if (companion == NULL((void*)0)) {
2405 continue;
2406 }
2407 if (s->portsc[i] & PORTSC_POWNER(1 << 13)) {
2408 companion->dev = s->ports[i].dev;
2409 } else {
2410 companion->dev = NULL((void*)0);
2411 }
2412 }
2413
2414 return 0;
2415}
2416
2417static const VMStateDescription vmstate_ehci = {
2418 .name = "ehci",
2419 .version_id = 1,
2420 .post_load = usb_ehci_post_load,
2421 .fields = (VMStateField[]) {
2422 VMSTATE_PCI_DEVICE(dev, EHCIState){ .name = ("dev"), .size = sizeof(PCIDevice), .vmsd = &vmstate_pci_device
, .flags = VMS_STRUCT, .offset = (__builtin_offsetof(EHCIState
, dev) + ((PCIDevice*)0 - (typeof(((EHCIState *)0)->dev)*)
0)), }
,
2423 /* mmio registers */
2424 VMSTATE_UINT32(usbcmd, EHCIState){ .name = ("usbcmd"), .version_id = (0), .field_exists = (((void
*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, usbcmd) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->usbcmd
)*)0)), }
,
2425 VMSTATE_UINT32(usbsts, EHCIState){ .name = ("usbsts"), .version_id = (0), .field_exists = (((void
*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, usbsts) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->usbsts
)*)0)), }
,
2426 VMSTATE_UINT32(usbintr, EHCIState){ .name = ("usbintr"), .version_id = (0), .field_exists = (((
void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, usbintr) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->usbintr
)*)0)), }
,
2427 VMSTATE_UINT32(frindex, EHCIState){ .name = ("frindex"), .version_id = (0), .field_exists = (((
void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, frindex) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->frindex
)*)0)), }
,
2428 VMSTATE_UINT32(ctrldssegment, EHCIState){ .name = ("ctrldssegment"), .version_id = (0), .field_exists
= (((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, ctrldssegment) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
ctrldssegment)*)0)), }
,
2429 VMSTATE_UINT32(periodiclistbase, EHCIState){ .name = ("periodiclistbase"), .version_id = (0), .field_exists
= (((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, periodiclistbase) + ((uint32_t*)0 - (typeof(((EHCIState *)0
)->periodiclistbase)*)0)), }
,
2430 VMSTATE_UINT32(asynclistaddr, EHCIState){ .name = ("asynclistaddr"), .version_id = (0), .field_exists
= (((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, asynclistaddr) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
asynclistaddr)*)0)), }
,
2431 VMSTATE_UINT32(configflag, EHCIState){ .name = ("configflag"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, configflag) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
configflag)*)0)), }
,
2432 VMSTATE_UINT32(portsc[0], EHCIState){ .name = ("portsc[0]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[0]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[0])*)0)), }
,
2433 VMSTATE_UINT32(portsc[1], EHCIState){ .name = ("portsc[1]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[1]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[1])*)0)), }
,
2434 VMSTATE_UINT32(portsc[2], EHCIState){ .name = ("portsc[2]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[2]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[2])*)0)), }
,
2435 VMSTATE_UINT32(portsc[3], EHCIState){ .name = ("portsc[3]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[3]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[3])*)0)), }
,
2436 VMSTATE_UINT32(portsc[4], EHCIState){ .name = ("portsc[4]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[4]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[4])*)0)), }
,
2437 VMSTATE_UINT32(portsc[5], EHCIState){ .name = ("portsc[5]"), .version_id = (0), .field_exists = (
((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, portsc[5]) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->portsc
[5])*)0)), }
,
2438 /* frame timer */
2439 VMSTATE_TIMER(frame_timer, EHCIState){ .name = ("frame_timer"), .info = &(vmstate_info_timer),
.field_exists = (((void*)0)), .size = sizeof(QEMUTimer *), .
flags = VMS_SINGLE|VMS_POINTER, .offset = (__builtin_offsetof
(EHCIState, frame_timer) + ((QEMUTimer **)0 - (typeof(((EHCIState
*)0)->frame_timer)*)0)), }
,
2440 VMSTATE_UINT64(last_run_ns, EHCIState){ .name = ("last_run_ns"), .version_id = (0), .field_exists =
(((void*)0)), .size = sizeof(uint64_t), .info = &(vmstate_info_uint64
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, last_run_ns) + ((uint64_t*)0 - (typeof(((EHCIState *)0)->
last_run_ns)*)0)), }
,
2441 VMSTATE_UINT32(async_stepdown, EHCIState){ .name = ("async_stepdown"), .version_id = (0), .field_exists
= (((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, async_stepdown) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
async_stepdown)*)0)), }
,
2442 /* schedule state */
2443 VMSTATE_UINT32(astate, EHCIState){ .name = ("astate"), .version_id = (0), .field_exists = (((void
*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, astate) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->astate
)*)0)), }
,
2444 VMSTATE_UINT32(pstate, EHCIState){ .name = ("pstate"), .version_id = (0), .field_exists = (((void
*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, pstate) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->pstate
)*)0)), }
,
2445 VMSTATE_UINT32(a_fetch_addr, EHCIState){ .name = ("a_fetch_addr"), .version_id = (0), .field_exists =
(((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, a_fetch_addr) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
a_fetch_addr)*)0)), }
,
2446 VMSTATE_UINT32(p_fetch_addr, EHCIState){ .name = ("p_fetch_addr"), .version_id = (0), .field_exists =
(((void*)0)), .size = sizeof(uint32_t), .info = &(vmstate_info_uint32
), .flags = VMS_SINGLE, .offset = (__builtin_offsetof(EHCIState
, p_fetch_addr) + ((uint32_t*)0 - (typeof(((EHCIState *)0)->
p_fetch_addr)*)0)), }
,
2447 VMSTATE_END_OF_LIST(){}
2448 }
2449};
2450
2451static Property ehci_properties[] = {
2452 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128){ .name = ("maxframes"), .info = &(qdev_prop_uint32), .offset
= __builtin_offsetof(EHCIState, maxframes) + ((uint32_t*)0 -
(typeof(((EHCIState *)0)->maxframes)*)0), .qtype = QTYPE_QINT
, .defval = (uint32_t)128, }
,
2453 DEFINE_PROP_END_OF_LIST(){},
2454};
2455
2456static void ehci_class_init(ObjectClass *klass, void *data)
2457{
2458 DeviceClass *dc = DEVICE_CLASS(klass)((DeviceClass *)object_class_dynamic_cast_assert(((ObjectClass
*)((klass))), ("device")))
;
2459 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass)((PCIDeviceClass *)object_class_dynamic_cast_assert(((ObjectClass
*)((klass))), ("pci-device")))
;
2460
2461 k->init = usb_ehci_initfn;
2462 k->vendor_id = PCI_VENDOR_ID_INTEL0x8086;
2463 k->device_id = PCI_DEVICE_ID_INTEL_82801D0x24CD; /* ich4 */
2464 k->revision = 0x10;
2465 k->class_id = PCI_CLASS_SERIAL_USB0x0c03;
2466 dc->vmsd = &vmstate_ehci;
2467 dc->props = ehci_properties;
2468}
2469
2470static TypeInfo ehci_info = {
2471 .name = "usb-ehci",
2472 .parent = TYPE_PCI_DEVICE"pci-device",
2473 .instance_size = sizeof(EHCIState),
2474 .class_init = ehci_class_init,
2475};
2476
2477static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2478{
2479 DeviceClass *dc = DEVICE_CLASS(klass)((DeviceClass *)object_class_dynamic_cast_assert(((ObjectClass
*)((klass))), ("device")))
;
2480 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass)((PCIDeviceClass *)object_class_dynamic_cast_assert(((ObjectClass
*)((klass))), ("pci-device")))
;
2481
2482 k->init = usb_ehci_initfn;
2483 k->vendor_id = PCI_VENDOR_ID_INTEL0x8086;
2484 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI10x293a;
2485 k->revision = 0x03;
2486 k->class_id = PCI_CLASS_SERIAL_USB0x0c03;
2487 dc->vmsd = &vmstate_ehci;
2488 dc->props = ehci_properties;
2489}
2490
2491static TypeInfo ich9_ehci_info = {
2492 .name = "ich9-usb-ehci1",
2493 .parent = TYPE_PCI_DEVICE"pci-device",
2494 .instance_size = sizeof(EHCIState),
2495 .class_init = ich9_ehci_class_init,
2496};
2497
2498static int usb_ehci_initfn(PCIDevice *dev)
2499{
2500 EHCIState *s = DO_UPCAST(EHCIState, dev, dev)( __extension__ ( { char __attribute__((unused)) offset_must_be_zero
[ -__builtin_offsetof(EHCIState, dev)]; ({ const typeof(((EHCIState
*) 0)->dev) *__mptr = (dev); (EHCIState *) ((char *) __mptr
- __builtin_offsetof(EHCIState, dev));});}))
;
2501 uint8_t *pci_conf = s->dev.config;
2502 int i;
2503
2504 pci_set_byte(&pci_conf[PCI_CLASS_PROG0x09], 0x20);
2505
2506 /* capabilities pointer */
2507 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST0x34], 0x00);
2508 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2509
2510 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN0x3d], 4); /* interrupt pin D */
2511 pci_set_byte(&pci_conf[PCI_MIN_GNT0x3e], 0);
2512 pci_set_byte(&pci_conf[PCI_MAX_LAT0x3f], 0);
2513
2514 // pci_conf[0x50] = 0x01; // power management caps
2515
2516 pci_set_byte(&pci_conf[USB_SBRN0x60], USB_RELEASE_20x20); // release number (2.1.4)
2517 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2518 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2519
2520 pci_conf[0x64] = 0x00;
2521 pci_conf[0x65] = 0x00;
2522 pci_conf[0x66] = 0x00;
2523 pci_conf[0x67] = 0x00;
2524 pci_conf[0x68] = 0x01;
2525 pci_conf[0x69] = 0x00;
2526 pci_conf[0x6a] = 0x00;
2527 pci_conf[0x6b] = 0x00; // USBLEGSUP
2528 pci_conf[0x6c] = 0x00;
2529 pci_conf[0x6d] = 0x00;
2530 pci_conf[0x6e] = 0x00;
2531 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2532
2533 // 2.2 host controller interface version
2534 s->mmio[0x00] = (uint8_t) OPREGBASE0x0020;
2535 s->mmio[0x01] = 0x00;
2536 s->mmio[0x02] = 0x00;
2537 s->mmio[0x03] = 0x01; // HC version
2538 s->mmio[0x04] = NB_PORTS6; // Number of downstream ports
2539 s->mmio[0x05] = 0x00; // No companion ports at present
2540 s->mmio[0x06] = 0x00;
2541 s->mmio[0x07] = 0x00;
2542 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2543 s->mmio[0x09] = 0x68; // EECP
2544 s->mmio[0x0a] = 0x00;
2545 s->mmio[0x0b] = 0x00;
2546
2547 s->irq = s->dev.irq[3];
2548
2549 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2550 for(i = 0; i < NB_PORTS6; i++) {
2551 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2552 USB_SPEED_MASK_HIGH(1 << 2));
2553 s->ports[i].dev = 0;
2554 }
2555
2556 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2557 s->async_bh = qemu_bh_new(ehci_async_bh, s);
2558 QTAILQ_INIT(&s->aqueues)do { (&s->aqueues)->tqh_first = ((void*)0); (&s
->aqueues)->tqh_last = &(&s->aqueues)->tqh_first
; } while ( 0)
;
2559 QTAILQ_INIT(&s->pqueues)do { (&s->pqueues)->tqh_first = ((void*)0); (&s
->pqueues)->tqh_last = &(&s->pqueues)->tqh_first
; } while ( 0)
;
2560
2561 qemu_register_reset(ehci_reset, s);
2562
2563 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE0x1000);
2564 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY0x00, &s->mem);
2565
2566 return 0;
2567}
2568
2569static void ehci_register_types(void)
2570{
2571 type_register_static(&ehci_info);
2572 type_register_static(&ich9_ehci_info);
2573}
2574
2575type_init(ehci_register_types)static void __attribute__((constructor)) do_qemu_init_ehci_register_types
(void) { register_module_init(ehci_register_types, MODULE_INIT_QOM
); }
2576
2577/*
2578 * vim: expandtab ts=4
2579 */